AUTHOR=Gao Zhi , Jiang Yongfang , Chen Mengxuan , Wang Weihang , Liu Qiyao , Ma Jing TITLE=Enhancing fever of unknown origin diagnosis: machine learning approaches to predict metagenomic next-generation sequencing positivity JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2025.1550933 DOI=10.3389/fcimb.2025.1550933 ISSN=2235-2988 ABSTRACT=ObjectiveMetagenomic next-generation sequencing (mNGS) can potentially detect various pathogenic microorganisms without bias to improve the diagnostic rate of fever of unknown origin (FUO), but there are no effective methods to predict mNGS-positive results. This study aimed to develop an interpretable machine learning algorithm for the effective prediction of mNGS results in patients with FUO.MethodsA clinical dataset from a large medical institution was used to develop and compare the performance of several predictive models, namely eXtreme Gradient Boosting (XGBoost), Light Gradient-Boosting Machine (LightGBM), and Random Forest, and the Shapley additive explanation (SHAP) method was employed to interpret and analyze the results.ResultsThe mNGS-positive rate among 284 patients with FUO reached 64.1%. Overall, the LightGBM-based model exhibited the best comprehensive predictive performance, with areas under the curve of 0.84 and 0.93 for the training and validation sets, respectively. Using the SHAP method, the five most important factors for predicting mNGS-positive results were albumin, procalcitonin, blood culture, disease type, and sample type.ConclusionThe validated LightGBM-based predictive model could have practical clinical value in enhancing the application of mNGS in the etiological diagnosis of FUO, representing a powerful tool to optimize the timing of mNGS.