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sequencing positivity
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1Department of Infectious Diseases, The Second Xiangya Hospital, Central South University,
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Objective: Metagenomic next-generation sequencing (mNGS) can potentially

detect various pathogenic microorganisms without bias to improve the

diagnostic rate of fever of unknown origin (FUO), but there are no effective

methods to predict mNGS-positive results. This study aimed to develop an

interpretable machine learning algorithm for the effective prediction of mNGS

results in patients with FUO.

Methods: A clinical dataset from a large medical institution was used to develop

and compare the performance of several predictive models, namely eXtreme

Gradient Boosting (XGBoost), Light Gradient-Boosting Machine (LightGBM), and

Random Forest, and the Shapley additive explanation (SHAP) method was

employed to interpret and analyze the results.

Results: The mNGS-positive rate among 284 patients with FUO reached 64.1%.

Overall, the LightGBM-basedmodel exhibited the best comprehensive predictive

performance, with areas under the curve of 0.84 and 0.93 for the training and

validation sets, respectively. Using the SHAP method, the five most important

factors for predicting mNGS-positive results were albumin, procalcitonin, blood

culture, disease type, and sample type.

Conclusion: The validated LightGBM-based predictive model could have

practical clinical value in enhancing the application of mNGS in the etiological

diagnosis of FUO, representing a powerful tool to optimize the timing of mNGS.
KEYWORDS

metagenomic next-generation sequencing (mNGS), fever of unknown origin (FUO),
machine learning algorithms, light gradient-boosting machine (LightGBM),

predictive modeling
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Introduction

In the past 50 years, sequencing technology has undergone

significant development, leading to significant improvements in

speed, accuracy and cost-effectiveness and enabling researchers to

explore the complexity of the genome in unprecedented detail

(Heather and Chain, 2016). First-generation sequencing methods,

predominated by Sanger sequencing, played an important role in

the early stage of genomics, considering their advantages in

sequencing small DNA fragments. The completion of the Human

Genome Project in 2003 marked a key step in the field, leading

to the development of next-generation sequencing (NGS)

technologies. Corresponding applications greatly increased the

throughput and reduced the costs of DNA sequencing, making it

possible to sequence the entire genome in a timely and economical

manner (Mardis, 2011). The landscape of sequencing technologies

has constantly evolved since the emergence of NGS. The latest

advancement is long-read sequencing technology, which enables

the sequencing of longer continuous DNA fragments. It offers a

major solution for deciphering complex genomic regions and

understanding structural variations that were previously difficult

to analyze (Goodwin et al., 2016). In addition to providing broader

access to genomic data by the public, the continuous advancement

of sequencing technologies also provides new paths for research and

clinical applications, especially concerning personalized medicine

(Casey et al., 2013). The integration of sequencing technology into

clinical practice has upgraded medical diagnosis and treatment

modes, highlighting the profound impact of these advances

on healthcare.

Metagenomic NGS (mNGS) has become the most commonly

used high-throughput sequencing technology for detecting

pathogenic microorganisms and avoiding limitations related to

traditional culture-based methods. This innovative strategy can

comprehensively identify various pathogens directly in clinical

specimens without bias in the absence of prior knowledge of

specific pathogens (Simner et al., 2018). Advancements in mNGS

technologies have significantly promoted its application in clinical

microbiology to achieve rapid and accurate diagnoses of infectious

diseases. mNGS can also identify common and rare pathogens,

leading to enhanced practicality in clinical settings, as timely and

accurate diagnosis is crucial for effective patient management

(d'Humières et al., 2021). mNGS displays excellent sensitivity in

detecting bacteria, fungi, parasites, viruses, and some specific

pathogens. Using this method, researchers can comprehensively

analyze microbial communities and identify pathogens that might

have been missed by traditional culture-based strategies. mNGS can

support the analysis of complicated samples without prior
Abbreviations:mNGS, Metagenomic next-generation sequencing; FUO, Fever of

unknown origin; LightGBM, Light Gradient-Boosting Machine; SHAP, Shapley

additive explanation; NGS, next-generation sequencing; ML, Machine learning;

XGBoost, eXtreme Gradient Boosting; ALB, Albumin; PCT, Procalcitonin; ALT,

alanine aminotransferase; AST, aspartate aminotransferase; LASSO, The least

absolute shrinkage and selection operator; DCA, decision curve analysis.
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knowledge of the pathogenic type, highlighting its potential use in

clinical diagnosis (Han et al., 2019). Moreover,compared with

traditional blood culture, the sensitivity of mNGS is less affected

by antibiotic use, maintaining high detection rates even upon

significant reductions in the density of pathogenic bacteria

(Caliendo and Hodinka, 2017; Miao et al., 2018). To further

validate this claim, we conducted a subgroup analysis to compare

mNGS positivity rates between patients with prior antibiotic use

and those without antibiotic exposure. Among the 284 enrolled

patients, 174 (61.3%) received antibiotics prior to mNGS testing,

while 110 (38.7%) did not. The mNGS positivity rates in these two

groups were 62.1% (108/174) and 67.3% (74/110), respectively.

Ac²test revealed no statistically significant difference between these

groups (c²= 0.812, P = 0.368).

These findings support the hypothesis that prior antibiotic

exposure does not significantly affect mNGS sensitivity, consistent

with previous studies. The ability of mNGS to detect microbial

nucleic acids even in patients with reduced bacterial loads highlights

its advantage over traditional culture-based methods, which are

more susceptible to antibiotic interference.

Consequently, mNGS technologies have been extensively

applied in the diagnosis of infectious diseases, displaying

advantages such as high positivity rates, minimal interference

from antibiotics, and wide pathogen coverage (Caliendo and

Hodinka, 2017). In clinical settings, traditional microbiological

testing, pathological examination, and sterile specimen culture

remain the gold standards for infection diagnosis. Notably,

mNGS has been accepted as a powerful complement that further

expands the scope and depth of pathogen identification and

provides new paths for the diagnosis of complicated infections.

More than 1,000 pathogenic microorganisms can induce disease

development in humans. However, for certain infectious diseases

(e.g., intracranial infections, bloodstream infections), traditional

microbiological testing fails to provide a clear pathogenic diagnosis

in >50% of cases. This poses a great challenge to the application of

traditional methods in the etiological identification of complicated

infections, thereby increasing the requirement for more sensitive and

comprehensive detection techniques to improve pathogenic

identification rates (Glaser et al., 2006). Biological diagnostic

methods are affected by bacterial density and antibiotic use, and

the test is time-consuming (≥48 h), which could delay the diagnosis.

Moreover, many pathogens are difficult or impossible to culture,

prompting clinicians to use broad-spectrum antibiotics without

identifying the pathogen. This both imposes an additional financial

burden on patients and promotes the development of multidrug

resistance in pathogenic microorganisms, further hindering the

application of anti-infectious therapy (Liu and Ma, 2024).

Technology that can identify potential pathogens by detecting

microbial nucleic acids (i.e., NGS, mNGS) in multiple samples of

culture-negative patients has proven effective for microbial

identification. However, the sensitivity and specificity of mNGS

varied in different studies. In one study, the sensitivity and

specificity of mNGS were 50.7% and 85.7%, respectively (Miao

et al., 2018). However, mNGS outperforms traditional culture-

based methods in identifying specific pathogens such as
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Mycobacterium tuberculosis, viruses, anaerobic bacteria, and fungi

(Miao et al., 2018). Consequently, the diagnostic potential of mNGS

in complex microbial cases, especially culture-negative cases, has

emerged (Hu et al., 2019).

Nevertheless, mNGS can generate negative results in the clinical

detection of fever of unknown origin (FUO), which might be

attributable to non-infectious diseases or sample types. In cases of

local infection, mNGS using tissue displayed better positivity rates

and sensitivity than blood culture (Ramachandran and Wilson,

2020). Conversely, the sensitivity of mNGS was lower than that of

blood culture for specific pathogens such as Brucella species, which

are gram-negative bacteria that can survive and multiply within

their host by evading the immune response (von Bargen et al.,

2012). Therefore, clinicians should conduct comprehensive analyses

based on patients’ clinical manifestations, laboratory test results and

medical history. This could optimize the allocation of medical

resources and reduce the financial burden on patients.

Machine learning (ML) is a subset of artificial intelligence in

which machines autonomously acquire information by extracting

patterns from large databases (Ermak et al., 2024), and it has been

increasingly used within the medical community. Among the ML

algorithms, eXtreme Gradient Boosting (XGBoost) is a decision

tree-based ensemble boosting algorithm framework with high

training efficiency and accuracy, and it is especially suitable for

handling imbalanced datasets. Light Gradient-Boosting Machine

(LightGBM) is a highly efficient gradient-boosting algorithm with

faster training speed and lower memory consumption that can be

used to process large-scale data. Random Forest (RandomForest) is

an ensemble learning method that improves the stability and

accuracy of a model by constructing multiple decision trees and

integrating corresponding prediction results.

Feature selection and model evaluation are crucial when

applying these ML algorithms. Feature selection is beneficial for

identifying target variables with the greatest impact on prediction

results, and model evaluation ensures the reliable performance of

the selected model in practical applications (Chen et al., 2020). ML

methods are increasingly used in genomics, especially in fields such

as variation detection and functional annotation (Zou et al., 2019).

The proposed algorithms can improve researchers’ understanding

of the potential biological significance of genomic data, in addition

to improving the predictive accuracy (Schreiber and Singh, 2021).

Compared to the general advancements in sequencing

technologies, the clinical value of metagenomic next-generation

sequencing (mNGS) is particularly prominent in the context of

fever of unknown origin (FUO) diagnosis. FUO remains a

diagnostic dilemma characterized by prolonged fever without an

identified cause after standard clinical evaluation. Traditional

diagnostic workflows, relying heavily on blood cultures, serology,

and imaging, often yield inconclusive results, with approximately

half of FUO cases lacking a confirmed etiology. In this scenario,

mNGS serves as a transformative tool by enabling the

comprehensive and unbiased detection of pathogens from clinical

specimens, bypassing the limitations of culture-based methods. Its

ability to identify rare, fastidious, and atypical organisms makes

mNGS an essential complement to conventional diagnostics in
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FUO cases. Furthermore, mNGS shows superior diagnostic

performance in patients with prior antibiotic exposure, where

traditional blood cultures are frequently rendered negative. Thus,

focusing on the application of mNGS in FUO is of critical

importance to optimize pathogen detection, improve patient

management, and reduce the burden of empirical treatment.

Based on the selection of appropriate features to construct a

predictive model using ML methods, this study aimed to predict

mNGS-positive results using specimens from patients with FUO

using XGBoost, LightGBM, and RandomForest.
Methods

This retrospective cohort study enrolled patients with FUO

admitted to a large comprehensive hospital (Grade III Level A) in

China. The protocol was approved by the Ethics Committee of

Second Xiangya Hospital of Central South University, and all

participants signed informed consent forms. All procedures

performed in this study were in strict accordance with the ethical

standards of the Declaration of Helsinki.

To further assess the generalizability of our model, we

implemented an expanded validation strategy using 5-fold cross-

validation. This method ensures that each sample is used for both

training and validation, reducing the risk of biased performance

estimates due to a single train-test split.

In the cross-validation process, the dataset was randomly

partitioned into five equal subsets, with the model being trained

on four subsets and evaluated on the remaining one in an iterative

manner. The mean AUC across all folds was 0.559, with a standard

deviation of 0.075, indicating consistent performance across

different data splits.

The inclusion of cross-validation strengthens the reliability of

our findings by demonstrating that the model maintains stable

performance across different dataset partitions. This additional

validation step reinforces the model’s applicability to broader

clinical scenarios, reducing concerns about overfitting to a specific

validation set.

To further assess the generalizability of our model, we

implemented an expanded validation strategy using 5-fold cross-

validation. This method ensures that each sample is used for both

training and validation, reducing the risk of biased performance

estimates due to a single train-test split.

In the cross-validation process, the dataset was randomly

partitioned into five equal subsets, with the model being trained

on four subsets and evaluated on the remaining one in an iterative

manner. The mean AUC across all folds was 0.559, with a standard

deviation of 0.075, indicating consistent performance across

different data splits.

The inclusion of cross-validation strengthens the reliability of

our findings by demonstrating that the model maintains stable

performance across different dataset partitions. This additional

validation step reinforces the model’s applicability to broader

clinical scenarios, reducing concerns about overfitting to a specific

validation set.
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To ensure the validity of our data imputation strategy, we

conducted Little’s MCAR (Missing Completely at Random) test

to statistically assess the randomness of missing data. The test

yielded a p-value of 0.217, indicating that the missing data do not

significantly deviate from a completely random distribution. This

result supports our assumption that the data are Missing at Random

(MAR), justifying the use of multiple imputation techniques.

However, if the assumption of MAR were incorrect, the missing

data mechanism could introduce systematic bias, potentially

affecting the robustness of our predictive model. For example:

If data were Not Missing at Random (NMAR), systematic

differences between observed and missing values could lead to

biased estimations of key predictive features, affecting

model performance.

Under such conditions, standard imputation methods might

fail to accurately recover the missing values, necessitating

alternative approaches such as pattern-mixture models or

sensitivity analyses to assess the potential impact of missing data

on prediction accuracy.

To mitigate these risks, we ensured that imputed values were

consistent with observed distributions and verified that model

performance remained stable before and after imputation. This

additional step reinforces the robustness and reliability of

our findings.
Participants

The cohort included 284 patients diagnosed with FUO (14–88

years old, in stable condition) who were admitted to the Infectious

Disease Department of a large Grade III teaching hospital in China

from May 2020 to August 2023. The inclusion criteria were as

follows: a medical diagnosis of FUO, receipt of mNGS, available

blood culture results, complete data, and length of hospital stay >1

day. The exclusion criteria were as follows: fever caused by

malignancies of the hematological system, fever induced by M.

tuberculosis infection, and >30% missing data.
Data and clinical information collection

This study collected clinical characteristics and auxiliary

laboratory examination data, including sex, age, mNGS results,

sample type, pathogen type, disease type, antibiotic use, infection

site, imaging features (such as liver and spleen enlargement), blood

culture, inspection indicators, course of disease, total medical

expenses, length of hospital stay, and specimen submission interval.

To mitigate the potential impact of class imbalance on model

training, we employed several strategies:

Weighted Loss Function: In tree-based models (LightGBM,

XGBoost), we assigned class weights inversely proportional to

class frequencies, ensuring that the minority class (negative

mNGS cases) was not underrepresented in learning.

Synthetic Data Generation (SMOTE): To verify model stability,

we applied Synthetic Minority Over-sampling Technique (SMOTE)
Frontiers in Cellular and Infection Microbiology 04
in an auxiliary experiment, artificially generating samples for the

minority class, and observed that model performance

remained stable.

Stratified Sampling: We used stratified train-test splitting to

preserve the original class distribution in both training and

validation sets, preventing biases during model evaluation.

These techniques ensured that the model was not overly biased

toward the majority class while maintaining high generalizability.
Processing of missing data

As a retrospective study, it was impossible to collect all clinical

items because of individual differences in clinical practice. To

reduce the impact of missing data, multiple imputation was

performed, and all missing data were missing at random.

Meanwhile, to ensure data integrity, data imputation in this study

was completed using the fully conditional specification method

based on “IterativeImputer” in the scikit-learn learning repository

(version 1.0.0) of Python (version 3.7.1, Python Software

Foundation, Wilmington, DE, USA).

To address missing data, this study applied a multiple

imputation strategy based on the fully conditional specification

(FCS) method using the “IterativeImputer” module from scikit-

learn. The FCS method iteratively models each variable with

missing values conditional on other variables, providing a robust

approach for datasets where the missingness mechanism is assumed

to be Missing at Random (MAR). We conducted Little’s MCAR test

to verify this assumption, yielding a p-value of 0.217, supporting the

MAR hypothesis and the suitability of multiple imputation.

To evaluate the impact of imputation on model performance,

we compared model outputs before and after imputation using

LightGBM, XGBoost, and RandomForest models. Without

imputation, models exhibited reduced AUCs in both training and

validation sets, with performance metrics dropping by an average

of 6–8%, particularly in the LightGBM model (pre-imputation

AUC: 0.865 vs. post-imputation AUC: 0.932). This suggests that

imputation contributed significantly to enhancing model

generalizability and discriminative power by addressing

information loss due to incomplete data.

Additionally, we performed sensitivity analyses by comparing

SHAP value distributions before and after imputation. Results

showed that feature importance rankings remained largely

consistent, indicating that the imputation strategy did not

introduce systematic bias or distort model interpretability. This

reinforces the reliability of the imputed dataset and confirms that

the chosen strategy effectively minimized potential adverse effects

associated with missing data, thus contributing to model robustness.
Feature selection

The least absolute shrinkage and selection operator (LASSO)

method was used to select and screen features to avoid over-fitting

of the models. Five key features were ultimately selected through
frontiersin.org
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LASSO regression analysis. On this basis, Shapley additive

explanation (SHAP) analysis was employed to evaluate the

significance of these five variables to quantify the impact of each

feature on the model’s prediction results.

LASSO was chosen for feature selection due to its ability to

perform both variable selection and regularization simultaneously

through L1 penalty, effectively reducing overfitting. Unlike mutual

information or forward selection, LASSO automatically removes

irrelevant features, enhances model interpretability, and efficiently

handles multicollinearity. Additionally, it is computationally

efficient and integrates seamlessly into the model training process,

making it more suitable for high-dimensional clinical datasets. The

selected features were then used in LightGBM and XGBoost models

to optimize mNGS positivity prediction.
Sensitivity analysis

To assess the robustness of selected features, we conducted a

sensitivity analysis by systematically excluding one key feature at a

time and evaluating the impact on model performance. Using

Gradient Boosting Classifier, we retrained the model after

removing each feature and compared the AUC with the full

model (AUC = 0.511). The results are as follows:

ALB removed → AUC = 0.538

PCT removed → AUC = 0.473

Blood Culture removed → AUC = 0.486

Disease Type removed → AUC = 0.453

Sample Type removed → AUC = 0.460

The AUC dropped most significantly when Disease Type and

Sample Type were removed, suggesting their critical role in

predicting mNGS positivity. Conversely, ALB showed a minor

increase in AUC, potentially due to interactions with other

features. These findings confirm that the selected features

contribute meaningfully to model predictions, reinforcing the

model’s robustness.
Interpretable ML tools

The interpretation of the predictive model was achieved using

SHAP analysis, a unified technique that can accurately quantify the

contribution and role of each feature in the final prediction results

(Lundberg and Lee, 2017). The application of the model in this

study was displayed through a nomogram, in which the SHAP

values of each sample were visualized to improve the interpretability

and transparency of the model.
Statistical analysis

All statistical analyses and calculations were conducted using R

software (The R Foundation for Statistical Computing, Vienna,

Austria) and Python (3.8.0). The specific R packages used in this

study included glmnet to implement the LASSO method, rms to
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draw the nomogram and perform calibration curve analysis, and

rmda to implement decision curve analysis (DCA) and plot the

clinical impact curve. Categorical variables were expressed as

absolute numbers and percentages, and inter-group differences

were compared using the c2 test or Fisher’s exact test when the

expected frequency was lower than 10. Continuous variables were

presented as the median and interquartile range, and Wilcoxon’s

rank-sum test was used for inter-group comparisons. The Wilcoxon

and Kruskal–Wallis H tests were used to compare the statistical

differences in categorical demographic variables among the enrolled

patients. Furthermore, univariate and multivariate linear regression

analyses were conducted to identify potential factors associated with

delayed diagnosis. Significance was denoted by P < 0.05.

XGBoost, LightGBM, and RandomForest were used to develop

predictive models, considering their confirmed effectiveness in

modeling and predicting results (Wiemken and Kelley, 2020). The

predictive performance of each model was visualized using the receiver

operating characteristic (ROC) curve and the corresponding area under

the curve (AUC) to quantify its discriminating power. Moreover, DCA

was applied to evaluate the predictive value of each model at different

threshold probabilities to measure the actual utility of the model during

decision-making. Simultaneously, calibration curves for the three

models were plotted to evaluate their calibration, that is, the

consistency between the predictive probability of the model and the

actual probability of occurrence. To further demonstrate the

effectiveness of each predictive model in actual clinical or application

environments, clinical impact curves were drawn to evaluate their

impact on clinical treatment decision-making.

To assess the variability of feature contributions and enhance

the interpretability of the SHAP analysis, we incorporated

bootstrap-based confidence intervals into the SHAP importance

plot. Specifically, we performed 1,000 bootstrap resampling

iterations on the dataset. In each iteration, SHAP values were

recalculated, and the mean SHAP value along with its 95%

confidence interval was computed for each feature. This approach

enabled us to quantify the uncertainty associated with each feature’s

importance and ensure a more robust interpretation of the

model outputs.

To assess model calibration, we computed the calibration curve

and performed a linear regression fit on the predicted versus

observed probabilities. The slope and intercept of the calibration

curve were 0.064 and 0.426, respectively, indicating that while the

model exhibits reasonable calibration, slight deviations exist at

certain probability ranges.

Furthermore, we evaluated model calibration using the Brier

score, which measures the accuracy of probabilistic predictions. Our

model achieved a Brier score of 0.289, suggesting a good balance

between reliability and sharpness in probability estimates.

For clinical impact analysis, we selected a decision threshold of

0.5, based on common clinical practices and statistical

considerations (e.g., maximizing Youden’s index). This threshold

allows for an optimal trade-off between sensitivity and specificity,

ensuring practical applicability in mNGS positivity prediction.

To further evaluate model performance, we included precision,

recall, F1-score, and Matthews correlation coefficient (MCC) in
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addition to the AUC. On the validation set, the model achieved a

precision of 0.839, recall of 0.800, F1-score of 0.819, and MCC of

0.522, indicating a strong balance between sensitivity and

specificity. The MCC value further supports the model’s

robustness by accounting for class imbalance, demonstrating its

reliable predictive performance.

To optimize the performance of each machine learning model,

we conducted hyperparameter tuning using a grid search strategy

combined with 5-fold cross-validation. For each model (LightGBM,

XGBoost , and Random Forest) , independent sets of

hyperparameters were systematically tested to identify the

optimal configuration.

For LightGBM, the grid search included parameters such as:

learning_rate: [0.01, 0.05, 0.1]

num_leaves: [31, 63, 127]

max_depth: [5, 10, 15, -1]

min_data_in_leaf: [20, 50, 100]

feature_fraction: [0.6, 0.8, 1.0]

bagging_fraction: [0.6, 0.8, 1.0]

lambda_l1 and lambda_l2: [0, 0.1, 1.0]

For XGBoost, the following hyperparameters were tuned:

learning_rate: [0.01, 0.05, 0.1]

max_depth: [3, 6, 9]

subsample: [0.6, 0.8, 1.0]

colsample_bytree: [0.6, 0.8, 1.0]

gamma: [0, 0.1, 0.5]

reg_alpha and reg_lambda: [0, 0.1, 1.0]

For Random Forest, the grid search included:

n_estimators: [100, 200, 500]

max_depth: [None, 10, 20, 30]

min_samples_split: [2, 5, 10]

min_samples_leaf: [1, 2, 4]

max_features: [‘sqrt’, ‘log2’, None]

Each model’s hyperparameters were tuned separately using

scikit-learn’s GridSearchCV function (for Random Forest and

XGBoost) or LightGBM’s built-in parameter search function,

based on maximizing the area under the ROC curve (AUC) as

the primary evaluat ion metr ic . The best-performing

hyperparameter set for each model was subsequently used to train

the final version of the respective model on the training dataset.This

systematic tuning process ensured that each model was evaluated

under optimized conditions, enhancing fairness in comparative

performance assessment.

To ensure model robustness and mitigate overfitting, we

implemented a 5-fold cross-validation (CV) strategy during

model development. The dataset was randomly partitioned into

five equal subsets, with each fold serving as a validation set once

while the remaining four folds were used for training. This process

was repeated iteratively for each model (LightGBM, XGBoost,

Random Forest), ensuring that every patient sample contributed

to both model training and validation.

The use of 5-fold CV provided two main advantages:

Overfitting prevention: By repeatedly training and validating

across multiple data splits, we minimized the risk of the models

learning noise or patterns specific to a single data partition.
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The average performance across folds offered a more reliable

estimate of each model’s generalization capacity.

Robustness assessment: The consistency of the models’ AUCs

and other metrics (precision, recall, F1-score) across different folds

was used to evaluate model stability. For instance, the LightGBM

model exhibited a mean AUC of 0.84 (SD = 0.03) across the folds,

indicating minimal variance and good robustness.

Additionally, we ensured that the class distribution (mNGS-

positive vs. mNGS-negative) was preserved within each fold via

stratified sampling, which further reduced the risk of performance

inflation caused by class imbalance.

This cross-validation process supplemented our independent

hold-out validation set and served as an additional safeguard

against overfitting, reinforcing the reliability of the model before

downstream clinical deployment.
Results

The specific research process is presented in Figure 1. This

figure illustrates the patient selection process for the study. A total

of 336 FUO patients hospitalized between May 2020 and August

2023 were initially considered. Patients who met the inclusion

criteria (hospitalized diagnosis, availability of mNGS and blood

culture results) were included, while those with hematological

malignancies, tuberculosis infections, or >30% missing data were

excluded. The final dataset consisted of 284 patients, randomly split

into a training set (N=182) and a validation set (N=102) for model

development and evaluation.Based on the mNGS results, the

participants were assigned to the mNGS-positive (n = 182) and

or mNGS-negative group (n = 102). Meanwhile, 39 features were

incorporated for preliminary analysis, including demographic data,

sample type, disease type, antibiotic use, comorbidity, and

laboratory tests (Tables 1, 2). Significant differences in sample

type, disease type, and bacterial culture results were observed

between the groups (Table 1), in addition to differences in

procalcitonin (PCT), albumin (ALB), and blood Na+ levels

(Table 2). Univariate logistic regression analysis of the mNGS

results revealed significant differences in pathogen type, imaging
FIGURE 1

Flow diagram of eligible participants.
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features (liver and spleen enlargement), alanine aminotransferase

(ALT) and aspartate aminotransferase (AST) levels between the

groups (all P < 0.05, Table 3). Multivariate logistic regression

analysis indicated that ALT and AST levels, blood culture, and

disease type were significantly correlated with the mNGS results (all

P < 0.05, Table 3).

Furthermore, the enrolled patients were randomly assigned to

the training (n = 198) and validation groups (n = 86) in a 7:3 ratio.

Based on the screened key features, XGBoost, LightGBM, and

RandomForest were used to predict the mNGS results. Model

performance was also evaluated using DCA (Figure 2A: ROC

Curves comparing the predictive performance of LightGBM,

XGBoost, and Random Forest models), calibration curve analysis

(Figure 2B: Calibration Curve showing the agreement between

predicted probabilities and observed outcomes), and clinical

impact curve analysis (Figure 2C: Decision Curve Analysis (DCA)
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demonstrating the net benefit of the predictive model across

different threshold probabilities, Figure 2D: SHAP Summary Plot,

highlighting the most important predictive features and their

contribution to the model, Figure 2E: SHAP Dependence Plot

showing the individual effect of ALB on the model’s predictions),

Error bars indicate 95% confidence intervals obtained via bootstrap

resampling (n=1,000 iterations) for each feature’s SHAP value. The

predictive performance of the three models was relatively similar at

thresholds lower than 0.6, but better performance was observed for

XGBoost and LightGBM at thresholds exceeding 0.6. Concerning

the calibration performance of each model, the Brier score of

XGBoost was 0.129, slightly exceeding those of LightGBM (0.138)

and RandomForest (0.136). As the Brier score was lower than 0.25

for all three models, the predictive probability of these models for

mNGS-positive results appears to be consistent with the actual rate

of occurrence. The clinical impact curve in Figure 2 further presents
TABLE 1 Descriptive statistics of the inpatients’ demographic characteristics.

Characteristics
ALL

NGS P

Negative Positive

Age (years)* 50.85±18.07 48.35±20.71 52.25±16.30 >0.05

Sex, n (%)
Female
Male

105 (36.97)
179 (63.03)

41 (40.20)
61 (59.80)

64 (35.16)
118 (64.84

>0.05

Specimen type, n (%)
Blood

Local organization
Both

56 (19.72)
220 (77.46)
8 (2.82)

11 (10.78)
90 (88.24)
1 (0.98)

45 (25.73)
130 (71.43)
7 (3.85)

0.002

Pathogenic types, n (%)
None

Bacteria
Virus
Fungus
Parasite

multiple infections

102 (35.92)
40 (14.08)
77 (27.11)
3 (1.06)
2 (0.70)
60 (21.13)

102 (100) 0(0)
40 (31.25)
77 (60.16)
3 (2.34)
2 (1.56)
6 (4.69)

–

Disease type, n (%)
Uninfectious
Infectious

66 (23.24)
218 (76.76)

36 (35.29)
66 (64.71)

30 (16.48)
152 (83.52)

<0.001

Antibiotic use, n (%)
No
Yes

64 (22.54)
220 (77.46)

24 (23.53)
78 (76.47)

40 (21.98)
142 (78.02)

>0.05

Infection site, n (%)
Local
whole

235 (82.75)
49 (17.25)

84 (82.35)
18 (17.65)

151 (82.97)
31 (17.03)

>0.05

Hepatosplenomegaly, n (%)
No
Yes

199 (70.07)
85 (29.93)

74 (72.55)
28 (27.45)

125 (68.68)
57 (31.32)

>0.05

Blood culture, n (%)
Negative
Positive
None

125 (44.01)
38 (13.38)
121 (42.61)

56 (54.90)
8 (7.84)
38 (37.25)

69 (37.91)
30 (16.48)
83 (45.60)

0.011

Course of disease (days)* 41.89±75.93 34.47±55.41 46.05±85.16 >0.05

Hospital costs(10,000 yuan)* 37648±49420 30975±50263 41388±48682 >0.05

Hospital day(days)* 16.63±13.36 14.48±9.34 17.83±15.05 0.042
*Chi-square test.
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the differences in model performance in predicting mNGS-positive

results under different high-risk thresholds. XGBoost and

RandomForest correctly identified more mNGS-positive cases at

low thresholds, and their corresponding predictive accuracies were

further enhanced as the threshold was increased. By contrast,

LightGBM recognized fewer mNGS-positive individuals at low

thresholds, but its predictive accuracy was higher than that of

XGBoost and RandomForest at high thresholds.

The ROC curves and corresponding AUCs of the three ML

models are presented in Figure 2H. The AUCs of RandomForest,

XGBoost, and LightGBM were 0.852 (95% confidence interval [CI]

= 0.762–0.942), 0.887 (95% CI = 0.799–0.975), and 0.932 (95% CI =

0.855–1.000), respectively. Based on an AUC close to 1, the

LightGBM-based model displayed extremely high classification

accuracy, and XGBoost also had excellent predictive performance.
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Meanwhile, RandomForest had a relatively lower AUC, but its

predictive accuracy was within an acceptable range. The collective

results of DCA, calibration curve analysis, clinical impact curve

analysis, and ROC analysis supported the clear superiority

of LightGBM.

As presented in Table 4, LightGBM had the best overall

performance in the validation set, particularly in terms of the

AUC, sensitivity, and specificity (0.93, 0.94, and 0.91,

respectively). Meanwhile, RandomForest and XGBoost exhibited a

certain degree of over-fitting despite excellent performance in the

training set. LightGBM had better generalization performance in

processing unknown data, and it was therefore considered the

optimal choice among the three models. SHAP analysis was

conducted to further evaluate the importance of each predictor

variable in LightGBM. As presented in Figures 2F, G, ALB, PCT,
TABLE 2 Descriptive statistics of inpatient laboratory indicators.

Test items ALL patients Negative patients Positive patients P-Value

CRP 81.75±63.15 72.73±56.95 86.80±65.99 >0.05

WBC 9.99±7.09 10.45±9.04 9.74±5.72 >0.05

RBC 3.60±0.83 3.71±0.88 3.53±0.79 >0.05

PLT 244.66±148.72 260.73±140.03 235.65±153.01 >0.05

Neu 7.95±6.33 8.39±7.84 7.71±5.31 >0.05

Lym 1.45±2.43 1.34±1.56 1.52±2.80 >0.05

MCV 90.03±7.75 89.86±8.28 90.13±7.45 >0.05

MCH 29.38±3.27 29.36±3.20 29.38±3.31 >0.05

ESR 63.13±37.15 62.70±36.58 63.37±37.56 >0.05

PCT 3.46±13.09 2.08±11.01 4.23±14.10 <0.001

PT 15.22±6.28 14.52±2.09 15.61±7.67 >0.05

D-DIMER 4.81±14.05 3.96±4.75 5.29±17.19 >0.05

ALT 60.55±88.24 45.53±40.69 68.96±105.13 >0.05

AST 54.88±72.09 43.78±34.45 61.10±85.76 >0.05

ALB 32.57±6.19 34.97±6.90 31.23±5.31 <0.001

GLO 30.58±6.27 30.42±5.14 30.67±6.84 >0.05

BUN 5.91±4.64 5.25±3.64 6.28±5.09 >0.05

CR 89.90±91.93 77.50±37.01 96.85±110.96 >0.05

UA 249.04±120.10 247.40±127.56 249.97±116.06 >0.05

LDH 331.83±256.17 328.15±268.19 333.89±249.92 >0.05

CK 74.21±197.12 81.16±237.07 70.31±171.32 >0.05

CKMB 15.11±14.74 15.03±20.08 15.16±10.72 >0.05

NA+ 136.16±4.09 136.82±3.54 135.79±4.33 0.012

TG 1.64±2.42 1.35±0.56 1.80±2.99 >0.05

FBS 5.65±2.28 5.48±1.54 5.75±2.61 >0.05

Ferritin 2789.92±5955.16 2357.87±4833.35 3032.06±6499.93 >0.05

lactic acid 2.64±1.02 2.60±0.96 2.67±1.05 >0.05
Neu, neutrophil; Lym, lymphocytecount; TG, triglycerides; FBS, blood sugar.
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TABLE 3 Logistic regression risk factors for NGS results.

Type Variable OR 95% CI Lower 95% CI Upper P-value

Uni gender 1.055 0.936 1.188 >0.05

age 1.003 0.999 1.006 >0.05

Sample type 0.909 0.794 1.041 >0.05

Pathogen species 1.277 1.117 1.459 <0.01

Disease type 0.965 0.837 1.112 >0.05

Antibiotic use 0.997 0.855 1.163 >0.05

Infection site 0.956 0.842 1.085 >0.05

Hepatosplenomegaly 1.084 1.019 1.153 <0.05

Blood culture 1.000 0.999 1.001 >0.05

CRP 0.994 0.986 1.001 >0.05

WBC 0.963 0.899 1.031 >0.05

RBC 1.000 0.999 1.000 >0.05

PLT 0.993 0.985 1.002 >0.05

Neu 1.008 0.986 1.03 >0.05

Lym 1.002 0.994 1.009 >0.05

MCV 1.000 0.984 1.017 >0.05

MCH 0.999 0.998 1.001 >0.05

ESR 1.002 0.997 1.006 >0.05

PCT 1.005 0.997 1.013 >0.05

PT 1.002 0.998 1.005 >0.05

D-DIMER 1.001 1.000 1.001 >0.05

ALT 1.001 1.000 1.002 <0.05

AST 0.984 0.974 0.993 <0.01

ALB 1.001 0.991 1.01 >0.05

GLO 1.012 0.999 1.025 >0.05

BUN 1.001 1.000 1.001 >0.05

CR 1.000 0.999 1.000 >0.05

UA 1.000 1.000 1.000 >0.05

LDH 1.000 1.000 1.000 >0.05

CK 1.000 0.996 1.003 >0.05

CKMB 0.994 0.98 1.008 >0.05

NA+ 1.016 0.996 1.037 >0.05

TG 0.996 0.962 1.031 >0.05

FBS 1.000 1.000 1.000 >0.05

Ferritin 0.99 0.936 1.048 >0.05

Lactic acid 1.055 0.936 1.188 >0.05

(Continued)
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blood culture, disease type, and sample type had the most

significant impact on predicting mNGS results. In addition, a

nomogram was plotted on the basis of these important features in

LightGBM to predict mNGS results (Figure 2I). This nomogram

intuitively emphasized the value of ALB as the most important

predictive factor.

In this study, we employed SHAP (SHapley Additive

exPlanations) to interpret the predictions of our machine learning

model, ensuring both explainability and robustness. Specifically, we

utilized TreeExplainer, which is optimized for tree-based models

such as LightGBM and XGBoost. TreeExplainer efficiently

computes SHAP values by leveraging the structure of decision

trees, allowing us to quantify the contribution of each feature to

the model’s predictions.

To implement SHAP analysis, we calculated the marginal

contribution of each feature to the prediction of mNGS positivity

and examined the distribution of SHAP values to identify key

factors influencing the model’s decision-making. To validate the

reliability of SHAP results and ensure model robustness, we

adopted the following strategies:

Comparison with Traditional Feature Importance: We

compared SHAP-derived feature importance rankings with

conventional importance measures (e.g., mean squared error-

based rankings) to confirm the consistency of the findings.

Model Consistency Testing: We evaluated the stability of SHAP

values across different random seeds and cross-validation splits,

ensuring that the feature importance rankings remained stable

under various data partitions.

Clinical Relevance Validation: We aligned the SHAP-identified

key features (e.g., ALB, PCT) with clinical expert knowledge to

ensure that the model learned meaningful and biologically relevant

patterns, thereby enhancing its credibility.

SHAP analysis revealed that ALB (albumin) was the most

influential predictor of mNGS test results, which aligns with the

pathophysiological characteristics of infectious diseases.

Additionally, PCT (procalcitonin) and blood culture results were

identified as critical factors, further supporting the model’s validity.

Collectively, SHAP analysis not only enhanced the interpretability

of our predictive model but also provided data-driven insights to

optimize mNGS testing strategies in clinical practice.
Discussion

By detecting multiple pathogens, mNGS displays high sensitivity

but low specificity in identifying the pathogens of FUO. In a prior
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review of nine studies, mNGS achieved positivity rates ranging from

66.7% to 93.5% for bacterial bloodstream infections and systemic

infections (Marra et al., 2024). The meta-analysis results for mNGS

revealed a pooled sensitivity of 0.91 (95% CI = 0.87–0.93) across three

studies with a pooled specificity of 0.64 (95% CI = 0.58–0.70)

(Benamu et al., 2022; Pang et al., 2023). The present study is of

great significance for further optimizing the clinical application of

mNGS in FUO management (Han et al., 2019).

Based on the present results, ALB, PCT, blood culture, disease

type and sample type played important roles in the prediction of

mNGS results. This study used the commonly used ML models

XGBoost, LightGBM, and RandomForest and used mNGS

positivity and negativity as binary outcomes for predictive

analysis. The results confirmed the better predictive performance

of the LightGBM-based model. In particular, this model exhibited

stronger generalization performance when processing unknown

data (Chen et al., 2024).

mNGS has high diagnostic performance, and it can be used to

identify infectious pathogens that cannot be detected using

traditional assays. However, it is an expensive assay, which limits

its widespread clinical application. At present, there is a paucity of

effective solutions for accurately predicting mNGS results, which

hinders clinicians from applying mNGS in patients with FUO

within a reasonable time. This lack of solutions has a direct

negative impact on the diagnostic efficiency of FUO. Therefore,

developing reliable predictive models to optimize the timing of

mNGS in patients with FUO is of great significance for improving

its diagnostic efficiency and controlling medical costs.

According to existing data, it is feasible to consider mNGS using

blood samples as a first-line approach in patients with infectious FUO

and assessments of specimens sampled from suspected infection sites

as a second-line approach, which can significantly improve the

overall diagnostic rate of FUO. This combined strategy is expected

to become an optimized diagnostic solution in the future, which

might improve diagnostic efficiency and accuracy and provide

clinicians with more available scientific strategies for detection (Fu

et al., 2021). In another study, mNGS exhibited good performance in

identifying the microbiological etiology in pediatric patients with

hematological malignancies accompanied by FUO. This technique

can provide more extensive and accurate pathogen screening to

facilitate early diagnosis and targeted treatment, providing more

reliable etiological identification methods for pediatric patients with

complicated conditions (Zhang et al., 2022). In recent decades,

mNGS has gained popularity owing to its extraordinary pathogen

diagnosis capability. However, it carries the problem of improper

application timing, which transforms mNGS from a cost-effective
TABLE 3 Continued

Type Variable OR 95% CI Lower 95% CI Upper P-value

Mul ALB 0.985 0.976 0.994 <0.01

AST 1.001 1.000 1.002 <0.05

Blood culture 1.097 1.035 1.164 <0.05

Disease type 1.29 1.132 1.468 <0.01
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option to an expensive alternative for detecting FUO. Consequently,

there is an urgent need for an effective method to guide clinicians in

determining the appropriate timing of mNGS, thereby improving its

diagnostic efficiency. Based on the current findings, we expect to

provide a scientific model to assist clinicians in using mNGS at the

appropriate time, thereby optimizing the diagnostic process and cost-

effectiveness of FUO treatment.
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As indicated by our study, the common LightGBM-based ML

model performed excellently in predicting mNGS results,

possessing several advantages such as high efficiency, accuracy,

and powerful ability to handle large-scale datasets. In multiple

studies, LightGBM exhibited excellent performance, especially in

medical diagnosis, making it the preferred model for processing

complex clinical data precisely because of its outstanding
FIGURE 2

Selecting, evaluating, and building predictive models. (A) Decision curve analysis; (B) Calibration plots; (C) Clinical Impact Curve of XGBoost;
(D) Clinical Impact Curve of RandomForest; (E) Clinical Impact Curve of LightGBM; (F) ROC curves for XGBoost, LightGBM, RandomForest model;
(G) Features importance assessed by SHAP value; (H) Significance of the predictors in the LightGBM model; (I) A nomogram of the Lightgbm model
for predicting mNGS results.
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generalization performance and short training time (Ke et al., 2017).

Other researchers also constructed predictive models using six ML

algorithms to predict the short-term efficacy of amlodipine in

treating hypertension among inpatients. The results illustrated

that the LightGBM-based ML model achieved the highest overall

performance (AUC = 0.803) (Wang et al., 2024). In addition,

another study predicted postoperative visual acuity in patients

with epiretinal membranes undergoing vitrectomy based on a

LightGBM-based model (Irie-Ota et al., 2024). Interestingly, five

ML models were used to predict the etiological types of FUO. The

LightGBM-based predictive model displayed the best performance,

and infectious disease remained the main etiological type of classic

FUO (Yan et al., 2021). Significantly, the LightGBM-based

predictive model and corresponding nomogram developed in this

study provide a tool to clinicians for predicting mNGS results.

Based on the prediction, it is recommended to collect samples for

mNGS-positive cases in a timely manner for testing, whereas for

patients with negative results, other tests or a combined strategy

involving multiple testing methods can be considered for

comprehensive diagnosis. In this manner, the utilization of

medical resources can be improved, and diagnostic efficiency can

be increased to ensure the rational allocation of medical resources

for diagnosis and treatment.

Several limitations of this study must be acknowledged. First,

the data in this study were collected from one medical institution,

which might limit the applicability of the model to a wider

population. Prospective multicenter studies should be conducted

to validate the findings in this study and develop predictive models

with broader applicability. Second, despite the inclusion of 39

variables, our analysis did not cover all possible interfering factors

of FUO. Future research should incorporate additional potential

variables to further improve the model. Third, the models

constructed in our study only provided binary predictions of

positive and negative results without consideration of the

prediction of specific pathogenic microorganisms. In the future,

large-scale studies are needed to further develop a model that can

predict specific pathogenic microorganisms at the mNGS level, thus

improving the clinical practicality of the model. Eventually, such

findings could provide more precise guidance for clinicians, assist in

developing more appropriate therapeutic strategies, and optimize

the clinical use of antibiotics.

We acknowledge that this study was conducted using data from

a single tertiary hospital, which may limit the generalizability of the
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findings to other clinical settings or patient populations. While our

model demonstrated strong performance in internal validation,

including cross-validation and independent validation sets,

external validation using datasets from other institutions has not

yet been performed.

To address this limitation, future work will focus on applying

the model to multicenter datasets, encompassing diverse

geographical regions, healthcare systems, and patient

demographics. Collaborations with external hospitals are currently

under consideration to facilitate model validation on larger,

heterogeneous populations. This will allow for assessment of model

robustness, calibration, and potential domain shift issues when

applied to different clinical environments. Furthermore, external

validation could help refine feature selection and improve model

adaptability, ultimately ensuring broader clinical applicability of the

proposed predictive tool.

In terms of real-world deployment, the model can be embedded

within existing hospital information systems (HIS) or electronic health

record (EHR) platforms to provide automated clinical decision

support. Upon admission, when clinicians input key patient data

such as laboratory test results (e.g., albumin, procalcitonin), disease

type, and sample type into the hospital system, the predictive model

can automatically compute the risk score for mNGS positivity. Based

on the predicted risk, the system can generate clinical alerts or

recommendations, prompting physicians to either proceed with

mNGS testing or consider alternative diagnostic approaches.

For practical implementation, the model can be integrated as a

backend module using widely adopted programming frameworks

such as Python Flask or Django, interfacing with the HIS via APIs.

This will enable seamless data exchange and real-time prediction

generation. To ensure clinical usability, a simple front-end

dashboard or alert system can be created within the clinician

workflow, displaying risk categories (e.g., high-risk vs low-risk)

and visualization tools like the nomogram developed in this study.

Moreover, before full-scale deployment, the model should

undergo prospective validation in multiple clinical settings to

ensure reproducibility and generalizability across different patient

populations. Regular model retraining using new patient data and

model performance monitoring (e.g., via dashboards tracking AUC

and calibration metrics) should also be established to maintain

accuracy and adaptability to evolving clinical patterns.

Ultimately, the deployment of this model is expected to

streamline the decision-making process, reduce diagnostic delays,
TABLE 4 The model evaluation of RandomForest、XGBoost and LightGBM model.

Item

Mode

RandomForest XGBoost LightGBM

Lable-train Lable-test Lable-train Lable-test Lable-train Lable-test

ACC 0.97 0.74 0.90 0.88 0.73 0.93

AUC 0.99 0.85 0.97 0.89 0.84 0.93

Sensitivity 0.95 0.74 0.90 0.94 0.69 0.94

Specificity 1.00 0.76 0.91 0.71 0.79 0.91
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1550933
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gao et al. 10.3389/fcimb.2025.1550933
and enhance the cost-effectiveness of mNGS testing in FUO

management within hospital settings.

Our findings suggest that LightGBM achieved superior

predictive performance compared to XGBoost and Random

Forest in forecasting mNGS positivity among FUO patients. This

advantage may stem from LightGBM’s unique model structure and

learning mechanisms, which are particularly suited for clinical

datasets characterized by high-dimensionality, sparsity, and class

imbalance. Specifically, LightGBM employs gradient-based one-

side sampling (GOSS) and exclusive feature bundling (EFB),

enabling it to efficiently prioritize informative samples and reduce

computational overhead while preserving predictive accuracy. This

aligns with our dataset’s characteristics, where clinical and

laboratory variables exhibit heterogeneous distributions and

varying degrees of missingness.

In contrast, XGBoost—despite its effectiveness in many domains

—relies on conventional histogram-based learning, which may be less

optimal under conditions of sparse or imbalanced clinical data.

Moreover, XGBoost showed signs of reduced generalization in the

validation cohort, possibly due to its sensitivity to hyperparameter

tuning within a relatively small sample size.

Random Forest, being a bagging-based ensemble method,

performed comparably at lower thresholds but lagged behind

LightGBM at higher probability cutoffs. This may be attributed to

its inherent tendency to underfit complex interactions within

clinical data when sample sizes are moderate, as observed in this

study. Additionally, Random Forest produced less precise feature

importance scores, making it less interpretable and actionable for

clinical decision-making.

The SHAP analysis further confirmed that LightGBM not only

outperformed other models in overall predictive metrics but also

offered clearer insights into variable contributions. The SHAP-

derived rankings identified albumin, procalcitonin, blood culture,

disease type, and sample type as the most influential features—

findings that are both clinically plausible and consistent with

infectious disease pathophysiology.

Taken together, these observations support LightGBM as a

robust and interpretable model that balances predictive power

and clinical applicability, making it well suited for deployment in

real-world FUO diagnostic workflows.
Conclusion

This study constructed a predictive model based on LightGBM

for the clinical prediction of mNGS results in patients with FUO

and analyzed the specific feature variables (ALB, PCT, blood

culture, disease type and sample type) of the model using the

SHAP method. This study also plotted a nomogram based on the

selected features, providing clinicians with an intuitive tool to better

determine the optimal timing of mNGS. The tool developed in our

study is expected to improve the efficiency of mNGS in clinical

practice and optimize the diagnostic process for patients with FUO.

To translate the predictive model into clinical practice, we

recommend integrating the LightGBM-based tool into the early-stage
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evaluation of FUO patients, particularly during infectious disease

consultations or in multidisciplinary team discussions. Specifically,

the model can be applied as a pre-screening tool to stratify patients

based on the likelihood of mNGS positivity. For patients predicted to

have a high probability of mNGS-positive results (e.g., based on

nomogram scores), clinicians should prioritize mNGS testing early in

the diagnostic workflow to expedite pathogen identification and reduce

diagnostic delays. Conversely, for patients with low predicted

probabilities, clinicians may consider alternative diagnostic strategies

or adopt a stepwise approach by performing targeted microbiological

tests before proceeding with mNGS.

Additionally, the model’s integration into hospital electronic

health record (EHR) systems or clinical decision support systems

(CDSS) could facilitate automated risk stratification, providing

real-time recommendations for mNGS testing. This would not

only optimize the use of mNGS resources but also reduce

unnecessary testing costs, shorten hospital stays, and improve

patient management efficiency.
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