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Despite numerous studies investigating intratumoral microorganisms and their

significant roles in cancer initiation, progression, and treatment efficacy, a

systematic understanding of intratumoral microorganisms remains lacking.

Herein, we conducted a study using 16S rDNA data on seven types of cancer,

comprising a total of 783 samples. It’s worth noting that Pseudomonas,

Streptococcus, and Prevotella were found to be shared with the microbial

communities of the seven cancers, suggesting that these may be associated

with the occurrence and development of cancers. We anticipate establishing a

foundation for related research and exploring potential methods for

cancer treatment.
KEYWORDS
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Introduction

According to the 2024 World Health Organization report, cancer is listed in the top 10

causes of death (Global health estimates: Leading causes of death). Crosby’s study in 2022

also shows that cancer remains a major global health challenge (Crosby et al., 2022).

Microorganisms in tumors were discovered over a hundred years ago (Gagliani et al., 2014).

However, due to limitations in technology and potential contamination issues, studies on

microorganisms within tumors have yet to be comprehensively developed. It was not until

2014 that Gagliani et al. introduced the concept of intratumoral microbiome in tumor
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tissue while studying bowel cancer (Gagliani et al., 2014).

Subsequently, a study published in Science in 2020 conducted an

in-depth analysis of intratumoral microbiomes in up to multiple of

cancer tissues, revealing that the intratumoral microbes

predominantly reside within tumor cells and immune cells

(Nejman et al., 2020). Further studies indicate that intratumoral

microbes may play an important role in the initiation and

development of cancer as well as its efficacy through DNA

mutations, promotion of chronic inflammation, etc (Yang et al.,

2023). Therefore, the study of intratumoral microbes in cancer

is necessary.

Along with the study of intratumoral microbes, some far-

reaching findings have been produced in recent years. For

example, Abe et al. revealed a significant positive correlation

between a shorter survival time and the presence of anaerobic

bacteria such as Bacteroides, Lactobacillus, and Peptoniphilus (Yu

et al., 2025). In Chai’s microbial study of cholangiocarcinoma,

Paraburkholderia fungorumwas was found to inhibit tumor

growth through alanine, aspartate, and glutamate metabolism

(Chai et al., 2023). Zhang et al. found that intra-tumoral

Fusobacterium nucleatum further promotes the growth and

immune infiltration of senescent esophageal squamous cell

carcinoma cells to secretion of senescence-associated secretory

phenotype, which accelerated tumor growth (Zhang et al., 2023).

Li et al. pinpoint intracellular Shewanella algae as a foremost LM

risk factor in both AI- and non-AI-treated patients (Li et al., 2024).

All these results suggest a close link between intratumoral

microorganisms and tumors. However, owing to the diversity of

cancer types, there is still a lack of systematic understanding of

intratumoral microbes.

In this study, we collected a total of 783 samples from seven

cancer types, including breast, esophageal, gastric, liver, lung,

pancreatic cancers and oral squamous cell carcinoma(OSCC) to

study the intratumoral microbiota. In order to explore the

intratumoral microbiota in detail, based on the publicly available

samples, we performed various analysis strategies such as Alpha

diversity index comparison, LDA analysis, and Co-abundance

network analysis et al. Our goal is to provide a holistic

understanding of the intratumoral microbial composition of

cancer tissues through the above analyses, to advance research

related to intratumoral microbiology, and to provide a scientific

basis for possible therapeutic options.
Materials and methods

Data accession and sequence processing

For all available samples, we downloaded the pair-end

sequencing files of 16S rDNA for each sample from ENA

database, and all files were downloaded as FASTQ format. We

performed data quality control using FastQC version 0.12.0 for the

raw data of each cancer-type sample (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). For raw reads, we performed

splice removal using TrimGalore version 0.6.5 with the default
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splice ‘AGATCGGAAGAGC’ (https://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/). Subsequently, the trimmed

pair-end reads were merged in EasyAmplicon software using

vsearch software version v2.22.1 and the merged sequences were

dereplicated (Rognes et al., 2016; Liu et al., 2023). We analyzed

these 16S data using uniform standards to ensure that data noise

was minimized.
Taxonomic classification and bioinformatic
analysis

We denoised the dereplicated sequences to obtain ASVs using

usearch software at minsize=10. Taxonomy classification was

performed in EasyAmplicon using the rdp_16s_v18.fa database,

and then the same types of taxa were summarized at the phylum,

class, order, family, and genus levels when the raw counts were

normalized to an ASV table of relative abundance groups (Liu et al.,

2023). Subsequently, the visualization of the taxonomy classification

of microbial communities was performed using the tax_stackplot.R

script in EasyAmplicon software (Liu et al., 2023).

Using R package vegan version 2.6-8, we calculated the alpha

diversity indices (Shannon index, Simpson index, observed_features

index, and pielou_evenness index) of microorganisms from seven

different cancer tissues (vegan: Community Ecology Package). The

alpha diversity visualization was performed with R package

Tidyverse version 2.0.0 (Wickham et al., 2019).The diversity of

the bacterial community was assessed by the Shannon and Simpson

indices, the richness of the bacterial community was assessed by the

observed_features index, and the evenness of the bacterial

community was assessed by the pielou_evenness index. To

compare the differences in the diversity indices of microbial

communities between control and case in six cancer types, we

conducted an ANOVA significance test (p < 0.05). In addition, we

performed b-diversity analysis based on Bray-Curtis distance using

the online analysis platform www.bioincloud.tech (Gao et al., 2024).

The identification of abundance-differentiated microorganisms was

carried out using linear discriminant analysis (LDA) of effect sizes.

LDA scores indicate the effect sizes of each ASV, and ASVs with

LDA values >2.0 were defined as ASVs of differential abundance.

The results obtained were used for data visualization using ggplot2

version 3.5.1 and RColorBrewer version 1.1–3 packages in R4.3.2.

The online analysis platform www.bioincloud.tech was utilized to

visualize the co-abundance networks of microbial communities at

the genus level for each type of cancer, as well as to create a

clustering heatmap of the thirteen most common bacteria, which is

selected from many past researches (Eun et al; Farrell et al; Qiao

et al; Tsay et al; Zhang et al; Urbaniak et al., 2016; Klann et al., 2020;

Nalluri et al., 2021; Gao et al., 2024).
Statistical analysis

We performed statistical analyses on the IBM SPSS Statistics 25

platform. We used ANOVA and LSD tests to compare the
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differences in each diversity index between groups. The co-

abundance network among microbial taxa were calculated using

Spearman rank correlation analysis. Only correlation coefficients

greater than 0.4 will be showed.
Results

Intratumoral microbial data collection and
statistics

A total of 783 samples (31.7 GB in Genome size) of seven cancer

types (Supplementary Table S1) were selected from eight Bioprojects

for this study, and 43689 ± 41918 reads (mean ± SD) were obtained

from each sample after quality control (Table 1; Supplementary Table

S1). There are lung cancer (29 cancerous samples; 29 healthy tissue

samples), intrahepatic cholangiocarcinoma (45 cancerous samples; 49

paracancerous samples), hepatocellular carcinoma (63 cancerous

samples; 61 paracancerous samples), OSCC(20 cancerous samples;

20 healthy tissue samples), breast cancer(45 cancerous samples; 23

healthy tissue samples), esophageal cancer (21 cancerous samples; 21

healthy tissue samples), gastric cancer (134 cancerous samples; 157

healthy samples), and pancreatic cancer (66 cancerous samples).

Among them, we combined intrahepatic cholangiocarcinoma and

hepatocellular carcinoma into liver cancer tissues for further analysis.
a diversity and b diversity of intratumoral
microorganism in pan-cancer analysis

In the a-diversity analysis, we found that gastric cancer and

liver cancer were extremely significant difference (p < 0.001) in

mean Shannon index and mean microbial Simpson’s index between

healthy tissue samples and cancerous samples. There was no

significance (p > 0.05) difference of mean microbial Shannon

index and mean microbial Simpson’s index between healthy

tissue samples and cancerous samples in esophageal cancer,
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OSCC and pancreatic cancer. The mean microbial Shannon index

and mean microbial Simpson’s index difference in breast cancer and

liver cancer were also significant difference, p – value < 0.01 and p –

value < 0.05, respectively (Figures 1A, B; Supplementary Table S2).

The mean value of the microbial observed_features index between

control and tumor of liver cancer samples and gastric cancer

samples was significantly difference(p<0.001) (Figure 1C;

Supplementary Table S2). There is no significant difference in the

mean observed_features index of microbial diversity in remaining

cancer types between control and case (Figure 1C; Supplementary

Table S2). The mean microbial evenness index between control and

case was greatly significant (p < 001) difference in breast tumor,

gastric tumor and lung tumor (Figure 1D; Supplementary Table S2).

There was significant difference in the mean microbial evenness

index between control and case in liver cancer and OSCC with a

different degree, p – value < 0.01 and p – value < 0.05, respectively

(Figure 1D; Supplementary Table S2). There was no significance

difference in the mean microbial evenness index between control

and case of esophageal cancer and pancreatic cancer (Figure 1D;

Supplementary Table S2).

Based on the Bray-Curtis distance, principal coordinate analysis

(PCoA) revealed that the similarity of microbial communities

between breast cancer samples and pancreatic cancer samples is

high (Supplementary Figure S1). A distinct trend of dispersion was

observed in gastric group, suggesting a high variability of bacterial

composition (Supplementary Figure S1).
Taxonomy classification of intratumoral
microorganism in pan-cancer analysis

A total of 32 phyla, 62 classes, 109 orders, 246 families, and 721

genera were detected in Pan-cancer analysis. Overall, the intramural

microorganisms of the seven different cancers were mainly

composed of Proteobacteria, Firmicutes, and Actinobacteria at the

phylum level, and the proportion of Proteobacteria in the seven

different cancer was as follows in descending order: pancreatic

cancer (79.88%), hepatocellular carcinoma (48.71%), breast cancer

(47.06%), lung cancer (44.31%), OSCC (27.14%), gastric cancer

(26.89%) and esophageal cancer (26.31%) (Figure 2A).

Proteobacteria had the highest proportion in pancreatic cancer.

The proportion of Firmicutes in the seven cancer samples in order

of highest to lowest is as follows: OSCC (29.54%), breast cancer

(29.47%), esophageal cancer (27.63%), gastric cancer (27.15%),

pancreatic cancer (13.41%), lung cancer (10.35%), and liver

cancer (5.60%). We found that Firmicutes had a high and

approximately equal percentage in OSCC, breast, esophageal, and

gastric cancer samples, and the lowest percentage in liver cancer.

Actinobacteria had a high proportion of 24.74% and 23.48% in liver

and lung cancer, respectively, while the lowest percentage is 1.76%

in OSCC samples. Bacteroidetes was higher in OSCC, gastric, and

esophageal cancer samples with 17.11%, 15.77%, and 15.41%,

respectively. The lowest percentage was found in pancreatic

cancer with 1.38%. Campilobacterota had the highest percentage

of 19.99% in gastric cancer samples and was also present in OSCC,
TABLE 1 Detailed information of seven cancer types.

Cancer types
Sample
number

SRA Bioproject

Lung 58 SRX9567656 PRJNA680529

Liver
(intrahepatic

cholangiocarcinoma)
94 SRX11731648 PRJNA753723

Liver
(hepatocellular carcinoma)

124 SRX10336718 PRJNA714196

OSCC 40 SRX2348605 PRJNA352375

Breast 68 SRX1817289 PRJNA323995

Esophagus 42 SRX12381532 PRJNA766558

Gastric 291 SRX1992555 PRJNA310127

Pancreas 66 SRX8103970 PRJNA624822
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esophageal, lung, and breast cancer samples, but with a smaller

proportion. In addition, Parcubacteria had a higher percentage of

14.69% in liver cancer. Fusobacteria and Spirochaetes had higher

percentages of 15.50%, 11.39%, 5.23%, and 3.06%, 3.24%, 1.68% in
Frontiers in Cellular and Infection Microbiology 04
OSCC, esophageal, and gastric cancer samples, respectively.

Planctomycetes and Verrucomicrobia were only present and

relatively high in lung cancer with 5.81% and 3.83%, respectively.

In healthy tissue microbial composition, Proteobacteria, Firmicutes,
FIGURE 1

Alpha diversity box plot (Shannon, Simpson, observed_features and pielou_evenness) among seven cancer types. (a–d) represent shannon, simpson,
observed_features and evenness aplha diversity, respectively.
FIGURE 2

Bar plots of the phylum and genus taxonomic levels among seven cancer types. (a, b) represent the composition of bacteria in phylum and genus, respectively.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1549319
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2025.1549319
Actinobacteria was also predominant (Supplementary Figure S2).

However, the relative abundance of these microorganisms was

different form tumor tissue samples (Supplementary Figure S2).

For example, in healthy tissues of OSCC, Firmicutes had a higher

relative abundance (Supplementary Figure S2). Compared with

esophageal cancer, the relative abundance of Proteobacteria was

higher in healthy esophageal tissues (Supplementary Figure S2).

At the genus level, the microbial composition of different cancer

samples varied considerably, with Pseudomonas (21.26%) and

Citrobacter (4.92%) being more prevalent in breast cancer

(Figure 2B). In esophageal cancer, Fusobacterium (8.71%),

Streptococcus (7.39%), and Prevotella (4.87%) accounted for the

top three in descending order. In gastric cancer, the top three genera

were Helicobacter (19.74%), Streptococcus (8.24%), and Prevotella

(8.01%). Rhodococcus (22.69%), Ralstonia (20.76%), and

Parcubacteria_genera_incertae_sedis (14.69%) had the highest

percentage in hepatocellular carcinoma. Ralstonia (13.61%) had

the highest percentage in lung cancer. In OSCC cancer,

Streptococcus (13.18%), Fusobacterium (9.41%) and Prevotella

(6.58%) had the highest proportion. Finally, in pancreatic cancer,

the top three genera in descending order were dominated by

Halomonas (26.12%), Pseudomonas (12.99%) and Citrobacter
Frontiers in Cellular and Infection Microbiology 05
(7.53%). Also, we found that Pseudomonas, Streptococcus and

Prevotella were present in seven cancer samples, while

Rhodococcus and Acinetobacter were present in the remaining six

cancers except for OSCC. Fusobacterium was present in all

remaining cancers except liver and lung cancer. The microbial

composition of healthy tissues was great difference between groups

(Supplementary Figure S2). It was evident that pseudomonas which

had the most relative abundance in tumor tissues was less prevalent

in healthy tissues (Supplementary Figure S2).
Identification of abundance differential
intratumoral microorganisms in pan-
cancer analysis

We performed abundance differential microorganisms analysis by

Lefse (LDA>2). There were 13, 19, 10, 2, 3, 19 significant abundance

differential microorganisms in tumor group from breast cancer,

esophageal cancer, gastric cancer, liver cancer, lung cancer and

OSCC, respectively (Supplementary Figure S3). Then, the number

of microorganisms with significant differences among different

cancers, from high to low, was esophageal cancer (9), OSCC (8),
FIGURE 3

LDA analysis implied differentially abundant microorganisms among seven cancer types (LDA Score > 2).
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breast cancer (7), hepatocellular carcinoma (5), gastric cancer (2), lung

cancer (1), and pancreatic cancer (2) (Figure 3). Pseudomonas

(LDA>5), Bacillus (LDA>4), Cutibacterium (LDA>4), etc. were

significantly enriched in breast cancer Treponema (LDA>4),

Peptostreptococcus (LDA>4), Peptoanaerobacter (LDA>3), etc. were

enriched in esophageal cancer. Streptococcus (LDA>5), Prevotella

(LDA>4) were significantly enriched in gastric cancer. Acinetobacter

(LDA>5), Pelomonas (LDA>4), Sediminibacterium (LDA>4), etc.

were significantly enriched in liver cancer. Fusobacterium (LDA>5),

Campylobacter (LDA>4), Aggregatibacter (LDA>4), etc. were

significantly enriched in OSCC. Dialister (LDA>4) and Shewanella

(LDA > 5) were significantly enriched in lung cancer and pancreatic

cancer, respectively.
Co-abundance networks of intratumoral
microorganisms in pan-cancer analysis

We performed Co-abundance networks analysis of seven

microorganisms with different cancer types (correlation coefficient

>0.4, p-value<0.05) (Figure 4). We found that Pseudomonas

(relative abundance =20.82, degree=14), Fusobacterium (relative

abundance =8.56, degree=17), Streptococcus (relative abundance

=8.53, degree=2), and Ralstonia (relative abundance =13.43,

degree=5) all had high abundance and high degrees, which were

predominant in breast, esophageal, gastric, and lung cancers,
Frontiers in Cellular and Infection Microbiology 06
respectively (Figures 4A,B,D,E; Supplementary Tables S3, S4). In

addition, in breast cancer network, there was a positive correlation

(correlation index >0.6) between Pseudomonas and Staphylococcus

significantly enriched bacteria(LDA > 4). In esophageal cancer

network, there was a negative correlation (correlation index<

-0.6) between Fusobacterium and significantly enriched genera

(Peptostreptococcus, LDA>3). There were more connections

among esophageal cancer network in genera. In liver cancer

network, Ralstonia (relative abundance =20.66,degree=5),

Rhodococcus(relative abundance = 22.69, degree = 5) and

Lysobacter (relative abundance =1.19,degree=15) played an

important role, with first two having the higher abundance and

lower degree and the latter had lower abundance and highest degree

(Figure 4C). In the OSCC network, Streptococcus (relative

abundance =13.22, degree=6) had the highest abundance and

medium degree and Fusobacterium (relative abundance =9.56,

degree=11) had the highest degree and lower abundance

(Figure 4F). Leptotrichia (relative abundance =6.02, degree=9)

had higher abundance, all three played a key role in OSCC

microbiological network. Among pancreatic and esophageal

cancer microorganisms, Halomonas and Shewanella played key

roles, both of which had higher abundance and higher degrees

(Figure 4G). We found mostly positive correlations in breast,

gastric, liver, and pancreatic cancers, whereas there was no

distinct patterns of correlation among esophagus, lung, and

OSCC microbiological network.
FIGURE 4

The Co–abundance network of six cancer types. The blue color represents least abundant, yellow color represents intermediate abundance and red
represents the most abundant. The light green color of connecting lines represents negative correlation and red represents positive correlation. The
size of the nodes indicates degree number and set from 30 to 60. The biggest one means that it has most degrees, and the smallest one means
least degrees. Only correlation coefficients greater than 0.4 will be showed. The correlation coefficients p – value threshold is 0.05. (a–g) represent
the co-abundance network of bacteria in breast, esophagus, liver, gastric, lung, oscc and pancreas, respectively.
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The common intratumoral microorganisms
profiling in pan-pancer analysis

We investigated 13 common intratumoral microorganisms

(genus level) abundance profiling of seven cancers. The

abundance of the thirteen microorganisms varied widely among

different cancers (Figure 5). We found that the Neisseria,

Porphyromonas, and Fusobacterium exhibited higher abundances

in OSCC samples. In esophageal cancer samples, Fusobacterium,

Porphyromonas, and Corynebacterium were found to be more

abundant. In gastric cancer tissues, Prevotella and Streptococcus

showed higher abundances, while in breast cancer tissues, Bacillus,

Pseudomonas , and Staphylococcus were more enriched.

Brevundimonas and Corynebacterium were found to have higher

abundances in lung cancer. Notably, there were no high-abundance

genera identified in liver and pancreatic cancer samples. We found

the types and abundance of common bacteria were relatively high in

OSCC samples. In summary, the microbial profiling pattern of

esophageal and gastric cancer samples are relatively similar, as so as

liver and pancreatic cancer samples.
Discussion

Currently, intratumoral microbiology research is hot but

controversial. Nejman et al. conducted the first more comprehensive

and systematic study of intratumoral microbiology in 2020 (Nejman

et al., 2020). This has sparked a boom in intratumoral microbial

research. In contrast to the study by Nejman et al., we analyze five

different cancer types to provide a more comprehensive situation for

more cancer types. Similarly, we all collect a large number of samples to

diminish the error made by samples. Uniquely, we offer refined co-

abundance network for each cancer type (Nejman et al., 2020). Sepich-
Frontiers in Cellular and Infection Microbiology 07
Poore et al. in 2021 explored intratumoral microbes in cancer therapy

by discovering that intratumoral bacteria produce a new tumor antigen

(Sepich–Poore et al., 2021). Qu et al. in 2022 explored the microbial

composition of hepatocellular carcinoma tissues and identified new

diagnostic markers for primary liver tumors (Qu et al., 2022). Research

articles on intratumoral microbes have been climbing in recent years.

At the same time, some have raised concerns; for example, Ge et al.

inferred in 2024 that the presence of microorganisms within tumors is

a result of technical errors (Ge et al., 2024). In our study, we utilized the

concept of pan-cancer to conduct a meta-analysis of intratumoral

microorganisms across 783 samples of 16S rDNA from up to seven

different cancer types, thereby maximizing the potential evidence for

the presence of intratumoral microorganisms.

In our result, we found gastric cancer and liver cancer were all

significant difference (p < 0.001) of the four diversity indices except

evenness diversity index of liver cancer (p < 0.001). Noticeably,

there was a great difference. The mean value of four diversity indices

in case were significant higher than control in gastric cancer and it

was opposite in liver cancer. In taxonomy classification at the

phylum level, we found that the top three phyla in OSCC cancer

were Firmicutes, Proteobacteria, and Bacteroidetes, respectively. In

different OSCC studies, it coincided with Su’s findings (Su et al.,

2021). In taxonomy classification at the genus level, the most

prevalent genus in our study was Streptococcus, which is

consistent with Su’s research (Su et al., 2021). Furthermore, in

our study, Fusobacterium and Prevotella exhibited higher relative

abundances, a conclusion that aligns with the findings of Michikawa

et al. (2022). As a bridge between different colonizers in oral cavity,

Fusobacterium will increase uncertainty of biofilms with an

abnormal abundance (Ye et al., 2024). In breast cancer tissues, we

found that Proteobacteria, Firmicutes, Actinobacteria, and

Bacteroidetes were the most abundant phyla. This finding is

consistent with the results of Klann et al. in various breast cancer
FIGURE 5

Heatmap of 13 selected most common intratumoral microorganisms at the genus level. The blue color represents less abundant, yellow color
represents intermediate abundance and red represents the most abundant.
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studies (Klann et al., 2020), but it differs from the results of

Urbaniak et al. (2014), where Firmicutes was the most abundant

phylum (Urbaniak et al., 2014). At the genus level, Pseudomonas

was overwhelmingly dominant. However, Urbaniak et al. (2016)

found that Staphylococcus, Enterobacteriaceae, and Bacillus were

more highly represented in breast cancer (Urbaniak et al., 2016).

Meanwhile, German et al. found that Ralstonia and Staphylococcus

were also higher in breast cancer (German et al., 2023). There is a

big difference between our study and two other different studies.

This may be related to the fact that the microbial composition of

breast cancer may vary with stages (Smith et al., 2019). The

abundance of Fusobacterium, which had been proved to worsen

cancer in breast through lectin Fap2, is low (Parhi et al., 2020).

Regarding the microbial composition in esophageal cancer, we

found that in various esophageal cancer studies, both at the

phylum and genus levels, our results were similar to those of Liu

et al. and Wang et al (Liu et al., 2018; Wang et al., 2021). The only

difference is that Campylobacterota exhibited a relatively higher

abundance in our study. In gastric cancer, we found that compared

to other gastric cancer studies, Campylobacterota exhibited a higher

abundance at the phylum level in our research compared to Shao’s

study, which aligns with its characteristic extensive presence in the

digestive system (Shao et al., 2019). Further, Liu et al. found the

infiltration level of Tregs was negatively correlated with microbial

abundance, which indicates that the higher abundance of gastric

tumor microbiome may pose an adverse impact on therapy (Liu

et al). The higher abundance of Fusobacterium may induce

organelle dysfunction by up-regulating the expression of related

genes and promote cancer metastasis (Zhou et al., 2022). In various

studies of microbial composition in liver cancer, we observed that

our results were similar to those of Qu et al. at the phylum level (Qu

et al., 2022). However, there were significant differences at the genus

level. Acinetobacter was the dominant genus in Qu’s research,

whereas it constituted a relatively lower proportion in our study

(Qu et al., 2022). Maybe it is not the sequencing depth effects,

because we normalized the raw data and took relative abundance to

analysis. Subsequent plans are to validate the distribution of this

microbiota in liver cancer by RNA single-cell sequencing, microbial

single-cell sequencing, and microbial culture. What’s more, Xue

et al. discovered the metabolism influences made by liver tumor

microbiome, presenting that the metabolites of 13Z, 16Z-

docosadienoic acid is overexpressed in liver tumor (Xue et al.,

2024). In the microbial composition of lung cancer, our study

identified Proteobacteria as the dominant phylum, in contrast to

Lee’s research, where Bacteroidetes was the prevalent phylum and

represented a smaller proportion in our findings (Lee et al., 2016).

Additionally, Ralstonia showed a higher relative abundance in our

study compared to its lower proportion in Lee’s research (Lee et al.,

2016). Regarding the microbial composition in pancreatic cancer,

we found that our results were highly similar to those of Nejman

et al. at the phylum level across different studies (Nejman et al.,

2020). The high abundance of Proteobacteria will lead to T cell

anergy in a Toll-like receptor-dependent manner, accelerating

tumor progression (Pushalkar et al., 2018). Noticeably, the

presence of Fusobacterium will mediate tumorigenesis and
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metastasis by promoting the synthesis of GMCSF and CXCL1 in

pancreas (Nejman et al., 2020). Interestingly, Josie et al. innovated

Electro-antibacterial therapy to enhance intracellular bacteria

clearance in pancreatic cancer cells, which is a potential method

to cure pancreatic cancer (Duncan et al., 2024). It is noteworthy that

we detected the presence of Pseudomonas, Streptococcus and

Prevotella in the microbial compositions of the seven cancer types

we studied, suggesting a potential close association between these

genera and cancer.

From our results, we observed that there are significant

abundant differential microorganisms in cancers such as breast

cancer, esophageal cancer and OSCC, while pancreatic cancer and

lung cancer exhibited fewer abundant differential microorganisms.

Additionally, in the comparison between the microbial composition

of normal tissue and cancer tissue, we found that Treponema was

significantly enriched in three types of cancer tissue, which

indicated that it was likely consistent with cancer.

Based on the exist ing researches of intratumoral

microorganisms, we selected thirteen genera that are frequently

found in various cancer tissues (according to Xue et al.) (Xue et al.,

2023; Xuan et al., 2024). Of these thirteen genera, most are

parthenogenetic anaerobes or anaerobes, and only Neisseria is

aerobic. We can see that Neisseria is only found in OSCC,

esophageal cancer, and gastric cancer, which may be related to

human physiology. Fusobacterium is an anaerobic bacterium

commonly associated with various infections and inflammations.

We found its presence in OSCC, esophageal cancer, and gastric

cancer, suggesting that this genus may possess potential

pathogenicity. Additionally, due to its reported association with

multiple cancers, it is also referred to as “oncobacterium” (Brennan

and Garrett, 2019; McIlvanna et al., 2021; Alon–Maimon et al.,

2022). According to the results, Brevundimonas was found to be

abundantly present in lung cancer, while it was almost absent in

other cancers. Furthermore, this bacterium is often associated with

the occurrence of pneumonia, indicating that it may have a greater

tendency to inhabit lung tissue and exhibit pathogenic potential

(Hassan et al., 2023). We found Bacillus and Staphylococcus to be

present in large numbers in breast cancers. Noticeably, Liu et al.

found that there are positive correlations between tumoral

Staphylococcus and CD8+ TIL activity exclusively in triple-

negative breast cancer, demonstrating the effect of Staphylococcus

on immunity (Liu et al., 2024). In general, Bacillus is only present in

the environment and is not pathogenic, but certain species such as

Bacillus anthracis can sometimes cause serious illness (Atlas, 1998;

Watson et al., 2017). Since our samples could only be localized to

the genus level, we were unable to determine which species of

Bacillus were enriched in breast cancer. Finally, we found that these

thirteen bacteria had low abundance or were absent in liver cancer

and pancreatic cancer, suggesting that the microbial communities

in these cancers may be dominated by other specific taxa.

However, there are some shortcomings in our study. Firstly, our

study is based on online public data and 16S rDNA data, which

cannot be precisely localized to the species level. Secondly, this

study lacks the validation of wet experiments, which will be added

in the future. We have provide a more comprehensive
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understanding of intratumoral microbiome. However, We hope to

further investigate the composition of intratumoral microorganisms

systematically through more pan-cancer samples, which will lay the

foundation for related research and provide a scientific basis for

possible cancer treatment options. In the future, more researches on

microbiome metabolomics may further elucidate the influences of

microbiome posed to tumor.
Conclusion

In summary, we conducted a more systematic study of

intratumoral microbial communities in seven different cancer types

based on 16S data in pan-cancer analysis. The microbial communities

of different cancers were found to have differences but also

commonalities in diversity and species composition. Four genera,

Pseudomonas, Streptococcus, and Prevotella were found to be common

to the microbial communities of the seven cancers, suggesting that

these microorganisms may be associated with the occurrence and

development of cancer. In addition, it is noteworthy that we identified

the core microorganisms in the intratumoral microbial interactions

network of different cancers, which may help us to study the tumor

microenvironment in depth. We hope that our results will lay the

foundation for further research in the field of intratumoral microbes

and provide new ideas for cancer diagnosis and treatment.
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