
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Sam Ebenezer,
Sathyabama Institute of Science and
Technology, India

REVIEWED BY

Tamilmaran Nagarajan,
Saveetha University, India
Johnson Christdas,
American College, Madurai, India

*CORRESPONDENCE

Yu Hu

huyusdu@163.com

†These authors have contributed
equally to this work

RECEIVED 28 December 2024

ACCEPTED 09 May 2025
PUBLISHED 10 July 2025

CITATION

Peng Z, Gao X, He M, Dong X, Wang D, Dai Z,
Yu D, Sun H, Tian J and Hu Y (2025)
Computed tomography-based radiomics
prediction model for differentiating invasive
pulmonary aspergillosis and
Pneumocystis jirovecii pneumonia.
Front. Cell. Infect. Microbiol. 15:1552556.
doi: 10.3389/fcimb.2025.1552556

COPYRIGHT

© 2025 Peng, Gao, He, Dong, Wang, Dai, Yu,
Sun, Tian and Hu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 July 2025

DOI 10.3389/fcimb.2025.1552556
Computed tomography-based
radiomics prediction
model for differentiating
invasive pulmonary
aspergillosis and Pneumocystis
jirovecii pneumonia
Zhiguo Peng1†, Xingzhe Gao2†, Miao He3, Xinyue Dong4,
Dongdong Wang5, Zhengjun Dai6, Dexin Yu5, Huaibin Sun1,
Jun Tian1 and Yu Hu7*

1Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong
University, Jinan, China, 2Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of
Medicine, Shandong University, Qingdao, China, 3Department of Medical Oncology, Qilu Hospital
(Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China, 4Department of
Oncology, Qilu Hospital of Shandong University, Dezhou Hospital, Dezhou, China, 5Department of
Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China, 6Scientific
Research Department, Huiying Medical Technology Co., Ltd, Beijing, China, 7Department of
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Background: Pneumocystis jirovecii and Aspergillus fumigatus are important

pathogens that cause fungal pulmonary infections. Because the manifestations

of P. jirovecii pneumonia (PJP) or invasive pulmonary aspergillosis (IPA) are

difficult to differentiate on computed tomography (CT) images and the

treatment of the two diseases is different, correct imaging for diagnosis is

highly significant. The present study developed and validated the diagnostic

performance of a CT-based radiomics prediction model for differentiating IPA

from PJP.

Methods: In total, 97 patients, 51 with IPA and 46 with PJP, were included in this

study. Each patient underwent a non-enhanced chest CT examination. All the

patients were randomly divided into two cohorts, training and validation, at a ratio

of 7:3 using random seeds automatically generated using the RadCloud platform.

Image segmentation, feature extraction, and radiomic feature selection were

performed on the RadCloud platform. The regions of interest (ROIs) were

manually segmented, including the consolidation area with the surrounding

ground-glass opacity (GGO) area and the consolidation area alone. Six

supervised-learning classifiers were used to develop a CT-based radiomics

prediction model, which was estimated using the receiver operating

characteristic (ROC) curve, area under the curve (AUC), sensitivity, specificity,

precision, and F1-score. The radiomics score was also calculated to compare the

prediction performance.

Results: Classifiers trained with the consolidation area and surrounding GGO

area as the ROI showed better prediction efficacy than classifiers trained using

only the consolidation area as the ROI. The XGBoost model performed better
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than the other classifiers and radiomics scores in the validation cohort, with an

AUC of 0.808 (95% CI, 0.655–0.961).

Conclusions: This radiomics model can effectively assist in the differential

diagnosis of PJP and IPA. The consolidation area with the surrounding GGO

area was more suitable for ROI segmentation.
KEYWORDS

invasive pulmonary aspergillosis, Pneumocystis jirovecii pneumonia, discriminant
model, radiomics, CT
Introduction

Invasive pulmonary aspergillosis (IPA) is among the most severe

disorders and has the highest mortality rate among all types of

pulmonary aspergillosis (Dai et al., 2013). IPA characteristically

occurs in immunocompromised individuals, including those with

long-term neutropenia, hematological malignancies, or solid organ

or hematopoietic stem cell transplantation. IPA is difficult to diagnose

and treat and can cause symptoms such as coughing, chest pain,

hemoptysis, severe breathing difficulties, and even respiratory failure

(Schweer et al., 2016).

Pneumocystis jirovecii is a specific fungal pathogen that can cause

P. jirovecii pneumonia (PJP), a severe opportunistic pneumonia, in

immunocompromised patients, including those with organ

transplantation, cancer, and malignant hematological diseases

(Avino et al., 2016). The typical symptoms of PJP include fever,

cough, and hypoxemia, which can rapidly aggravate and lead to severe

respiratory failure. Non-enhanced chest computed tomography (CT)

is often used to diagnose patients with suspected PJP or IPA.

Typical CT manifestations of IPA include nodules, ground-

glass opacities (GGOs), segmental consolidations, pleural effusions,

or cavities (Kuhlman et al., 1988). Typical imaging findings of PJP

include ground-glass density shadows in the lungs, which are

diffusely distributed, scattered, or interlaced with the normal lung

tissue. GGOs in the lungs can merge into nodular or massive

consolidated opacities. However, the manifestations of PJP and

IPA are non-specific and are sometimes difficult to differentiate

clinically (Roux et al., 2014). Because the manifestations of PJP or

IPA are difficult to differentiate on CT images, and the treatment of

the two diseases is quite different, correct imaging for diagnosis may

allow for early initiation of treatment before microbiological

confirmation and significantly improve prognosis.

In cases where distinguishing between PJP and IP caused by

Aspergillus fumigatus remains challenging based on galactomannan

(GM) assay, b-D-glucan (BDG) testing, and macroscopic imaging

findings, a nuanced diagnostic approach is warranted. Both GM

antigen (specific to Aspergillus) and BDG (elevated in PJP and other

fungal infections) exhibit overlapping limitations: BDG lacks species

specificity, while GM sensitivity may decline in non-neutropenic hosts
02
or with prophylactic antifungal use. Radiologically, atypical

presentations, such as diffuse ground-glass opacities mimicking PJP

in early IPA or focal consolidation overlapping with bacterial

pneumonia, further obscure differentiation.

To resolve this diagnostic ambiguity, integrating host immune

status with ancillary biomarkers is critical. For example, profound CD4

+ lymphopenia (<200/mL) strongly favors PJP in patients with HIV,

whereas prolonged neutropenia or hematopoietic stem cell

transplantation heightens IPA probability. Molecular assays [e.g., P.

jirovecii PCR on bronchoalveolar lavage fluid (BALF) or Aspergillus-

specific PCR] enhance pathogen detection when conventional

methods are inconclusive. Histopathological confirmation via biopsy,

demonstrating Pneumocystis cysts (methenamine silver stain) or

septate hyphae with acute-angle branching (Grocott’s stain), remains

the diagnostic gold standard but is often limited by procedural risks.

Ultimately, a tiered diagnostic algorithm combining risk

stratification, serial biomarker monitoring, and advanced imaging

techniques (e.g., dynamic contrast-enhanced CT for IPA) is essential

to mitigate misdiagnosis and guide timely, species-directed therapy.

Radiomics is an emerging imaging technology designed to

convert clinical digital images into high-dimensional, mineable

data via high-throughput extraction of the quantitative features

(Gillies et al., 2016). This technique has been applied to predict

pathological classification and differential diagnosis or to assess

gene expression, response to therapy, and disease prognosis

(Limkin et al., 2017).

To the best of our knowledge, this study is the first to investigate

the role of radiomics in improving early differential diagnosis

between IPA and PJP. The purpose of our study was to

investigate the feasibility of using a CT-based radiomics model to

differentiate IPA from PJP.
Materials and methods

Patient population

Patient information and data from the Picture Archiving and

Communication System (PACS) in Qilu Hospital of Shandong
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University from September 2013 to May 2022 were collected.

Patients with a positive metagenomic next-generation sequencing

(mNGS) result obtained using BALF as the detection sample and a

non-enhanced thorax CT scan were included. The inclusion criteria

were as follows: (1) P. jirovecii or Aspergillus infection was

confirmed using mNGS, and the corresponding treatment was

effective; (2) Regular dosage of non-enhanced chest CT revealed

that the lesions were mainly consolidations and GGOs. The

exclusion criteria were as follows: (1) The imaging diagnosis and

evaluation were consistent with the mNGS analysis reports; (2)

Motion artifacts in CT images, poor image quality, and large

differences in scanning conditions; (3) The pathogen was not

confirmed due to ineffective treatment or clinical suspicion of a

mixed infection; (4) Other pneumonia, illness, or unconfirmed

pneumonia. Finally, 97 patients, including 46 in the PJP group

and 51 in the IPA group, were included in this retrospective study.

Prior information on sample size can be obtained from previous

studies. A review analyzing the sample size of some studies using

radiomics showed that in a total of 87 studies that were included in

the final report, most had sample sizes above 50 patients, with a

median cohort size of 101 (Dercle et al., 2022). Therefore, 97

patients were deemed adequate for this study. Data on their

clinical characteristics, including sex and age at diagnosis, were

also collected. According to a classic review, the ratio used in

practice ranges from 60:40 to 90:10 (Shur et al., 2021). As in

many other studies, a one-third proportion represents a trade-off

between having sufficient data in the training set to ensure that the

model has sufficient predictive power and a sufficiently large test

dataset to ensure that the predicted performance estimate is

accurate (Chen et al., 2022; Jiang et al., 2022; Zheng et al., 2022).

All the patients were randomly divided into training and validation

cohorts at a ratio of 7:3 using random seeds automatically generated

by the RadCloud platform. No differences were observed between

the training and validation sets.
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This study was approved by the Medical Ethics Committee of

Qilu Hospital of Shandong University (KYLL-202209-016).
Image acquisition

All thoracic CT images were obtained with a Siemens

SOMATOM Definition AS 64-slice spiral CT, scanning from the

thoracic inlet to the diaphragm, with the following parameter

settings: tube voltage 120KV, tube current 250–400mA/s

(automatic tube current modulation was used); 18–35cm field of

view; 512×512 reconstruction matrix; 5mm slice thickness, 1.0s

scanning time.
Image segmentation and feature extraction

A flowchart of patient recruitment and radiomics is shown in

Figure 1. All CT images were saved in the Digital Imaging and

Communications in Medicine (DICOM) format and were uploaded

to the RadCloud (Version 7.2, Huiying Medical Technology

Beijing Co., Ltd) (Yayuan et al., 2021) platform (https://

mics.huiyihuiying.com/login?redirect=%2F, Huiying Medical

Technology Co., Ltd). RadCloud’s module is based on the

pseudo-random number algorithm from the Python language’s

random library. By fixing the seed, it can ensure the division of

the training and testing sets, thereby ensuring the reproducibility of

experimental results. The random seed value used in this research

was 803. It uses cloud computing, big data analysis, and machine

learning algorithms to manage the DICOM imaging data on cloud

platforms. We employed the RadCloud platform because the

convenience of its remote operation. Many high-quality studies

have been based on the RadCloud platform (Cangir et al., 2022;

Wang et al., 2022; Zhao et al., 2022).
FIGURE 1

Flowchart of patient recruitment and radiomics model construction.
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The regions of interest (ROIs) were manually marked by a

radiologist with 5 years of experience and then re-examined by

another radiologist with more than 10 years of experience. The

radiologists were blinded to the patients’ diagnoses. If there were

any contradictions, the senior radiologists evaluated the ROI again

to reach an agreement. To better separate the consolidation and

surrounding GGO areas from normal lung tissues, we chose the

lung window during ROI segmentation. One image that contained

the most typical lesion area was selected for each patient and

separated as the ROI. Two methods were used to mark the ROIs

in each patient. The first method included only the consolidation

area. Cavities were included, but the adjacent mediastinum, pleura,

and pleural effusion were avoided in the ROIs. In the second

method, the consolidation areas with surrounding GGO areas

were included. The ROI delineation in the PJP and IPA CT

images is presented in Figure 2. Finally, 97 ROIs were segmented

from the 97 patients. After 3 months, 30 cases were randomly

selected, and the two radiologists repeated the segmentation to

evaluate the inter- and intra-examiner reliability. Radiomic features

were automatically extracted by the platform.
Radiomic feature selection and radiomics
model building

For each CT sequence in each image,1,409 radiomic features

were extracted using the RadCloud platform. The obtained features

were divided into three categories. First-order statistics consisted of

270 descriptors that quantitatively delineate the distribution of
Frontiers in Cellular and Infection Microbiology 04
voxel intensities within the CT image through commonly used

and basic metrics. The shape- and size-based features contained 14

three-dimensional features that reflected the shape and size of the

region. Texture features that can quantify regional heterogeneity

differences include 1125 textural features such as the grey-level run-

length (GLRLM), grey-level co-occurrence (GLCM), grey-level size

zone (GLSZM), neighboring gray-tone difference (NGTDM), and

grey-level dependence matrices (GLDM).

The values of the radiomic features were normalized using the

z-score method, and stable features with an ICC >0.75 were retained

and normalized for subsequent analysis. Dimensionality reduction

and the selection of task-specific features were also performed on

the RadCloud platform. The feature selection methods included the

variance threshold (variance threshold=0.8), SelectKBest, and least

absolute shrinkage and selection operator (LASSO) methods.

LASSO regression is an improved linear regression method that

introduces the L1 regularization penalty term to automatically

screen key features and prevent model overfitting while fitting

data. The core idea is to optimize a loss function that consists of

two parts: one is the sum of squared errors in traditional linear

regression (which measures the deviation between predicted values

and true values), and the other is the penalty term for the sum of

absolute values of all regression coefficients. By adjusting the

hyperparameter lambda to control the penalty intensity, as the

larger the lambda, the stronger the compression of insignificant

features in the model, some coefficients will be directly reset to zero,

thus achieving feature selection. This method is particularly suitable

for high-dimensional data with a much larger number of features

than the sample size (such as gene expression or text analysis),
FIGURE 2

CT images and ROI segmentation. Panels (a, b) showed a 55-year-old male with IPA, while panels (c, d) showed a 36-year-old male with PJP. Both
patients presented similar consolidations and surrounding GGO areas on CT images. panels (b, d) show the ROI segmentation method. The orange
lines include only the consolidation area as the ROI. The blue lines include both the consolidation area and the GGO area as the ROI.
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which can improve model interpretability while retaining key

variables. In practical applications, the optimal value of l is

usually determined through cross-validation to balance model

complexity and prediction accuracy. Based on the variance

threshold method, the values of the variance < 0.8 were removed.

The SelectKBest method used a p-value to analyze the relationship

between the features and classification results, which belong to a

single variable feature selection method. Only features with p-values

< 0.05 were reserved. The L1 regularizer was used as the cost

function in the LASSO model. The error value of the cross-

validation was 5, and the maximum number of iterations was

1,000. The radiomics score (radscore) was the sum of the features

retained after the LASSO method was multiplied by the

corresponding coefficients.

After dimensionality reduction and radiomic features selection,

we used six supervised machine learning classifiers for optimal

radiomics model construction and selection, including K-nearest

neighbors (KNN), support vector machine (SVM), eXtreme

Gradient Boosting (XGBoost), random forest (RF), logistic

regression (LR), and decision tree (DT). A validation method was

used to improve the effectiveness of the model.
Statistical analysis

The area under the curve (AUC) and receiver operating

characteristic (ROC) curve were used to estimate the predictive

performance, and the sensitivity, specificity, precision, and F1-score

[F1-score = precision × recall × 2/(precision + recall)] were

calculated using the platform mentioned above to evaluate the

performance of the classifier used in this research. Statistical

analyses with clinical characteristics were conducted using SPSS

25.0. The data were expressed as median and interquartile range or

mean ± SD. The t-test was applied for normally distributed data,

whereas the rank-sum test was used for non-normally distributed

data. Statistical significance was set at P < 0.05.
Results

Patient characteristics

This study included 97 patients, of whom 51 had IPA and 46

had PJP. There were no significant differences in sex between the

IPA and PJP groups. The patients with PJP were significantly

younger than those with IPA (Table 1).
Frontiers in Cellular and Infection Microbiology 05
Radiomics features and model
development

Stable features with an ICC > 0.75 were retained and

normalized for subsequent analysis. The AUC of the XGBoost

classifier with an ROI that included the consolidation area and

surrounding GGO area was 0.808, which was better than that of the

classifiers with an ROI only including the consolidation area. Using

the variance threshold method, 420 features were selected from

1,409 features (Figure 3a), and 26 features were screened out using

the selected K best method (Figure 3b). Finally, nine optimal

features were selected using the LASSO method (Figures 3c–e).

The radiomic features retained after dimension reduction using the

LASSO method are listed in Table 2. In the consolidation area with

the surrounding GGO area.

The radscore in the IPA group was 0.964 ± 0.446, whereas that

in the PJP group was 1.386 ± 0.524, and the difference between the

two groups was statistically significant (P<0.001). ROC curve and

AUC were applied to compare the predictive performance between

the radscore and machine learning classifiers.

The prediction performance using the consolidation+GGO area

as the ROI for each classifier in the validation cohort is presented in

Table 3. The prediction performance of the validation cohort using

only the consolidation area as the ROI is presented in Table 4. The

XGBoost model had an AUC of 0.808 in the validation cohort and

performed better than other classifiers trained using the

consolidation+GGO area as the ROI and showed better

prediction efficacy compared with that of the classifiers trained

using only the consolidation area as the ROI. The ROC curve of the

validation cohort in the XGBoost classifier using the consolidation

+GGO area as the ROI is presented in Figure 4. The radscore

prediction model had an AUC of 0.643 in the validation cohort

(Figure 5), indicating that machine learning classifiers had better

prediction efficiency than the radscore.
Discussion

In this study, we used six supervised learning classifiers to establish

a radiomics prediction model for differentiating PJP from IPA, and

evaluated its predictive performance. The XGBoost classifier trained

with the consolidation area and the surrounding GGO area as the ROI

had the highest AUC in the validation cohort. This is the first study to

demonstrate that such a radiomics model can effectively assist in the

differential diagnosis between PJP and IPA.
TABLE 1 Patient characteristics.

Case Profile Pneumocystis jirovecii
pneumonia

Invasive pulmonary
aspergillosis

Statistics value P

Number of cases 46 51 – –

Sex (male/female) 30/16 27/24 c²=1.504 0.220

Age 53 (37.25) 62 (19) Z=-3.379 0.001
Values are presented as median and interquartile range.
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P. jirovecii and A. fumigatus are the most important pathogens

in fungal pulmonary infections (Fishman and Rubin, 1998). PJP

and IPA mainly affect immunocompromised patients, including

those with malignant tumors, organ recipients, and patients with

human immunodeficiency virus infection. Patients with pulmonary

fungal infections often present with non-specific symptoms, such as

cough, fever, pleuritic pain, dyspnea, and/or hemoptysis, which

affect diagnostic accuracy and may be obfuscated by other bacterial

or viral infections (Azoulay et al., 2020). Common diagnostic

methods for PJP and IPA include imaging, histopathology, direct

microscopic examination of respiratory specimens, galactomannan

tests, BDG tests, polymerase chain reaction, and mNGS. However,

BDG is a circulating component of various fungal cell walls, and

other fungal infections may be confounding factors in BDG assays

(Karageorgopoulos et al., 2013). Microscopic examination is highly

dependent on sample quality and the response of PJP cysts or

trophozoites to staining methods (Fan et al., 2013). This problem
TABLE 2 Radiomics features selected with the region of interest (ROI)
including the consolidation and ground-glass opacity (GGO) areas.

Radiomics feature Radiomic class Filter

Variance firstorder squareroot

InterquartileRange firstorder logarithm

Kurtosis firstorder gradient

10Percentile firstorder logarithm

10Percentile firstorder wavelet-LLL

InterquartileRange firstorder wavelet-LLL

SmallAreaHighGrayLevelEmphasis glszm wavelet-LLL

SizeZoneNonUniformity glszm wavelet-HLH

Kurtosis firstorder wavelet-LHL
TABLE 3 Prediction performances of classifiers in the validation cohort with the region of interest (ROI) including the consolidation and ground-glass
opacity (GGO) regions.

Classifier AUC 95% CI Sensitivity Specificity Precision F1-score

KNN 0.790 0.639 - 0.941 0.860 0.630 0.670 0.750

SVM 0.777 0.619 - 0.935 0.790 0.690 0.690 0.730

XGBoost 0.808 0.655 - 0.961 0.710 0.810 0.770 0.740

RF 0.763 0.606 - 0.920 0.790 0.690 0.690 0.730

LR 0.799 0.671 - 0.927 0.930 0.750 0.760 0.840

DT 0.670 0.497 - 0.843 0.710 0.630 0.620 0.670
KNN, K-nearest neighbors; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; RF, random forest; LR, logistic regression; DT, decision tree.
FIGURE 3

Panel (a) shows the variance threshold method on radiomics feature selection. The blue bars show all the radiomics features extracted in CT images,
while the pink bars represent the features reserved after variance threshold selection. Panel (b) shows the SelectKBest method results for further
selecting radiomics features. Only features with p-values smaller than 0.05 were reserved. Panels (c–e) are the LASSO path, the Mean Squared Error
(MSE) path, and the finally screened features with their coefficients in the LASSO model for feature selection, respectively.
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persists in the microscopic diagnosis of IPA. Polymerase chain

reaction-based diagnostic assays have significantly improved

diagnostic efficiency; however, commercial kit prices are relatively

high (Zhang F. et al., 2021). The final diagnosis requires the direct

detection of pathogens from low respiratory secretions or tissues.

BALF is the preferred sample for galactomannan testing in IPA

diagnosis (Husain and Camargo, 2019). BALF is also considered to

be of the highest quality as a respiratory sample for the diagnosis of

PJP and thus has become the current gold standard method of

detection (Bateman et al., 2020).

NGS has been successfully applied to detect various infectious

pathogens, with a high positive rate for PJP compared with

traditional methods. Since mNGS can identify all potential

pathogenic microorganisms in BALF samples, we chose NGS

results using BALF samples to diagnose and differentiate patients

with PJP from those with IPA. However, mNGS has some

limitations. It is costly, time-consuming, and affects timely

diagnosis and drug treatment.

CT plays a key role in the radiological diagnosis and evaluation

of disease activity, response to treatment, and related complications

in invasive fungal lung infections (Sanguinetti et al., 2019).
Frontiers in Cellular and Infection Microbiology 07
Although the CT scan pattern is neither specific nor sensitive for

invasive pulmonary fungal infections, it is an effective tool for

guiding mycological pre-diagnosis and early initiation of treatment

(Bruno et al., 2007). Imaging diagnosis of PJP and IPA remains

challenging owing to similar findings in GGO and consolidation

areas. Fungal infections should be considered in the differential

diagnosis because IPA remains one of the most common infectious

mimics of PJP (Cereser et al., 2019). In patients without HIV, PJP

shows various findings on CT imaging. Typically, GGO first exists

at symptom onset and is symmetrical and predominant in the

perihilar and apex regions. Mosaic patterns and architectural

distortions are aggravated in cases of ineffective therapy with the

same distribution as in the acute phase. GGOs can also exhibit an

atypical distribution that predominantly exists in the focal extent or

lower lobes (Hardak et al., 2010). Consolidations are common and

tend to develop rapidly, typically in patients without HIV, and are

occasionally diffuse (Tasaka et al., 2010). Nodules, “crazy paving”

patterns, pulmonary cysts, and diffuse alveolar damage are other

atypical findings of PJP (Cereser et al., 2019). Similarly, imaging

manifestations observed in patients with IPA include GGO,

consolidation, nodules, halo signs, and masses (Xu et al., 2012).
TABLE 4 Prediction performance of the classifiers in the validation cohort with an ROI consisting of the consolidation region.

Classifier AUC 95% CI Sensitivity Specificity Precision F1-score

KNN 0.723 0.548 - 0.898 0.640 0.630 0.600 0.620

SVM 0.790 0.644 - 0.936 0.790 0.810 0.790 0.790

XGBoost 0.661 0.500 - 0.822 0.640 0.810 0.750 0.690

RF 0.681 0.526 - 0.836 0.570 0.880 0.800 0.670

LR 0.790 0.631 - 0.949 0.640 0.810 0.750 0.690

DT 0.567 0.385 - 0.749 0.570 0.560 0.530 0.550
KNN, K-nearest neighbors; SVM, support vector machine; XGBoost, eXtreme Gradient Boosting; RF, random forest; LR, logistic regression; DT, decision tree.
FIGURE 4

The ROC curve of the XGBoost classifier trained with consolidation area and surrounding GGO area. (a) showed the ROC curve in training cohort.
(b) showed the ROC curve in validation cohort.
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IPA has vascular infiltrative and airway invasive forms, presenting

with different aspects on CT scanning. Typical vascular-invasive CT

findings include dense, well-circumscribed lesions >1 cm in size

with an early ground-glass attenuation halo (halo sign) (Sanguinetti

et al., 2019). The “air crescent sign” is characteristic of a nodular

cloudy line permeable crescent that typically appears 1–2 weeks

after the onset of IPA (Prasad et al., 2016). Alveolar consolidations

or masses, internal low-attenuation or low-density signs, bud

patterns, and pleural effusions may also be observed in CT images

of the angio-invasive form (Sanguinetti et al., 2019). Airway-

infiltrating aspergillosis is characterized by the thickening of the

tracheal or bronchial wall and central leaflet nodules that are

dendritic, patchy, or predominantly peribronchial consolidation

(Franquet et al., 2003). Although the difference between PJP and

IPA in CT images is usually non-specific to the human eye, it may

present statistically significant radiomic factors.

In our study, radiomics models were effective in differentiating

PJP from IPA. Classifiers trained with the ROI comprising both

GGO and consolidation areas seem to have better prediction ability

than those trained with consolidation areas. The pathophysiological

differences between these pathogens may explain the differences in

the diagnostic efficacy of the different ROIs. P. jirovecii lives almost

exclusively in the alveoli, adheres to the surface of the alveolar

epithelium of type 1 lung cells, and causes lung damage (Avino

et al., 2016). Vascular infiltration in IPA is characterized by hyphae

penetrating the vessel wall and the formation of fungal thrombosis,

tissue necrosis, and hematogenous dissemination; the halo sign

reflects a surrounding hemorrhage of the inflammation site,

whereas the air crescent reflects necrosis retraction (Ledoux et al.,

2020). Airway-infiltrating aspergillosis is characterized by the

destruction of the bronchiolar wall, resulting in the thickening of

the trachea or bronchial wall, multiple lobular central nodules, and

a bud appearance on CT scans (Franquet et al., 2003).
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Radiomics has shown the potential to aid clinical care in disease

diagnosis, prognosis prediction, and treatment selection (Gillies et al.,

2016). CT-based radiomics is also widely used to detect pneumonia.

Gülbay et al (Gülbay et al., 2021) evaluated the discrimination of GGO

and consolidation areas between COVID-19 and other atypical

pneumonias using radiomic features. They correctly predicted 80%

of COVID-19 cases and 81.1% of atypical pneumonia cases. Zhang

et al (Zhang M. et al., 2021) constructed a multi-class classification

model using radiomics and artificial intelligence for adjunctive

empirical antibiotic therapy for bacterial pneumonia in children. In

their study, the comprehensive radiomics model using an SVM

classifier showed an average AUC of 0.73 in the validation cohort.

This is the first innovative study to demonstrate that the radiomics

model can effectively differentiate between PJP and IPA. In our study,

the radiomics model trained using supervised machine learning

classifiers presented good classification efficiency. This may help in

early diagnosis, timely initiation of empirical antibiotic use, and

personalized precision therapy. This technology has the potential to

serve as a foundation for future clinical staging studies, such as

assisting in determining disease outcomes through dynamic

monitoring of changes in imaging findings. The XGBoost model

with the high-precision discrimination framework (AUC=0.808) can

provide technical support for subsequent precise classification therapy.

The main limitation of this study is the lack of a direct association with

clinical staging, which will be emphasized in future work.

In this study, only images of IPA and PJP were collected, the

sample size was small, external validation could not be conducted,

and other fungal pneumonias were not included in our study;

multicenter studies on different kinds of fungal pneumonias should

be conducted in the future to take full advantage of radiomics and

machine learning. Furthermore, future studies will incorporate

clinical severity scoring systems such as APACHE II and SOFA to

evaluate the translational potential of our CT-based radiomics model.
FIGURE 5

The ROC curve of the radscore model. (a) showed the ROC curve in training cohort. (b) showed the ROC curve in validation cohort.
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By correlating the identified discriminative radiomics signatures (e.g.,

texture heterogeneity in ground-glass opacities or nodule

morphology patterns) with dynamic clinical staging scores, we

aim to validate their utility in stratifying disease severity and

predicting outcomes in immunocompromised hosts with invasive

fungal pneumonias.
Conclusion

The radiomics model shows potential efficacy in differentiating

PJP from IPA, which may provide clinicians with early diagnostic

evidence for initiating precise antibiotic treatment. The

consolidation area with the surrounding GGO area was more

suitable for ROI segmentation.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

ZP: Resources, Supervision, Writing – review & editing. XG: Data

curation, Formal Analysis, Writing – original draft. MH: Writing –

review & editing. XD: Writing – review & editing. DW: Writing –

review & editing. ZD: Methodology, Writing – review & editing. DY:

Methodology, Writing – review & editing. HS: Resources, Writing –

review & editing. JT: Resources, Writing – review & editing. YH:

Funding acquisition, Investigation, Writing – review & editing,

Conceptualization, Project administration, Supervision.
Frontiers in Cellular and Infection Microbiology 09
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by grants from the National Natural Science Foundation of China

(grant number: 81600092) and Molecular Characterization of

Breast Cancer with ESR1 Gene Mutation and Relevance to

Treatment (260101120023BL).
Conflict of interest

Author ZD was employed by the company Huiying Medical

Technology Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Avino, L. J., Naylor, S. M., and Roecker, A. M. (2016). Pneumocystis jirovecii
pneumonia in the non-HIV-infected population. Ann. Pharmacother. 50, 673–679.
doi: 10.1177/1060028016650107

Azoulay, E., Russell, L., Van de Louw, A., Metaxa, V., Bauer, P., Povoa, P., et al.
(2020). Diagnosis of severe respiratory infections in immunocompromised patients.
Intensive Care Med. 46, 298–314. doi: 10.1007/s00134-019-05906-5

Bateman, M., Oladele, R., and Kolls, J. K. (2020). Diagnosing Pneumocystis jirovecii
pneumonia: A review of current methods and novel approaches.Med. Mycol. 58, 1015–
1028. doi: 10.1093/mmy/myaa024

Bruno, C., Minniti, S., Vassanelli, A., and Pozzi-Mucelli, R. (2007). Comparison of
CT features of Aspergillus and bacterial pneumonia in severely neutropenic patients. J.
Thorac. Imaging 22, 160–165. doi: 10.1097/RTI.0b013e31805f6a42
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