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Introduction: Cervical carcinoma (CC) remains one of the significant cancers

threatening women's health globally. Increasing evidence suggests that alterations

in the microbiota are closely associated with cancer development. However, the

understanding of reliable biomarkers and underlying mechanisms during the

aggravation of cervical neoplasia such as cervical intraepithelial neoplasia (CIN)

and CC is still relatively limited.

Methods: In this study, cervical swab samples from 53 healthy controls, 51 high-

grade squamous intraepithelial lesion (HSIL), and 52 CC patients were subjected to

16S rDNA sequencing and metabolomics analysis.

Results: We observed significant differences in the cervical microbiota between CC

patients and healthy controls or HSIL groups. Compared to the healthy controls, CC

patients exhibited increased microbial diversity, decreased abundance of

Lactobacillus, and notable changes in microbial composition. Metabolomics

analysis revealed significantly elevated levels of the inflammatory mediator

Prostaglandin E2 (PGE2) in CC samples. Through random forest modeling and

ROC curve analysis, we identified a combination of keymicrobiota (Porphyromonas,

Pseudofulvibacter) and metabolites (Cellopentaose, PGE2) as diagnostic biomarkers

with high diagnostic value for CC. Furthermore, we found a significant correlation

between the cervical microbiota Porphyromonas and the metabolite PGE2,

suggesting a potential role of key microbiota in inducing inflammation.

Discussion: These findings indicate that alterations in cervical microbiota and

metabolites may be closely associated with the occurrence and aggravation of

cervical neoplasia, providing new insights for further understanding themechanisms

of cervical neoplasia progression and developing novel diagnostic markers and

therapeutic approaches.
KEYWORDS

cervical cancer, cervical squamous intraepithelial lesion, metabolome, microbiome,
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1 Introduction

Cervical carcinoma (CC) stands as the fourth most common

cancer among women globally (Sung et al., 2021), underscoring the

critical importance of early detection and treatment for improving

patient outcomes. Despite notable strides in pinpointing diagnostic,

prognostic, and predictive biomarkers for CC, there remains an

incomplete understanding of reliable markers and their underlying

mechanisms (Volkova et al., 2021). In recent years, with

advancements in sequencing technologies and LC-MS

metabolomics, interest has surged in investigating microbiota and

metabolites as biomarkers for human cancer.

Research on microbiota-related biomarkers suggests that the

composition of cervical microbiota is significantly altered in CC

patients compared to healthy individuals (Mulato-Briones et al.,

2024; Li et al., 2024). Recent studies have reported cervical and

vaginal microbiota changes with precancerous cervical lesions and

cervical dysplasia (Natalia et al., 2024; Johanna et al., 2024; Zhang

et al., 2024). While the vaginal microbiota of healthy individuals is

domina ted by Lac tobac i l lu s , CC groups exh ib i t an

overrepresentation of Firmicutes and Bacteroidetes (Mulato-

Briones et al., 2024). Similarly, studies have shown a decrease in

Lactobacillus abundance in patients with cervical lesions and CC

(Kovachev, 2020; Norenhag et al., 2020). Sequencing of vaginal

microbiota in different stages of cervical lesions revealed a gradual

decrease in Lactobacillus abundance with lesion progression (Wei

et al., 2022). Lactobacillus may play a crucial role in maintaining

vaginal microbial balance, potentially exerting anti-HPV and anti-

inflammatory effects (Xu et al., 2022). Moreover, CC patients

exhibit significantly increased diversity in cervical microbiota

compared to healthy controls (Zeber-Lubecka et al., 2022).

Microbial-induced inflammation is believed to be a key driver in

CC development (Zhou et al., 2021).

Metabolomics offers promising screening markers for the

detection, screening, early diagnosis, and treatment of CC. During

tumorigenesis and progression, tumor cells undergo significant

metabolic reprogramming (Morandi et al., 2017). Metabolic

alterations in patients with cervical lesions mainly involve

glucose, amino acid, lipid, nucleotide, purine, and choline

metabolism (Jia et al., 2023). Microbiota may influence host

cervical cell energy metabolism and metabolic pathways,

potentially contributing to cancer development; however, the

specific microbial contributions remain largely unknown.

As exploration into microbiota and metabolomics as potential

biomarkers for cervical cancer advances, our comprehension of

diagnostic approaches for CC becomes more profound. A study

involving a cohort of 10 low-grade squamous intraepithelial lesion

(LSIL), 10 high-grade squamous intraepithelial lesion (HSIL), 10

CC, and 10 healthy controls detected significant alterations in

Lactobacillus, Prevotella, and Aquabacterium, alongside shifts in

lipids and organic acids during lesion development. However, the

relatively small sample size in this cohort constrains the reliability of

biomarker identification and mechanistic investigations (Xu et al.,
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2022). The understanding of the interplay between gut microbiota,

metabolites, and their roles in CC’s onset and progression remains

limited. In this study, we conducted microbiota and metabolomics

analysis on cervical swab samples from 51 Normal, 48 HSIL, and 52

CC cases to uncover changes in cervical microbiota and metabolites

and their interconnections. Furthermore, we delved into potential

molecular pathways to enhance understanding of cervical lesion

occurrence and aggravation.
2 Materials and methods

2.1 Sample collection and preparation

The samples for this study were collected from the Department of

Obstetrics and Gynecology at the First Medical Center of the Chinese

People’s Liberation Army General Hospital. Participants were

recruited openly from female patients who sought medical

attention at our department from January to June in the year 2023,

within the age range of 30 to 73 years. Inclusion criteria: (1) Patients

diagnosed via cervical cytology, HPV screening, and colposcopy, or

healthy controls with negative cervical findings; (2) No sexual activity

or intravaginal medication within 3 days prior to sampling; (3) No

oral or intravenous anti-inflammatory therapy within 1 week prior to

sampling. Exclusion criteria: (1) Advanced-stage CC patients; (2)

Vaginal disinfection or other treatments prior to sampling; (3)

Pregnancy or lactation; (4) Vulvovaginal candidiasis (VVC),

bacterial vaginosis (BV), trichomoniasis (TV) (Qingzhi et al., 2022),

or aerobic vaginitis (AV) diagnosed by GY66 automatic vaginal

microecological analyzer (Qingzhi et al., 2022); (5) Oral hormonal

therapy. A total of 156 cases were included for subsequent analyses. A

total of 156 cases were ultimately included for 16S rRNA gene

amplicon sequencing and untargeted metabolomic analysis using

ultra-high-performance liquid chromatography coupled with high-

resolution mass spectrometry (UHPLC-HRMS). The cohort

comprised 52 cases of CC, 51 cases of HSIL, and 53 healthy

controls (Normal). All CC and HSIL cases were confirmed through

pathological diagnosis. Cervical swabs were directly placed into

cryovials, stored in liquid nitrogen, and utilized for both amplicon

sequencing and non-targeted metabolomic profiling.
2.2 Cervical sampling procedure

Excessive cervical secretions were wiped, and a disposable

sampling swab was inserted into the cervical canal and gently

rotated clockwise for 3–5 turns. Subsequently, the cervical swab

was withdrawn and placed into a cryotube; excess swab tail was

broken off at the tube opening, leaving the swab head in the

sampling tube, which was then stored in liquid nitrogen. Dry ice

was used for transportation to the experimental personnel at

Novogene (Novogene, Beij ing, China), for untargeted

metabolomic analysis and 16S sequencing.
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2.3 Metabolomics profiling

A total of 400 mL extraction solution (methanol: acetonitrile:

water = 2:2:1, v/v, containing isotope-labeled internal standard

mixture) was added to each sample. Subsequently, the samples

were immersed in liquid nitrogen for 1 minute, followed by thawing

and vortexing for 30 seconds. This step was repeated three times

and then ultrasonication for 10 minutes in an ice-cold water bath

was performed. After incubating at -40°C for 1 hour, the samples

were centrifuged at 4°C, 12,000 rpm for 15 minutes. The

supernatant was collected for subsequent analysis. An amount of

5 mL supernatant from all samples were mixed to create a quality

control sample (QC), and a total of 10 QC samples were prepared.

During the analysis of the samples, a QC sample was inserted every

10 samples for quality control monitoring.

Metabolites extracted were chromatographically separated using

an ACQUITYUPLC BEHAmide column (2.1mm× 100mm, 1.7 mm;

Waters, Milford, MA, USA) on a Vanquish ultra-high-performance

liquid chromatography system (Thermo Fisher Scientific). The mobile

phase A consisted of aqueous solution containing 25 mmol/L

ammonium acetate and 25 mmol/L ammonia solution, while mobile

phase B was acetonitrile. The sample tray was maintained at 4°C, and

the injection volume was 2 mL. Mass spectrometry was performed

using a Thermo Q Exactive HFX mass spectrometer, and data

acquisition was controlled by the Xcalibur™ software (3.1.66.10;

Thermo Fisher Scientific, Inc.). Detailed parameters were as follows:

Sheath gas flow rate: 30 Arb, Aux gas flow rate: 25 Arb, Capillary

temperature: 350°C, Full MS resolution: 60,000, MS/MS resolution:

7,500, Collision energy: 10/30/60 in NCE mode, Spray Voltage: 3.6 kV

(positive) or -3.2 kV (negative).

The raw data obtained were pre-processed using the CD data

processing software (Thermo Fisher Scientific, Inc.). Compound

exact masses were determined from the high-resolution extracted

ion chromatogram (XIC) using the mass-to-charge ratio.

Predicted molecular formulas were generated based on mass

number deviations and adduct ion information. Compound

identification was performed by matching with fragment ions,

collision energy, and other information for each compound in the

high-quality mzCloud database (https://www.mzcloud.org/

home), complemented by information from the mzVault and

MassList databases. Compounds with a coefficient of variance

(CV) in QC samples of less than 30% were selected for final

identification. The peak area of each feature represented the

relative quantification of a compound, and the total peak area

was used for normalization. The final quantification results for the

metabolites were obtained. Functional and classification annotation

of identified metabolites was conducted using major databases,

including KEGG (Kanehisa and Goto, 2000) and HMDB (https://

hmdb.ca/metabolites). Orthogonal Partial Least Squares

Discrimination Analysis -Discriminant Analysis (OPLS-DA) was

then performed (Thevenot et al., 2015), and the differential

metabolites between two groups were estimated using variable

importance in projection (VIP). The threshold for the
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identification of differential metabolites was set as VIP > 1 and P-

value < 0.05 based on a Student’s t-test.
2.4 DNA extraction and 16s rDNA
sequencing

Genomic DNAwas extracted from the collected samples using the

CTAB method. The concentration of DNA was quantified using a

Nanodrop spectrophotometer, and its purity and integrity were

assessed via 1% agarose gel electrophoresis. Subsequently, the

extracted DNA was diluted to a final concentration of 1 ng/ml using
sterile water. Amplification of the 16S rRNA genes was conducted

with 341F/806R primers that incorporated barcodes for sample

identification (Guo et al., 2017). PCR reactions were performed in

30 mL volumes, comprising 15 mL of High-Fidelity PCR Master Mix

(New England Biolabs), 0.2 mM of both forward and reverse primers,

and approximately 10 ng of template DNA. The resulting amplicons

were combined in equal proportions and purified using the TIANgel

Purification Kit (TIANGEN Biotech). Sequencing libraries were then

constructed utilizing the TIANSeq Fast DNA Library Prep Kit

(Illumina) provided by TIANGEN Biotech. Library quality was

assessed using the Qubit@ 2.0 Fluorometer (Thermo Scientific) and

the Agilent Bioanalyzer 2100 system. Finally, the prepared library was

sequenced on the Illumina platform, following the 2 × 250 bp paired-

end sequencing protocol. All primers were designed by multiPrime at

http://www.multiprime.cn (Xia et al., 2023).
2.5 Microbiome analysis

Microbiome bioinformatics were performed with QIIME 2

(Caporaso et al., 2010) with slight modification according to the

official tutorials. Briefly, raw sequence data were demultiplexed using

the demux plugin following by primers removed with cutadapt

software (Martin, 2011). Sequences were then quality filtered,

denoised, merged and chimera removed using the DADA2 plugin

(Callahan et al., 2016). Species annotation was performed using

QIIME2 software with Silva Database (Pruesse et al., 2007).

Cervicovaginal microbiome community state types (CSTs) were

assigned using the VALENCIA tool (Michael et al., 2020) to

assign CSTs.

Venn diagram of amplicon sequence variants (ASVs) from

different groups was drawn using VennDiagram package (Chen

and Boutros, 2011). Alpha diversity, including Chao1 and Shannon

indices were calculated with QIIME2 software (Caporaso et al.,

2010). Principal Coordinate Analysis (PCoA) on weighted unifrac

distances among samples was performed (Lozupone and Knight,

2005) and visualized using ade package (Bougeard and Dray, 2018)

and ggplot2 package (Wickham et al., 2008) in R software (Version

3.6.2). The indicator values (IndVal) of all taxa in each group were

calculated using labdsv package (Roberts, 2016) to determine the

indicator species in each group.
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2.6 Integration of multi-omics data

Spearman correlation coefficient between key indicator genera

and metabolites was calculated using psych package (Revelle, 2015),

and interaction relationships with absolute correlation value greater

than 0.3 and P-value less than 0.05 were filtered, which were then

visualized using Cytoscape (Shannon et al., 2003).
2.7 Statistical analysis

The clinical factors including age and BMI were compared

among groups using one-way analysis of variance (ANOVA) test.

Inter-group differences between two groups in the alpha diversity

indices were analyzed with Kruskal-Wallis test, and a Benjamini-

Hochberg corrected P-value < 0.05 indicated significant difference.

To identify differences of microbial communities between two

groups, STAMP software was utilized with default parameters.
3 Results

3.1 Subjects’ information

The samples in this study were all collected from the Department

of Obstetrics and Gynecology, First Medical Center of the Chinese

People’s Liberation Army General Hospital. The female participants’

ages ranged from 30 to 73 years old. Specifically, there were 53 cases
Frontiers in Cellular and Infection Microbiology 04
in the normal group, 51 cases in the HSIL group, and 52 cases in the

CC group. No significant differences in age and BMI were observed

among the three sample groups (Table 1). Notably, the CC group

exhibited an older age profile (median: 49 years) compared to the

HSIL group (median: 46 years), consistent with the epidemiological

trend of cervical cancer progression (Supplementary Figure 1). The

majority of patients in the CC and HSIL groups were infected with

one or more high-risk HPV types (Table 1; Supplementary Table 1).

In the cohort of CC specimens, the predominant histologic subtype

was squamous cell carcinoma (39 cases), with a smaller portion being

adenocarcinomas (13 cases) (Table 1; Supplementary Table 1). The

tumor stages were predominantly classified as Stage I (30 cases),

followed by Stage II (11 cases), and Stage III (8 cases), with only 3

cases in Stage IV (Table 1; Supplementary Table 1). For the HSIL

samples, the staging primarily comprised CIN2 (20 cases), CIN2-3

(18 cases), and CIN3 (13 cases) (Table 1; Supplementary Table 1).

The chi-square test was further employed to compare the proportions

of individuals with different menopausal status among groups, which

indicated that there were no significant differences (P-value > 0.05) in

the pairwise comparisons between the Normal, HSIL, and CC groups.

An average of 124,569 reads per sample were obtained by 16s

amplicon sequencing, with an average quality score exceeding 30

(Supplementary Table 2). The mean proportion of effective reads

stood at 75.4%, resulting in an average of 119,296 reads per sample

post-denoising (Supplementary Table 3). In total, 32,317 Amplicon

Sequence Variants (ASVs) were identified, averaging 342 ASVs per

sample (Supplementary Table 2). Untargeted metabolomic profiling

was performed, and a total of 2,879 metabolites were detected.
TABLE 1 Statistical summary of patient age, BMI and HPV infection.

n Normal (n=53) HSIL (n=51) CC (n=52) P-value

BMI (mean(SD)) 156 23.05 (2.83) 22.28 (3.42) 22.32 (1.64) 0.27

Age (mean(SD)) 48.66 (6.35) 46.33 (7.34) 49.35 (7.15) 0.074

HPV status

HPV 16 positive 0 (0) 22 (41.51%) 34 (65.38%) 0.004

HPV 18 positive 0 (0) 2 (3.77%) 13 (25.00%) 0.006

other high-risk 0 (0) 18 (33.96%) 6 (11.54%) 0.009

Single high-risk 0 (0) 37 (69.81%) 46 (88.46%) 0.073

Multiple high-risk 0 (0) 2 (3.77%) 4 (7.69%) 0.692

Histotype
Squamous Cell Carcinoma (39)
Adenocarcinoma (13)

Stage
CIN2 (20)
CIN2-3 (18)
CIN3 (13)

I (30)
II (11)
III (8)
IV (3)

Menopausal status
Luteal (16)
Menopause (23)
Follicular (14)

Luteal (16)
Menopause (16)
Follicular (19)

Luteal (13)
Menopause (28)
Follicular (11)

0.207
Values are presented as mean, with standard deviation (SD) in parentheses for BMI and age. HPV status is shown as number of patients, with percentages (%) in parentheses. Histotype, stage, and
menopausal status are presented as number of patients in each category in parentheses. P-values were calculated using Fisher’s exact test for HPV status (HSIL vs. CC) and Chi-square test for
Menopausal status across three groups.
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Among them, 1,543 metabolites were annotated in the HMDB or

KEGG databases.
3.2 Diversity of bacterial community

The intersection analysis revealed a relatively modest number of

shared ASVs (544 common ASVs) among the three groups:

Normal, HSIL, and CC (Figure 1A). Inter-group differences were

observed in the alpha-diversity indices (Kruskal-Wallis test,

Benjamini-Hochberg corrected P-value < 0.05) (Figures 1B, C).

Specifically, the Shannon index in the CC group was significantly

higher than that in the Normal group (Figure 1B), while the Chao1

index was significantly higher in the CC group compared to both

the HSIL and Normal groups (Figure 1C). Beta-diversity analysis,

based on weighted UniFrac PCoA, indicated that samples from each

group clustered together, suggesting differences in microbial

structure among these groups (Figure 1D).
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3.3 Bacterial community characterization

The predominant microbiota at the Phylum level in samples

from various groups comprised Firmicutes, Proteobacteria,

Actinobacteriota, and Bacteroidota, etc. Notably, Firmicutes

exhibited a gradual decrease in abundance as the disease

progressed from Normal to HSIL and further to CC, while

Proteobacteria demonstrated a relatively higher average

abundance in the CC group (Figure 2A). At the Genus level, the

predominant microbiota included Lactobacillus, Gardnerella,

Pseudomonas, Prevotella, Escherichia-Shigella, and Streptococcus,

and others (Figure 2B). Similarly, the average abundance of the

Lactobacillus also showed a gradual decrease as CC progressed

(Figure 2B). In contrast, Pseudomonas displayed a gradual increase

in abundance (Figure 2B). Additionally, species with higher

abundances were identified, including Lactobacillus iners,

Gardnerella vaginalis, Prevotella bivia, Streptococcus anginosus,

and Atopobium vaginae (Figure 2C). Among them, the
FIGURE 1

Overview of bacterial community data. (A) Venn diagram illustrating the overlap of ASVs in samples from the Normal, HSIL, and CC groups. (B, C)
Boxplots of Shannon (B) and Chao1 (C) indices for each group, with inter-group differences assessed by Kruskal-Wallis test. * represents significant
differences indicated with Benjamini-Hochberg corrected P-value < 0.05. (D) Scatter plot of PCoA analysis for samples in each group.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1556153
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhai et al. 10.3389/fcimb.2025.1556153
abundance of L. iners was lower in CC, compared with the other

groups (Figure 2C).

The clustering method based on VALENCIA was utilized to

analyze the CSTs, resulting in the assignment of ten sub-CSTs.

Among all samples, the most prevalent communities were III-A

(almost completely L. iners), III-B (less L. iners but still the

majority), IV-B (which contains a high to moderate relative

abundance of G. vaginalis and A. vaginae), and IV-C0 (contains

low relative abundances of G. vaginalis, BVAB1, and Lactobacillus

spp. and includes a relatively even community with Prevotella spp.)

(Figure 2D). Inter-group differential analysis indicated that

Lactobacillus and Pseudomonas were significantly lower and

higher in the CC group compared to the Normal group,

respectively, while no significant different genera were detected

among other comparisons (Figure 2E).

To discern microbial biomarkers linked with particular diseases

or health statuses and unveil the most representative species

between different groups, we proceeded with a genus and species-

level indicator species analysis (Figure 3). At the genus level,
Frontiers in Cellular and Infection Microbiology 06
indicator genera identified for the Normal group included

Bifidobacterium, Faecalibacterium, Roseburia, Lachnospira,

Coprococcus , Methyloversat i l i s , Hydrogenophaga , and

Ruminococcus gnavus group (Figure 3A). Indicator genera for the

HSIL group comprised Allobaculum, Aerococcus, Ochrobactrum,

Megasphaera, Coriobacteriaceae_UCG-002, Fastidiosipila, and

Castellaniella (Figure 3A). In contrast, indicator genera of the CC

group were Pseudomonas, Porphyromonas, Peptoniphilus,

Campylobacter, Halomonas, and Fenollaria (Figure 3A).

At the species level, we also identified indicator species for the

Normal group such as Bifidobacterium longum, Streptococcus

anginosus, and Streptococcus salivarius, for the HSIL group such

as Aerococcus christensenii, Clostridiales_bacterium, Dialister

micraerophilus, Sneathia sanguinegens, and Prevotella colorans,

and for the CC group including Campylobacter ureolyticus,

Porphyromonas asaccharolytica, Prevotella bergensis, Peptoniphilus

duerdenii, Peptoniphilus coxii, Dialister propionicifaciens,

Anaerococcus lactolyticus, Bacillus sporothermodurans, and

Bacillus oleronius (Figure 3B).
FIGURE 2

Composition of the microbial community. (A-C) Stacked bar charts depicting the taxonomy composition at the phylum (A), genus (B), and species
(C) levels for different groups. (D) Stacked bar plot representing the proportions of samples assigned to each sub-CSTs across all groups.
(E) Differential analysis at the genus level across the CC, HSIL, and Normal groups using the wilcox method, where FDR-corrected P-value < 0.05
indicates significant inter-group differences. *, **, ***, and **** represent P-value < 0.05, P-value < 0.01, P-value < 0.001, and P-value <
0.0001, respectively.
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3.4 Potential functions of the bacterial
community

The results from microbial community phenotypes predicted

based on BugBase revealed that that the abundance of

Gram_Positive and Facultatively_Anaerobic species was higher in the

Normal group, whereas the abundance of Aerobic, Stress_Tolerant,

Contains_Mobile_Elements, Gram_Negative, Potentially_Pathogenic,

and Forms_Biofilms species was higher in the CC group (Figure 4A).

Further predictions of KEGG pathway abundances for each sample

group using PICRUSt2 demonstrated notable differences. Fundamental

biological functions such as amino sugar and nucleotide sugar

metabolism, Aminoacyl-tRNA biosynthesis, and Phosphotransferase

system (PTS) were more abundant in the Normal group, while

pathways including beta-Lactam resistance, Flagellar assembly, Vibrio

cholerae pathogenic cycle, Peroxisome, Phenylalanine metabolism, and

Lipopolysaccharide biosynthesis were more prevalent in the CC group

(Figure 4B). Notably, the pathway Vibrio cholerae pathogenic cycle

indicated homology of virulence genes in the microbiota, since V.

cholerae generally does not colonize or infect the cervix. Stamp analysis

revealed that KEGG pathways in the CC group, such as Amino sugar

and nucleotide sugar metabolism, Aminoacyl-tRNA biosynthesis, and

Phosphotransferase system (PTS), were significantly lower compared

to the Normal group. While pathways such as beta-Lactam resistance,

Flagellar assembly, Vibrio cholerae pathogenic cycle, Penicillin and

cephalosporin biosynthesis, and Peroxisome were significantly higher

in the CC group than the Normal (Figure 4C; Supplementary Table 3)

and HSIL group (Figure 4D; Supplementary Table 4). Furthermore,
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there were no significant differences in abundance of pathways between

the Normal group and the HSIL group (Supplementary Table 5).

3.5 Identification of vaginal metabolomic
signatures

The score plot of the OPLS-DA model vividly illustrates

significant separation between inter-group samples, indicating

marked differences in cervical swab metabolomes across the various

groups (Figure 5A). We identified a set of differential metabolites

associated with cervical cancer, among which the number of

differential metabolites between HSIL and Normal was relatively

modest (51) (Figure 5B; Supplementary Table 6). In contrast, the

number of differential metabolites in the CC vs. HSIL and CC vs.

Normal comparison groups was larger, with a notably higher number

of up-regulated metabolites compared to down-regulated metabolites

(Figures 5B, C; Supplementary Table 6).

Enrichment analysis further revealed insights into the biological

pathways associated with these differential metabolites. Specifically,

the differential metabolites in CC vs. HSIL were enriched in pathways

related to Amino Sugar Metabolism, Tryptophan Metabolism, and

Glutamate Metabolism (Figure 5D). Meanwhile, the differential

metabolites in CC vs. Normal were enriched in pathways

associated with Tryptophan Metabolism, Phosphatidylcholine

Biosynthesis, Methylhistidine Metabolism, and Amino Sugar

Metabolism (Figure 5E). Lastly, the differential metabolites in HSIL

vs. Normal exhibited enrichment in pathways such as Tryptophan

Metabolism and Estrone Metabolism (Figure 5F).
FIGURE 3

Indicator species analysis. (A, B) Species indicator values at the genus (A) and species (B) levels for different groups, where the size of the points is
proportional to the indicator values, and the red color indicates higher indicator values.
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3.6 Interaction of key microbiota and
metabolites

By intersecting differential metabolites from three comparison

groups (HSIL vs. Normal, CC vs. HSIL, and CC vs. Normal), a total

of 16 key metabolites were identified. Spearman correlation

coefficients between these key differential metabolites and

indicative species were calculated to construct an interaction

network between key microbial taxa and metabolites (Figure 6A).

Pseudomonas was among the microbial taxa with higher

abundance in the interaction network, while metabolites such as

Alpha-Tocotrienol, 2-Methoxyestrone, PGE2, Secobarbital,

Procyanidin C1, and Theophylline exhibited higher abundance

(Figure 6B). Notably, the top microbial feature in random forest

model, Porphyromonas, exhibited positive correlations with key

metabolites, including PGE2, Triheptanoin, and Coenzyme Q4, while

displaying negative correlation with Cellopentaose (Figure 6B).
Frontiers in Cellular and Infection Microbiology 08
Meanwhile, Pseudomonas, Halomonas, and Methylobacterium-

Methylorubrum which belongs to Proteobacteria phylum displayed

significant positive correlations with lipid metabolites such as Alpha-

Tocotrienol, 2-Methoxyestrone, and PGE2, while Lawsonella showed

apparent co-occurrence with Secobarbital (Figure 6). Conversely,

[Ruminococcus]_gnavus_group demonstrated negative correlations

with a plethora of metabolites (Figure 6B).
3.7 Predictive model based on vaginal
microbial and metabolomic signatures

To assess the predictive value of taxonomical features of cervical

disease-associated microbiota and key metabolites, we employed a

Random Forest Model (RFM) to discriminate among CC, HSIL,

and Normal groups (Figure 7). Based on ten-fold cross-validation

accuracy, we identified the top 30 microbiota/metabolites as the
FIGURE 4

Functional prediction of the bacterial community. (A) Heatmap of bugbase predictions for the different groups, with colors corresponding to the
z-score values of phenotype abundance. (B) Functional abundance of the top 30 KEGG pathways predicted based on picrust2 for different groups.
(C, D) Top 10 differential KEGG pathways identified between CC vs Normal (C) and CC vs HSIL (D), where FDR-corrected P-value < 0.05 indicate
significant inter-group differences.
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optimal feature set, among which key known metabolites, including

Cellopentaose, Prostaglandin E2 (PGE2), Triheptanoin, Coenzyme

Q4, 2-Methoxyestrone, Procyanidin C1, and Theophylline, along

with genera Porphyromonas and Pseudofulvibacter, ranked highest

in the model (Figure 7A).

Leveraging these 30 features, relatively high accuracy on the

training set, with an average AUC of 70.00% (95% CI, 60.49%-

79.51%) for CC vs. HSIL, 61.90% (95% CI, 53.04%-70.77%) for HSIL

vs. Normal, and 74.17% (95%CI, 64.54%-83.79%) for CC vs. Normal,

demonstrating high sensitivity and specificity in discriminating

cervical cancer (CC) from Normal controls were achieved.

Importantly, robust performance was observed on the test set, with
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AUC values of 64.81%, 75.93%, and 78.47% for CC vs. HSIL, HSIL vs.

Normal, and CC vs. Normal, respectively (Figure 7B). Notably, the

top key microbial features including Porphyromonas and

Pseudofulvibacter showed a progressively increasing trend from

normal to HSIL to CC (Figure 7C). The top key metabolites

features including PGE2, Triheptanoin, and Coenzyme Q4 also

showed a progressively increasing trend from normal to HSIL to

CC, while Procyanidin C1, and Theophylline showed a progressively

decreasing trend (Figure 7D). A simplified model using

Porphyromonas, Pseudofulvibacter, PGE2, Triheptanoin, and

Coenzyme Q4 achieved an AUC of 0.74 (Supplementary Figure 2),

demonstrating the clinical feasibility of targeted biomarker panels.
FIGURE 5

Vaginal metabolic alterations. (A) OPLS-DA score plot of different groups. (B) Number of differential metabolites for different comparisons. (C)
Heatmap representing the abundance of differential metabolites. (D–F) Enrichment analysis results for differential metabolites in CC vs. HSIL, CC vs.
Normal, and HSIL vs. Normal. Node size represents the number of differential metabolites in each pathway.
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4 Discussion

In this study, 16S rRNA amplicon sequencing and

metabolomics approaches were utilized to investigate microbial

and metabolic changes across normal, HSIL, and CC groups,

aiming to identify key biomarkers and associated pathogenic

mechanisms during aggravation of cervical neoplasia.
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At the microbial level, the predominant genera with high

abundance were mainly Firmicutes, Proteobacteria, Actinobacteriota,

and Bacteroidota (Figure 2A), all of which have been reported in

relevant vaginal microbiota studies (Diop et al., 2019). In this study, we

observed increased microbial diversity in the CC group (Figures 1B, C)

and a decrease in Lactobacillus (Figure 2E), consistent with previous

findings of highly diversified vaginal microbiota and reduced
FIGURE 6

Visualization of the interaction network highlighting key microbiota-metabolite associations. (A) Venn diagram showing differential metabolites from
three comparison groups (HSIL vs. Normal, CC vs. HSIL, and CC vs. Normal). (B) The interaction network of key microbiota and metabolites. Red and
blue lines represent positive and negative correlations, respectively. Circles and squares represent microbiota and metabolites, respectively, with the
size of the nodes proportional to the relative abundance of key microbiota or metabolites. Node colors correspond to taxonomic classifications at
the phylum level for microbiota or metabolite categories.
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Lactobacillus (Mitra et al., 2015; Sharifian et al., 2023;Wu et al., 2023; Li

et al., 2024), further supporting their association with cervical cancer.

Specifically, the abundance of L. inerswas lower in CC compared to the

other two groups (Figure 2C). The abundance of Pseudomonas was

found to be higher in CC group, which is in accordance with previous

studies (Li et al., 2024). Previous studies have indicated that the

metabolite lactic acid produced by L. iners can activate the Wnt

signaling pathway via the lactate-Gpr81 complex, thereby increasing

the core fucosylation level in epithelial cells and suppressing the

proliferation and migration of CC cells (Fan et al., 2021). One of the

pivotal factors associated with cervical cancer is microbial dysbiosis

(Mulato-Briones et al., 2024). Consistently, functional prediction in this

study indicated an elevated abundance of Potentially_Pathogenic and

Stress_Tolerant microbiota in the CC group compared to Normal

group (Figure 4).

Metabolite enrichment analysis showed that the differential

metabolites in all comparison groups were significantly associated

with tryptophan metabolism (Figures 5D–F). Previous studies have

indicated that microbial tryptophan metabolism modulates host

immunity, impacting the progression of intestinal and

extraintestinal disorders, such as inflammatory bowel disease (Liu

et al., 2022). Additionally, tryptophan metabolism promotes the
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growth and invasion of gliomas while suppressing anti-tumor

immune responses (Platten et al., 2012; Xu et al., 2021).

A random forest model was implemented to identify key

microbial and metabolite biomarkers. Among these, the top two

microbial genera included Porphyromonas and Pseudofulvibacter,

both belonging to the phylum Bacteroidota (Figure 7A).

Importantly, the Bacteroidota has been established as a

characteristic feature within the context of CC (Fan et al., 2021).

Furthermore, the Porphyromonas genus has been identified as

important cervical cancer (CC) biomarkers in previous studies (Wu

et al., 2023). It is noteworthy that the abundance of Porphyromonas

and Pseudofulvibacter gradually increased from normal to HSIL and

CC stages (Figure 7C). Karen V. Lithgow et al. demonstrated that

vaginal Porphyromonas disrupt coagulation and extracellular matrix

in the cervicovaginal niche (Lithgow et al., 2022). Studies have shown

that P. gingivalis promotes local tissue destruction by inducing

inflammatory processes (Katz et al., 2002; Takeuchi et al., 2019).

Therefore, this species may contribute to a pro-inflammatory

environment conducive to cervical cancer development, warranting

further investigation into its role in CC pathogenesis.

Furthermore, metabolites identified as important features in the

random forest model included Cellopentaose, PGE2, Triheptanoin,
FIGURE 7

Prediction model for cervical cancer lesions. (A) Top 30 key metabolites/microbes as the optimal feature set of a random forest model based on
ten-fold cross-validation. (B) ROC curve of the random forest model on the test dataset. (C) Heatmap representing the relative abundance of key
microbes. (D) Heatmap representing the relative abundance of key metabolites.
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and Coenzyme Q4 (Figure 7A). Among these, PGE2 serves as a

pivotal inflammatory mediator, exerting crucial roles in

inflammatory responses (Kalinski, 2012; Serhan and Levy, 2018).

Simultaneously, PGE2 acts on both autocrine and paracrine

mechanisms to enhance tumor cell proliferation and survival,

promote angiogenesis, and induce metastasis during cancer

progression (Finetti et al., 2020). Besides, PGE2 level was

significantly positive correlated with the abundance of

Porphyromonas genus (Figure 6B). It is plausible to hypothesize

that key microorganisms such as Porphyromonas within the vaginal

environment induce inflammatory processes, thereby facilitating

the occurrence and progression of cervical neoplasia.

The random forest model, as a highly effective and commonly

used machine learning model, is widely applied in multi-omics

research due to its ability to handle high-dimensional data, complex

interaction effects, and resistance to overfitting (Diaz-Uriarte and

Alvarez de Andres, 2006). However, integrating metabolomic data

and microbial abundance and metabolomic data solely might

overlook factors associated with the host. Due to incomplete

patient medical records, there is a lack of data on smoking

history, immune status and environmental exposures, as well as a

small sample size in each subgroup after stratification, which has

not been adequately considered in the current study regarding their

impact on changes in the vaginal microbiome. It would be beneficial

to further expand the sample size and fully collect and consider

various clinical factors, such as age stratification, disease staging,

menopausal status, smoking history, immune status and

environmental exposures, etc. Additionally, further exploration of

more complex model selection, such as incorporating latent variable

models or multi-view models (Oshrit et al., 2024), will help to more

comprehensively account for the complex relationships between the

microbiome, metabolome, and host factors, thereby enhancing the

predictive power and interpretability of the predictive model.

Classifying the microbiota into CSTs can provide additional

insights into the overall microbial landscape and its association with

disease states. The primary subCSTs identified in the present study

cohort were III-A, III-B, IV-B, and IV-C0 (Figure 2D). Prior studies

have also reported on datasets from four distinct countries/regions,

revealing varying dominant subCSTs within their respective cohorts

(Wu et al., 2023). This observation underscores the high variability

in the microbiome composition and the necessity for large-scale

studies to comprehensively elucidate these variations. In our future

expanded cohort study, we will incorporate a CSTs analysis into our

samples and discuss the implications of CST distributions in

relation to disease progression. We believe this will help to

contextualize our findings within the broader framework of

vaginal microbiome research and provide a more comprehensive

understanding of microbial dynamics.

There are several limitations in this study. Firstly, factors such as

prior human papillomavirus (HPV) infection and HPV genotyping

were not taken into account. This is because all cases in the HSIL and

CC groups were infected with HPV, with most of them

demonstrating single or multiple high-risk HPV infections.
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Persistent high-risk HPV infection has been shown to be closely

associated with squamous intraepithelial lesions and cervical cancer

(Munoz et al., 2003; Liu et al., 2020; So et al., 2020). Besides, complex

interplay between HPV and the cervicovaginal microbiome in cervical

carcinogenesis has been reported (Hong et al., 2023; Megan et al.,

2024). Secondly, the low-grade SIL group was not included in the

study cohort, which is crucial to elucidate the mechanisms during the

progressive transition of cervical cancer. However, our preliminary

research indicated that low-grade SIL shares a microbiota

composition similar with that of healthy individuals (Zhai et al.,

2021). Furthermore, experimental validation of Porphyromonas and

PGE2 as an important biomarker and the role of Porphyromonas in

inducing inflammatory responses was lacking. In future research,

incorporating HPV-related factors and the LSIL group, along with

corresponding experimental validation, may contribute to a better

understanding of the role of the bacterial microenvironment in HPV

persistence and cancer progression. Targeting specific vaginal

microbiota associated with the pathogenesis could improve

women’s health status and aid in the early detection and prevention

of cervical precancerous lesions.
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