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Background: The gastrointestinal (GI) tract is suspected to be a possible source

for the systemic spread of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), as well as a reservoir of long coronavirus disease (COVID). Thus,

the mucosal epithelial tissue of the colon is a potential target for probiotics to

help control SARS-CoV-2 infection. Recently, the effect of live probiotics on

COVID-19 has been evaluated. However, live probiotics have certain risks,

including the transmission of antibiotic-resistant genes, disturbance of gut

colonization in infants, and systemic infections induced by translocation.

Therefore, there is growing interest in nonviable microorganisms, particularly

heat-killed probiotic bacteria, to mitigate these risks.

Methods: This study evaluated the antiviral properties of heat-killed Lactobacillus

acidophilus (HK-LA) in the Caco-2 cell line. Caco-2 cells were infected by SARS-

CoV-2 with or without 24-hour pretreatment of HK-LA and the presence of HK-

LA during infection.

Results: RT-qPCR analysis showed that HK-LA treatment significantly reduced

SARS-CoV-2 genome copies by approximately 30%. Similarly, flow cytometry

revealed a roughly 30% decrease in SARS-CoV-2 spike-positive Caco-2 cells

following HK-LA treatment. Additionally, ELISA demonstrated a significant

increase in IFN-l2 secretion induced by HK-LA.

Discussion:HK-LA reduces viral infection in Caco-2 cells with an increase in IFN-

l2 secretion. Therefore, heat-killed lactobacilli could potentially reduce SARS-

CoV-2 infection in the GI tract, suggesting a possible clinical application.
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1 Introduction

The World Health Organization (WHO) has formally revoked

the designation of coronavirus disease 2019 (COVID-19) as a

“global health emergency”; however, it continues to present a

substantial global health threat (Wise, 2023). The alpha and delta

strains prevalent at the start of the epidemic have been replaced by

omicron strains and their sub-strains over the past two years.

Additionally, an increase in the number of vaccinated and

previously infected individuals has led to the establishment of

herd immunity (Suryawanshi and Biswas, 2023). Consequently,

the number of patients experiencing fatal outcomes has significantly

reduced. However, there is still a notable occurrence of severe cases,

and the primary challenge lies in managing long COVID caused by

persistent infection. Many countries have experienced a decline in

the number of surplus vaccines due to the cessation of public

support, which was prompted by economic crises in Japan and

other countries. Moreover, the use of antiviral medications is

limited because of their high cost and potential problems with

drug interactions (Wise, 2023; Neris Almeida Viana et al., 2024).

Interestingly, probiotics have been demonstrated to be effective in

treating COVID-19 in this particular situation (Neris Almeida Viana

et al., 2024). Although their exact molecular action mechanism is not

well understood, probiotics are believed to enhance the host antiviral

immune response and regulate the gut microbiota, which is thought

to alleviate COVID-19 (Nguyen et al., 2022). Furthermore, it has been

proposed that the gastrointestinal (GI) tract may act as a possible

pathway for the spread of the virus within an infected individual and

as a reservoir of long COVID-19 (Neurath et al., 2021). Therefore, it

is essential to develop efficient probiotics to control SARS-CoV-2

infection in the GI tract by eradicating SARS-CoV-2-infected cells.

Several studies have utilized live bacteria for this purpose. However,

they may pose certain risks, including the transmission of antibiotic-

resistant genes, disturbance of gut colonization in infants, and

systemic infections induced by translocation. These risks are

particularly significant in susceptible people and the pediatric

population (Piqué et al., 2019). Therefore, there is growing interest

in nonviable microorganisms, particularly heat-killed probiotic

bacteria, to mitigate these risks (Piqué et al., 2019). In this study,

we assessed the effect of heat-killed Lactobacillus acidophilus (HK-

LA) on the infection of SARS-CoV-2 in Caco-2, a human

immortalized intestinal epithelial cell line.
2 Methods

2.1 Cell culture

Minimum essential medium (MEM) (Gibco, Carlsbad, CA,

USA) with the addition of fetal bovine serum (FBS) (20%) was

used to culture Caco-2 cells. Antibiotics (100 U/mL of penicillin and

streptomycin) and 100 mM nonessential amino acids (NEAA)

(Gibco, Carlsbad, CA, USA) were also added to the medium.

Cultivation was carried out in a CO2 incubator (5%: Hirasawa,

Tokyo, Japan) at 37°C.
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2.2 Bacterial culture and HK-LA

L. acidophilus strain JCM2124 was purchased from RIKEN

BioResource Research Center (Ibaraki, Japan). L. acidophilus

(JCM2124) was grown in de Man, Rogosa, and Sharpe (MRS)

broth (Becton, Dickinson and Company, Sparks, MD, USA) at 37°C

without shaking. Optical turbidity at 600 nm was measured by using

a spectrophotometer (Amersham Pharmacia Biotech, Cardiff, UK)

to monitor bacterial growth. Bacterial numbers were evaluated as

colony-forming units (CFUs) (Hayashida et al., 2022).

HK-LA was prepared as described previously (Saito et al., 2020)

with a few modifications. In short, the 10 ml of L. acidophilus

culture (107 CFU/ml) were killed at 95°C for 10 min, after which

centrifugation (5000 ×g, 10 min) was performed to precipitate the

bacterial cells. After the washing step with 0.9% NaCl, the bacterial

pellet was reconstituted in saline solution. Then, the samples were

stored at -80°C in an ultra-low temperature freezer (ULT-1390-10-

D; Thermo Fisher Scientific, Waltham, MA, USA) until further use.
2.3 Viral infection

For the viral infection experiment, HK-LA (multiplicity of

infection (MOI) 1:5 or 1:50) or saline (as a vehicle) was added to

the Caco-2 cell culture mixture. After 24 h, the cell culture medium

was changed to MEM (2% FBS), and HK-LA or saline was added

again. The cells were subsequently infected with severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (WK-521

strain, provided by the National Institute of Infectious Diseases,

Tokyo, Japan) (MOI of 1:0.5) and cultured in a CO2 incubator (5%)

at 37°C for another 24 h. The viruses were propagated and titrated

in VeroE6/TMPRSS2 cells. All infection experiments in this study

were conducted in a biosafety level 3 (BSL-3) research zone at the

Nihon University School of Medicine with the approval of the

institute’s biosafety committee.
2.4 RT-qPCR

After 24 h of viral infection, RNA was extracted using the

ReliaPrep RNA Cell Miniprep System (Promega, WI, USA).

Reverse transcription and amplification of viral RNA were

performed with the One Step PrimeScript III RT-qPCR Mix

(Takara, Tokyo, Japan) using virus-specific primers and probes

(Primer/Probe N2 (2019-nCoV); Takara). Reactions were carried

out on a QuantStudio 5 Flex Real-Time PCR System (Life

Technologies, Carlsbad, CA, USA).
2.5 Flow cytometry

After 24 h of SARS-CoV-2 infection, the cells were washed twice

with phosphate-buffered saline (PBS) and then trypsinized. They were

subsequently treated with LIVE/DEAD fixable dead cell stains

(Thermo Fisher Scientific) to exclude dead cells. Then, the cells were
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fixed and permeabilized by BD Cytofix/Cytoperm solution (BD

Biosciences, Franklin Lakes, NJ, USA). Finally, the cells were stained

for the SARS-CoV-2 spike S1 subunit using its antibody (FAB105403G;

R&D Systems, Minneapolis, MN, USA). We performed fluorescence-

activated cell sorting (FACS) using a FACSVerse flow cytometer (BD

Biosciences, Franklin Lakes, NJ, USA). The result of FACS was then

evaluated by FlowJo software (BD Biosciences). The gating strategy is

shown in Supplementary Figure S1.
2.6 Western blot

After 24 h of incubation with HK-LA (MOI 1:50), Caco-2 cells

were washed with PBS and lysed using cell lysis buffer (Cell

Signaling Technology, Danvers, MA, United States). Cell lysates

were loaded onto a NuPAGE 4–12% Bis-Tris protein gel

(Invitrogen) and separated by electrophoresis. The separated

proteins were then transferred onto polyvinylidene fluoride

membranes (Invitrogen). Membranes were incubated overnight at

4°C with primary antibodies against Angiotensin-converting

enzyme 2 (ACE2) (1:500; Abcam, Cambridge, United Kingdom),

Transmembrane protease serine 2 (TMPRSS2) (1:500; Abcam), or

a-Tubulin served as the internal control (1:1000; Cell Signaling

Technology). Membranes were subsequently incubated with

horseradish peroxidase-conjugated secondary antibodies (Cell

Signaling Technology) for 30 min at room temperature and

visualized using an LAS-4000 Mini image analyzer (Fujifilm,

Tokyo, Japan).
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2.7 ELISA

Cell culture supernatants were collected 24 h after incubation with

HK-LA (MOI 1:50). The samples were centrifuged at 8000 × g for 5

minutes to remove cells and debris and subsequently stored at -20°C

for later analysis. Protein concentrations of interferon (IFN)-a and

IFN-l2 were measured using ELISA kits (R&D Systems Inc.,

Minneapolis, MN, USA and RayBiotech, Peachtree Corners, GA,

USA, respectively) following the manufacturer’s instructions.
2.8 Statistical analysis

For statistical analysis, Statcel4 (OMSPublishing Inc., Tokyo, Japan)

was employed. The results were evaluated using Student’s t-test or the

Tukey–Kramer test. Statistical significance was set at p < 0.05.
3 Results

Caco-2 cells were infected with SARS-CoV-2 following HK-LA

treatment. After 24 h, HK-LA (MOI 1:50) significantly reduced viral

genome copies by approximately by 30% in a dose-dependent manner

(Figure 1A). This finding was confirmed by flow cytometry. The HK-

LA (MOI 1:50) treatment significantly reduced the number of Caco-2

cells infected with SARS-CoV-2 (Figures 1B, C, Supplementary Figure

S2). The infection rate was approximately 4%, and HK-LA treatment

reduced the infection rate by approximately 30% (Figure 1B).
FIGURE 1

Anti-SARS-CoV-2 effect of heat-killed Lactobacillus acidophilus (HK-LA). HK-LA treatment significantly reduced SARS-CoV-2 genome copies by
approximately 30%, as confirmed by RT-qPCR (A). HK-LA also significantly reduced the number of Caco-2 cells positive for the SARS-CoV-2 spike
S1 subunit after 24 h of SARS-CoV-2 infection (B, C). The infection and reduction rates are approximately 4% and 30%, respectively (B). The data
represent the mean ± SEM; *p < 0.05 or **p < 0.01 according to the Tukey–Kramer test (A) or Student’s t-test (B) (n = 3-4).
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Next, we evaluated the effect of HK-LA on viral receptors. HK-

LA treatment did not affect the expression of ACE2 and TMPRSS2,

which are known SARS-CoV-2 receptors in humans (Hoffmann

et al., 2020) (Figure 2A We then measured the concentration of

Type I and III IFNs, which play protective roles against SARS-CoV-

2 infection (Felgenhauer et al., 2020; Vanderheiden et al., 2020).

ELISA results showed that Caco-2 cells did not secrete IFN-a even

after HK-LA treatment (Figure 2B). In contrast, HK-LA treatment

significantly increased the secretion of IFN-l2 (Figure 2C).
4 Discussion

Growing evidence suggests that live probiotics are effective in

combating SARS-CoV-2 infections in the GI tract. The presence of

live Lacticaseibacillus paracasei (formerly known as Lactobacillus

paracasei) was shown to effectively suppress SARS-CoV-2 infection

and enhance the antiviral immune response of lactoferrin in Caco-2

cells (Salaris et al., 2021). In addition to the risks mentioned above,

administering live bacteria poses challenges, such as difficulties in

establishing themselves as permanent members of the intestinal

flora. Our study demonstrates the effectiveness of nonviable L.

acidophilus in preventing SARS-CoV-2 infection in a human

immortalized gut epithelial cell line, as observed in live bacteria.

While the exact processes by which lactobacilli defend against

COVID-19 are not well understood, numerous potential

mechanisms have been proposed.

We propose that dead lactobacilli might activate local

immunomodulatory pathways. Previous studies have suggested

that cytokine production by lactobacilli can be controlled via the

upregulation of anti-inflammatory reactions (Mahooti et al., 2020;

Taufer et al., 2024). In the present study, HK-LA treatment

influenced the secretion of IFN-l2. A previous study

demonstrated that IFN-l treatment provided protective effects

against SARS-CoV-2 both in vitro and in human-colon-derived

organoids (Stanifer et al., 2020). Therefore, the protective effect of

HK-LA observed in the present study may involve the IFN-l
signaling pathway. Additionally, it is important to acknowledge

the presence of direct antiviral mechanisms, including the

intracellular mechanisms, such as the activation of retinoic acid-
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inducible gene-I (RIG-I) and Toll-like receptor (TLR), which inhibit

viral replication (Taufer et al., 2024). Enhancement of the epithelial

barrier by lactobacilli (Abramov et al., 2021) on the mucosal surface

is also crucial for preventing viral penetration into the GI tract

tissue (Wu et al., 2024). In conclusion, HK-LA reduces SARS-CoV-

2 infection in the GI tract and holds promise for future

therapeutic applications.
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