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Clostridioides difficile (CD) has emerged as one of the most prevalent

nosocomial infections in hospitals and is the primary causative agent of

antibiotic-associated diarrhea and pseudomembranous colitis. In recent years,

C. difficile-induced infections have resulted in significant morbidity and mortality

worldwide, with a particularly rapid increase in incidence observed in China.

C. difficile strains are categorized into toxin-producing and non-toxin-producing

based on their ability to synthesize toxins, with the pathogenicity of C. difficile

being strictly dependent on the protein toxins produced by the toxin-producing

strains. Therefore, early and rapid identification of toxin-producing C. difficile is

crucial for the diagnosis and prevention of Clostridioides difficile infection (CDI).

Currently, the detection methods of C. difficile infection carried out by clinical

laboratories in China mainly include C. difficile toxin-producing culture, cell

culture toxin assay, toxin assay by immunological methods, glutamate

dehydrogenase (GDH) assay and nucleic acid amplification assay.However,

current detection methods for CDI in clinical laboratories in China exhibit

significant limitations, such as being time-consuming, operationally complex,

and lacking in specificity and sensitivity. Raman microspectroscopy has been

shown to have the potential for rapid and reliable identification in microbial

diagnostics, with the method reducing the time to results to less than 1 hour,

including the processing of clinical samples, the measurement of single-cell

Raman spectra, and the final diagnosis through the use of training models. In this

study, we aimed to predict in situ strain identification and virulent strain

identification of 24 raw clinical stool samples by constructing a reference

single-cell Raman spectroscopy (SCRS) database of common intestinal flora

and C. difficile, as well as a reference SCRS database of toxin-producing and

non-toxin-producing C. difficile strains. The results showed that the accuracy of

C. difficile strain identification in clinical stool samples was 83%, and the accuracy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1556536/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1556536/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1556536/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1556536/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1556536&domain=pdf&date_stamp=2025-05-19
mailto:13979715670@163.com
mailto:3218680@qq.com
https://doi.org/10.3389/fcimb.2025.1556536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1556536
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Ling et al. 10.3389/fcimb.2025.1556536

Frontiers in Cellular and Infection Microbiology
of virulent strain prediction was 80%. These findings suggest that Raman

spectroscopy may be a viable method for the rapid in situ identification of

virulent and non-virulent C. difficile strains and holds promise for clinical

application in the rapid diagnosis of CDI.
KEYWORDS
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1 Introduction

Clostridioides difficile (CD) is an anaerobic, Gram-positive

clostridial bacillus (Antonelli et al., 2020). It is the primary

pathogen responsible for antibiotic-associated diarrhea and

pseudomembranous enteritis (Greenhill, 2010; Young and Hanna,

2014). The main clinical manifestation of Clostridioides difficile

infection (CDI) is diarrhea, which is non-specific and can be self-

limiting in mild cases. However, severe cases can present with

pseudomembranous enterocolitis, toxic megacolon, intestinal

perforation, and septicemia (Andersson and Hughes, 2014;

Knight et al., 2015).C. difficile strains are classified into toxin-

producing and non-toxin-producing categories. The toxin-

producing strains harbor the tcdA and/or tcdB genes, which

encode enterotoxin A and cytotoxin B (Geric et al., 2004). These

toxins induce inflammatory responses and degradation of intestinal

epithelial cells, leading to pseudomembrane formation (Carter et al.,

2012; Rupnik and Janezic, 2016). As a conditionally pathogenic

bacterium, C. difficile can cause severe infectious colitis and has high

morbidity and mortality rates worldwide (Huang et al., 2009). Over

the past decade, the incidence of CDI in China has shown a rapid

increase. CDI is strictly dependent on the protein toxins produced

by toxin-producing C. difficile (Slimings and Riley, 2014).

Therefore, the rapid identification of toxin-producing strains and

early diagnosis of CDI are of paramount importance for the effective

diagnosis, treatment, and prevention of the disease.

The diagnosis of CDI is based on clinical symptoms (diarrhea

without other identifiable causes) and the detection of toxin-

producing C. difficile in stool samples using various microbiological

examination methods. Currently, clinical laboratories in China

primarily utilize methods such as C. difficile toxin-producing

culture, cell culture toxin assays, immunological toxin assays,

glutamate dehydrogenase (GDH) assays, and nucleic acid

amplification tests. However, these methods have obvious

limitations (Koya et al., 2019). Clostridioides difficile is difficult to

culture and has a long period of time with low sensitivity; cytotoxicity

assay is complicated, time-consuming and expensive (Planche and

Wilcox, 2011); enzyme-linked immunoassay is not sensitive enough

(Perelle et al., 1997; Carter et al., 2007) and is easily interfered with by

the quality of specimens (Sakamoto et al., 2018); glutamate

dehydrogenase (GDH) assay is usually used as a primary screening
02
test for CDI diagnosis in the laboratory (Crobach et al., 2016);PCR

method is specific, sensitive and fast, but it is difficult to be widely

used under resource-limited conditions because of its cumbersome

operation steps, dependence on expensive equipment and the need

for specialized personnel to operate it. Additionally, the complex

composition of stool samples can easily interfere with test results.

Consequently, the development of novel, rapid, simple, accurate, and

sensitive methods for detecting C. difficile is of paramount

importance for the effective diagnosis of CDI.

Raman scattering was discovered by the Indian physicist

Chandrasekhara Venkata Raman (C. V. Raman) in 1928 (Raman

and Krishnan, 1928). This technique allows for the analysis of

molecular structures based on the vibrational and rotational

information of scattered spectra (Mosier-Boss, 2017; Tao et al.,

2017). In recent years, Raman spectroscopy (RS) has rapidly

developed in the field of microbiology as an emerging method for

the identification of bacterial infections.RS is a rapid, non-

destructive, label-free biochemical phenotyping technique (Huang

et al., 2004; Huang et al., 2010; Li et al., 2012). It provides

information on the unique molecular fingerprints of bacteria

(Kanno et al., 2021), including nucleic acids, proteins,

carbohydrates, lipids, and pigments (Flemming and Wingender,

2010), which are used to characterize the genotypes, phenotypes,

and physiological states of microorganisms, thus identifying the

microbial samples with a high degree of specificity (Kirchhoff et al.,

2018; Ho et al., 2019; Xu et al., 2019; Uysal Ciloglu et al., 2020;

Wang et al., 2021). Its labeling-free feature reduces sample

destruction and complex pre-processing steps, while the detection

process is rapid, usually within minutes, making it suitable for rapid

screening and real-time monitoring (Xu et al., 2023). In addition,

Raman spectroscopy requires less sample volume and only a trace

amount of sample to be analyzed, which is particularly suitable for

precious or limited samples, and is non-destructive, so that the

sample can be retained after detection for subsequent analysis or

research. Its wide applicability enables it to be applied to a wide

range of sample forms, such as liquid and solid (Kloß et al., 2015;

Liu et al., 2023; Xu et al., 2023), showing strong adaptability.

In this study, we screened 24 raw stool samples from clinical

sources, confirmed by multiplex PCR, including 8 samples

containing toxin-producing C. difficile, 5 containing non-toxin-

producing C. difficile, and 11 without C. difficile. Additionally, 12
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C. difficile strains were isolated and cultured from these clinical

samples, comprising 6 toxigenic and 6 non-toxigenic strains (see

Figure 1). By establishing a single-cell Raman spectroscopy (SCRS)

database for C. difficile, we identified C. difficile in situ within the

stool samples using Raman spectroscopy, distinguishing between

toxin-producing and non-toxin-producing strains. The results

demonstrated that the bacterial classification accuracy was 100%

for isolated samples, 83% for clinical samples, 85% for isolated

samples of toxin-producing and non-toxin-producing strains, and

80% for clinical samples of toxin-producing and non-toxin-

producing strains. This study indicates that SCRS, with the

assistance of deep learning algorithms, can achieve rapid and

accurate identification of bacterial strains and effectively

differentiate between virulent and non-virulent strains. This

capability facilitates the rapid diagnosis, screening, and treatment

of CDI, thereby mitigating its spread and enhancing public health.
2 Materials and methods

2.1 Strains and stool samples

Ten strains of common intestinal bacteria and 12 strains of C.

difficile were collected from the First Affiliated Hospital of Gannan

Medical University. All strains were identified using MALDI-TOF

MS (Bruker, Germany), as listed in Table 1. The C. difficile strains

included 6 toxin-producing strains harboring the tcdA and/or tcdB

genes, and 6 non-toxin-producing strains. The presence of the toxin

A (tcdA) and toxin B (tcdB) genes in C. difficile was confirmed using

multiplex PCR. Bacterial DNA from the C. difficile strains was

extracted using the heat-excitation method, followed by

amplification of the tcdA and tcdB toxin genes. The PCR cycles

were performed under the following conditions: initial denaturation

at 94°C for 5 minutes, followed by 32 cycles of denaturation at 94°C

for 30 seconds, annealing at 56°C for 30 seconds, extension at 72°C

for 1 minute, and a final extension at 72°C for 10 minutes. The PCR

products were separated by agarose gel electrophoresis at 2.0%

(180V, 80mA, 18 minutes), and the results were subsequently

analyzed. The primers were obtained from S. Persson et al
Frontiers in Cellular and Infection Microbiology 03
(Persson et al., 2008), and those used for the identification of C.

difficile toxin genes were provided by Shanghai Sangong

Bioengineering Co.

Stool samples with suspected C. difficile infection were collected

and cultured on C. difficile selective medium CCFA. Yellow colonies

with rough surfaces and uneven edges were selected for strain

identification using MALDI-TOF MS. Simultaneously, the toxin A

(tcdA) and toxin B (tcdB) genes of C. difficile were determined by

multiplex PCR. A total of 24 stool samples were screened, including

8 containing toxin-producing C. difficile, 5 containing non-toxin-

producing C. difficile, and 11 containing no C. difficile. The results

are shown in Figure 1.
2.2 Sample preparation

C. difficile strains were inoculated in CCFA medium and

incubated in an anaerobic environment at 35°C for 24 hours.

Bacteroides faecis, Clostridium perfringens, Lactobacillus casei, and

Clostridium sporogenes strains were inoculated in anaerobic blood

agar medium and also incubated in an anaerobic environment at

35°C for 24 hours. Escherichia coli, Enterococcus faecalis, Klebsiella

pneumoniae, Enterobacter inguinalis, and Staphylococcus

epidermidis strains were inoculated in Columbia blood agar and

incubated in a carbon dioxide environment at 35°C for 24 hours.

The pure colonies were isolated from the culture medium and

resuspended in 5 mL of tryptic soy broth (TSB) by vortex mixing,

followed by grinding against the test tube wall to remove any

residual medium.1 mL of the bacterial suspension was centrifuged

at 7000 rpm for 2 minutes, the supernatant was discarded, and the

pellet was washed three times with sterile water to eliminate

impurities and background material. Subsequently, 500 mL of

sterile deionized water was added to the pellet, and the

suspension was vortex-mixed to resuspend the bacterial cells. The

bacterial concentration was adjusted to approximately 106-108

CFU/mL to ensure sufficient Raman signal intensity. A 2 mL
aliquot of the suspension was placed on an aluminum-coated

Raman microscope slide and air-dried by gently blowing sterile

air for 5 minutes to form a homogeneous thin film suitable for

spectroscopic analysis.

An appropriate amount of stool sample (approximately 0.5–1 g)

was placed into a sterile centrifuge tube, and 10 times the volume of

sterile water was added. The mixture was thoroughly homogenized

using a vortex shaker until the feces were completely suspended,

forming a homogeneous suspension. The suspension was then

filtered through a sterile 100 mm filter to remove large particles,

such as undigested food and fibers. The filtrate was collected and

transferred to a new sterile centrifuge tube. The filtrate was

centrifuged at medium speed (3000 × g for 5 minutes) to remove

remaining large particles and cellular debris. The supernatant

was collected and transferred to a new sterile centrifuge tube for

further use. The supernatant was then subjected to high-speed

centrifugation (8000 × g for 3 minutes), and the resulting

supernatant was discarded, leaving the microbial pellet. This

pellet was washed three times with sterile water to remove

impurities and background material. Finally, 500 mL of sterile
TABLE 1 Strain list.

Serial
number

Bacterial strain
Serial

number
Bacterial strain

1 Escherichia coli 7 Lactobacillus casei

2 Enterococcus faecalis 8 Bacteroides faecis

3 Klebsiella pneumoniae 9
Clostridium
sporogenes

4 Enterobacter cloacae 10
Clostridium
perfringens

5
Staphylococcus
epidermidis

11-22 Clostridioides difficile

6 Enterococcus faecium
1-10: Ten most common gut colonizing bacterial strains; 11-22: Twelve Clostridioides difficile
strains (including 6 toxigenic and 6 non-toxigenic strains).
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deionized water was added to the microbial sediment, which was

vortex-mixed to resuspend the bacterial particles. A 2 mL aliquot of

the suspension was then placed on an aluminum-coated Raman

microscope slide and air-dried by gently blowing sterile air for 5

minutes, allowing the sample to form a homogeneous thin film

suitable for spectroscopic analysis.
2.3 Raman data sets, single-cell Raman
measurements and preprocessing

A total of 68 independent biological replicates were conducted

in this study. To ensure the accuracy of the results, random

sampling was employed to collect over 100 single-cell spectra for

each sample, yielding a total of 6483 SCRS fingerprints.

Single-cell Raman spectra were acquired using a WITec

Alpha300R Raman microspectrometer (WITec, Germany). The

instrument was automatically calibrated in silico prior to each

measurement, with the calibration peak set to 520 cm-1. For the

WITec spectrometer, a 532 nm laser was focused onto the sample

with a 100× objective(100×/NA = 0.9, ZEISS, Germany) with a power

of approximately 15 mW on the sample. Cells were measured with a

grating of 600 mm/g, spectral range of 331–3500 cm−1, and the

spectral center set at 1700 cm−1. The Raman acquisition time was 7 s

each cell. During measurements of cells that have a larger size
Frontiers in Cellular and Infection Microbiology 04
compared to the laser spot size, the laser spot was made slightly

out-of-focused to cover as much of the whole cell area. The same

system was used for all collections, with consistent power settings and

integration time to ensure the quality and comparability of the plots.

Preprocessing for the raw Raman spectra included quality

control for eliminating abnormally/burnt high-intensity spectra,

cosmic ray correction, baseline fitting (polyline fitting, degree at 8,

88 points) and subtraction for autofluorescence removal. The entire

spectral area was area normalized so that the sum of all intensities

equaled one to account for general instrumentation variability as

well as sample and experimental factors without significantly

changing the biological content. All model analyses were

conducted using Python 3.9. The libraries utilized included, but

were not limited to, SciPy for statistical tools, scikit-learn for

machine learning models, TensorFlow and PyTorch for deep

learning models, and Matplotlib and Seaborn for data visualization.
3 Result

3.1 Clostridioides difficile strain
identification

To establish a SCRS-based method for the rapid identification of C.

difficile directly under the microscope, we first developed a reference
FIGURE 1

Genetic mapping of Clostridioides difficile toxins in selected C. difficile strains and fecal specimens. CD, Clostridioides difficile; S, stool; NTC,
negative control; Marker:6 Each stripe is 200,400,600,800,1000,1500bp;S1-S13:CD+; S14-S24:CD-; S1-S5:tcdA-, tcdB-; S6-S13:tcdA+, tcdB+; CD1-
CD6:tcdA-, tcdB-; CD7-CD12:tcdA+, tcdB+.
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SCRS database comprising 12 different bacterial strains representing

the most common colonizers of the intestinal tract, including 2 strains

of C. difficile. To assess the ability of Raman spectroscopy to distinguish

C. difficile within the species, we included other closely related

clostridia, specifically Clostridium sporogenes and Clostridium

perfringens. The list of strains is provided in Table 1. More than 100

single cells were measured for each strain, resulting in a total of 1,623

single-cell Raman spectra across the 12 bacterial strains. We grouped

the strains into seven categories by family, namely Enterobacteriaceae,

Enterococcaceae, Staphylococcillaceae, Lactobacillaceae, Bacteroidaceae,

Clostridiaceae and Peptostreptococcacea.The average Raman spectra for

these seven classes of pathogenic bacteria are presented in Figure 2. The

figure shows that the Raman spectrum of C. difficile exhibits multiple

characteristic peaks in the range of 1000–1600 cm-¹, especially the

peaks near 1002 cm-¹, 1578 cm-¹ and 1662 cm-¹, which may be related

to C. difficile’s protein secondary structure (e.g., a-helix and b-folding),
cell wall components, pigments, and metabolites, and these

characteristic peaks distinguish its Raman spectrum from other

bacteria (Gelder et al., 2007). The spectral dataset was divided into a

training set (80%) and a test set (20%) for classification purposes.

Unsupervised t-SNE visualization with low-dimensional observed data

showed that the cells of Enterobacteriaceae, Enterococcaceae,

Staphylococcaceae, Lactobacillaceae, Bacteroidaceae, Clostridiaceae

and Peptostreptococcacea cells formed obvious clusters in two-

dimensional space, which could be effectively differentiated with high

intra- and inter-group consistency (Figure 3). Linear discriminant

analysis (LDA) dimensionality reduction visualization of

Raman spectroscopic data demonstrated partial separability among
Frontiers in Cellular and Infection Microbiology 05
the bacterial families Enterobacteriaceae, Enterococcaceae,

Staphylococcaceae, Lactobacillaceae, Bacteroidaceae, Clostridiaceae,

and Peptostreptococcaceae (Figure 4).

To evaluate the performance of a database identification model

constructed based on a single-cell Raman mapping library of pure

strains in identifying C. difficile strains, we tested it with 10 clinical

isolates, including 5 C. difficile strains (each derived from a different

patient) and 5 other intestinal strains. Additionally, we compared

10 different data analysis methods, all of which demonstrated high

accuracy, sensitivity, and specificity (see Table 2; Figure 5A). This

indicates that a database developed from purified strains can be

effectively applied to the identification of clinical isolates samples,

reliably distinguishing clinically prevalent C. difficile strains from

other similar strains.
3.2 Clostridioides difficile toxin
identification

Since C. difficile includes both toxin-producing and non-toxin-

producing strains, and its pathogenicity is strictly dependent on the

protein toxins produced by the toxin-producing strains, we aimed

to develop a SCRS-based method capable of rapidly identifying

toxin-producing and non-toxin-producing strains of C. difficile

directly under the microscope. We first established a reference

SCRS database comprising 5 toxin-producing and 5 non-toxin-

producing strains of C. difficile. The average Raman spectra of these

two types of C. difficile are presented in Figure 6. The figure shows
FIGURE 2

Raman plot for each label with mean and standard deviation. Mean Raman spectra of Enterobacteriaceae, Enterococcaceae, Staphylococcaceae,
Lactobacillaceae, Bacteroidaceae, Clostridiaceae and Peptostreptococcaceae (Note: Clostridioides difficile has been reclassified within the family
Peptostreptococcaceae under current taxonomic revisions, diverging from its historical classification in Clostridiaceae.). The shaded area around
each spectrum indicates the standard deviation of the single-cell measurements. (Note: The silent region of Raman spectra (1800–2800 cm-1) was
omitted from display.).
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that toxin-producing strains may have different peak intensities in

the 500–600 cm-¹ (sulfide-related peaks), 1600–1700 cm-¹ (amide I

band), and 2800–3000 cm-¹ (CH2/CH3 stretching) regions due to

the active toxin synthesis pathway and the presence of toxin

proteins vibration) regions with different peak intensities.

To evaluate the capability of the SCRS technique in

distinguishing between toxin-producing and non-toxin-producing

strains of C. difficile, we tested 2 clinical isolates of C. difficile from

different patients, one of which was a toxin-producing strain and

the other a non-toxin-producing strain. We compared 9 different

data analysis methods, and the results indicated that the Multilayer

Perceptron (MLP) exhibited higher specificity and sensitivity

compared to the other methods, achieving an identification

accuracy of 85% (see Figure 5B; Table 3).
3.3 In situ identification of clinical stool
samples

To evaluate the database model’s ability to identify C. difficile

strains in raw stool samples and distinguish between toxin-producing

and non-toxin-producing strains, we tested 24 raw clinical stool

samples. These samples were validated by culture and PCR methods,

with 13 containing C. difficile and 11 not containing C. difficile, each

from a different patient. Due to the presence of numerous stool

strains, some closely related to C. difficile and easily misidentified, we

applied a stringent confidence threshold, requiring the model to have

a probability greater than 0.99 to classify a profile as C. difficile, all

intermediate probabilities were classified as other. By comparing

various data analysis methods, we found that the best model was
Frontiers in Cellular and Infection Microbiology 06
Quadratic Discriminant Analysis (QDA), which outperformed

the deep learning model, with a prediction accuracy of 0.83 (see

Figure 7A). There was 1 instance where C. difficile was misidentified

as other, and 3 instances where other strains were misidentified as

C. difficile.

Among the correctly identified stool samples, C. difficile was

present in 12 samples; however, 2 samples were excluded from this

prediction due to a low number of validated maps. Consequently, a

total of 10 stool samples were used for C. difficile toxin modeling,

comprising 7 cases with toxin-producing C. difficile and 3 cases with

non-toxin-producing C. difficile. The results indicated that, out of

the 10 stool samples, 8 were accurately predicted and 2 were

incorrectly predicted, yielding an accuracy of 80.0% (see Figure 7B).
4 Discussion

C. difficile represents a significant pathogen in nosocomial

infections, with an escalating incidence of diarrhea and associated

illnesses attributed to this bacterium observed globally in recent

years (Carvalho et al., 2022). This rise has contributed to substantial

morbidity and mortality worldwide. The pathogenesis of CDI is

intrinsically linked to the secretion of proteotoxins by toxigenic

strains of C. difficile (Slimings and Riley, 2014). Consequently,

prompt and accurate detection of these toxigenic strains is

crucial, not only for reducing the overdiagnosis of CDI but also

for enhancing the accuracy of its diagnosis and the effectiveness of

preventative strategies.

Current laboratory methodologies for CDI diagnosis

encompass a variety of techniques, including stool C. difficile
FIGURE 3

t-SNE of Raman dataset. Unsupervised t-SNE visualization of single-cell Raman spectra reveals seven distinct clusters corresponding to
Enterobacteriaceae, Enterococcaceae, Staphylococcaceae, Lactobacillaceae, Bacteroidaceae, Clostridiaceae, and Peptostreptococcaceae.
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culture, cell culture cytotoxin assay, immunological toxin assays,

glutamate dehydrogenase (GDH) assay, and nucleic acid

amplification tests, among others. C. difficile is a strictly anaerobic

bacterium that requires stringent growth conditions, specialized

equipment and media, slow growth, prolonged incubation periods,

and complex, cumbersome procedures, all of which contribute to its

low sensitivity. The cytotoxicity test, regarded as the “gold
Frontiers in Cellular and Infection Microbiology 07
standard” for laboratory diagnosis of CDI (Xu et al., 2019),

presents challenges due to its complicated, time-consuming, and

costly nature, rendering it impractical for routine use in clinical

laboratories. The enzyme immunoassay (EIA) method is simple to

perform, rapid, and demonstrates high specificity (>90%). However,

its sensitivity is limited (ranging from 39% to 76%) and is

influenced by specimen characteristics and prior empirical clinical

treatments (Perelle et al., 1997; Carter et al., 2007). Additionally, it is

associated with a high rate of false positives and instability of

antibodies (Sakamoto et al., 2018). The GDH assay, noted for its

rapidity and cost-effectiveness, also does not provide information

regarding toxin production and is typically employed as an initial

screening tool (Crobach et al., 2016). The polymerase chain reaction

(PCR) method offers excellent specificity and high sensitivity,

alongside rapid detection times. However, the complexity of its

operational procedures, the need for expensive equipment, and the

requirement for skilled personnel limit its application, particularly

in settings with limited resources. Raman spectroscopy can provide

a “chemical fingerprint” of C. difficile within 1 hour, enabling rapid

identification of C. difficile for initial screening and classification. At

the same time, in combination with PCR technology, the accuracy

of Raman results can be verified, which is suitable for clinical

diagnosis (Choi and Schlücker, 2024).

SCRS is a “total biometric fingerprinting” technique that

enables rapid, non-destructive characterization and identification

of individual cells without the need for additional markers. It also

facilitates predictions at both the genotypic and phenotypic levels.

Raman spectroscopy is non-destructive, in contrast to MALDI-TOF

MS, which requires additional sample preparation steps, such as the
TABLE 2 Comparative evaluation of accuracy, sensitivity, and specificity
across computational algorithms for discriminating clinically isolated
Clostridioides difficile strains from non-C. difficile strains.

Model Accuracy Sensitivity Specificity

0 SVM 1.00 1.00 1.00

1 ANN 1.00 1.00 1.00

2 MLP 1.00 1.00 1.00

3 KNN 1.00 1.00 1.00

4 QDA 1.00 1.00 1.00

5 GRU 1.00 1.00 1.00

6 RF 0.99 0.99 0.99

7 LDA 0.99 0.99 0.99

8 LR 0.99 0.99 0.99

9 NB 0.93 0.93 0.93
Accuracy, sensitivity and specificity of different data algorithms. SVM, Support vector
machine; ANN, Multi-Layer Perceptron; MLP, Multi-Layer Perceptron; KNN, K-Nearest
Neighbor; QDA, Quadratic Discriminant Analysis; GRU, Gated Recurrent Unit; RF, Random
forests; LDA, Linear Discriminant Analysis; LR, Logistic Regression; NB, Naive Bayes.
FIGURE 4

LDA of Raman dataset. Raman spectroscopy coupled with LDA dimensionality reduction showed distinguishable clustering patterns for seven
bacterial families: Enterobacteriaceae, Enterococcaceae, Staphylococcaceae, Lactobacillaceae, Bacteroidaceae, Clostridiaceae,
and Peptostreptococcaceae..
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addition of formic acid and substrates, potentially leading to

alterations in analyte signal intensity (AlMasoud et al., 2021).

Furthermore, MALDI-TOF MS typically relies on pure bacterial

cultures grown on solid media and cannot differentiate between

toxin-producing and non-toxin-producing C. difficile strains.

Compared to techniques such as sequencing and molecular

labeling, Raman spectroscopy can be more easily applied to the

detection of new strains because it does not require the use of
Frontiers in Cellular and Infection Microbiology 08
specifically designed labels. In addition, the single-cell nature of

Raman spectroscopy enables rapid identification in the early stages

of infection. Its highly automated nature simplifies the diagnostic

process and interpretation of results, making it particularly suitable

for use in environments with limited training resources or restricted

clinical conditions.

For instance, Wang et al. employed Raman spectroscopy in

conjunction with neural networks to identify archaeobacteria and
FIGURE 6

Mean single-cell Raman spectra of toxin-producing (n=5) and non-toxin-producing (n=5) Clostridioides difficile strains. Average Raman spectra of
cdiff-F (non-toxigenic C. difficile), cdiff-T (toxigenic C. difficile). The shaded area around each spectrum indicates the standard deviation of the
single-cell measurements. (Note: The silent region of Raman spectra (1800–2800 cm-1) was omitted from display.).
FIGURE 5

(A) Confusion matrix for QDA (Quadratic Discriminant Analysis) modeling (by plot): The C. difficile strain identification model was validated using 5
strains of C. difficile and 5 strains of other enteric bacteria. A total of 360 single-cell Raman spectra were obtained from the 5 C. difficile strains, of
which 358 were correctly identified, while 2 spectra were misclassified as other bacteria. Similarly, 703 single-cell Raman spectra were obtained
from the 5 strains of other enteric bacteria, of which 701 were correctly identified, and 2 spectra were misclassified as C. difficile. The overall
prediction accuracy of the model was 0.99. (B) Confusion matrix for MLP (Multi-Layer Perceptron) modeling (by plot): The C. difficile strain
identification model was validated using 1 strain each of toxin-producing and non-toxin-producing C. difficile. A total of 295 single-cell Raman
spectra were obtained from the toxin-producing C. difficile, of which 247 spectra were correctly identified, while 48 spectra were misclassified as
non-toxin-producing C. difficile. Similarly, 156 single-cell Raman spectra were obtained from the non-toxin-producing C. difficile, of which 135
spectra were correctly identified, while 21 spectra were misclassified as toxin-producing C. difficile. The overall prediction accuracy of the model
was 0.85.
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utilized a convolutional neural network (CNN) for the classification

of Enterobacteriaceae species, achieving an accuracy of 97.2%

(Wang et al., 2020). Rebrosǒvá et al. applied Raman spectroscopy

for the swift identification of Staphylococcus species (Rebrosǒvá

et al., 2017), while Jiabao Xu and colleagues utilized the technique to

identify 94 clinical isolates with a perfect accuracy rate of 100%, also

providing precise diagnoses for 7 original urine samples (Carvalho

et al., 2022). Furthermore, Ziyu Liu et al. utilized SCRS to classify 6

strains of respiratory pathogens, attaining accuracies ranging from

93% to 100%, and achieved more than 80% accuracy with clinical

samples (Liu et al., 2023). Kloß et al. demonstrated the direct

application of Raman spectroscopy for pathogen identification in

ascites, where the results exhibited 97.7% and 83.6% correctness at
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the genus and species levels, respectively (Kloß et al., 2015). In the

current study, Raman spectroscopy combined with a neural

network was used to identify clinical isolates of C. difficile with

100% accuracy, and provided an 83% accuracy rate in raw stool

samples, thus highlighting the significant potential of Raman

spectroscopy in clinical diagnostics.

Additionally, Raman spectroscopy has been employed to

characterize microbial virulence factors, including mechanisms of

antimicrobial resistance. For instance, Zhou et al. utilized surface-

enhanced Raman scattering (SERS) to successfully differentiate

between wild-type and drug-resistant strains of Escherichia coli

(Zhou et al., 2015). Jing-Wen Lyu and colleagues integrated SERS

spectroscopy with a deep learning algorithm to accurately

differentiate between 121 clinically isolated strains of Klebsiella

pneumoniae (PRKP, CRKP, and CSKP) with varying resistance

profiles (Lyu et al., 2023). Jiayue Lu et al. developed a CNN for

the rapid identification of antimicrobial resistance genes (ARGs),

high virulence coding factors, and resistance phenotypes in 71

strains of Klebsiella pneumoniae, using raw Raman spectral data

(Lu et al., 2022). Similarly, ShuWang et al. applied a label-free SERS

method to distinguish between 60 strains of Staphylococcus aureus,

including methicillin-sensitive (MSSA) and methicillin-resistant

(MRSA) strains, achieving an identification accuracy of 100%

(Wang et al., 2021). The findings from these studies indicate that

SCRS, when coupled with deep learning algorithms, enhances the

capability to distinguish between toxin-producing and non-toxin-

producing strains of C. difficile, with classification accuracies of 85%

in isolated samples and 80% in clinical samples. These results

suggest the potential of Raman spectroscopy as a rapid detection

method for identifying toxin-producing strains of C. difficile,

underscoring its utility in clinical diagnostics. The results of

Punjabi et al. also indicated that Raman spectroscopy facilitates

rapid detection (POCT) in a simple and cost-effective manner,
FIGURE 7

(A) Confusion matrix for the QDA (Quadratic Discriminant Analysis) model (by sample): Validation of the C. difficile strain identification model was
performed using 24 original stool samples. Among the 13 C. difficile-positive stool samples, 12 were correctly identified, while 1 was misclassified as
C. difficile-negative. Of the 11 C. difficile-negative stool samples, 8 were correctly identified, while 3 were misclassified as C. difficile-positive. The
overall predictive accuracy of the model was 0.83. (B) Confusion Matrix of Toxin Prediction on Fecal Dataset (by sample):10 original fecal samples
containing C. difficile were used to validate the C. difficile strain identification model. Of the 7 fecal samples containing toxin-producing C. difficile, 6
were correctly identified, while 1 was misclassified as containing non-toxin-producing C. difficile. Among the 3 fecal samples containing non-toxin-
producing C. difficile, 2 were correctly identified, while 1 was misclassified as containing toxin-producing C. difficile. The overall predictive accuracy
of the model was 0.80.
TABLE 3 Comparative assessment of accuracy, sensitivity, and
specificity across computational algorithms for distinguishing toxin-
producing from non-toxin-producing Clostridioides difficile strains.

Model Accuracy Sensitivity Specificity

0 MLP 0.85 0.85 0.85

1 ANN 0.83 0.82 0.82

2 RF 0.81 0.8 0.8

3 SVM 0.8 0.82 0.82

4 GRU 0.8 0.79 0.79

5 LDA 0.79 0.8 0.8

6 QDA 0.78 0.73 0.73

7 LR 0.76 0.78 0.78

8 NB 0.75 0.69 0.69
Accuracy, sensitivity and specificity of different data algorithms. MLP, Multi-Layer
Perceptron; ANN, Multi-Layer Perceptron; RF, Random forests; SVM, Support vector
machine; GRU, Gated Recurrent Unit; LDA, Linear Discriminant Analysis; QDA,
Quadratic Discriminant Analysis; LR, Logistic Regression; NB, Naive Bayes.
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thereby making it a valuable tool for immediate care (Sin et al.,

2014; Guo et al., 2019; Punjabi et al., 2022).

The utility of Raman spectroscopy in the identification of C.

difficile and its toxins has been previously limited (Koya et al., 2018;

Koya et al., 2019; Hassanain et al., 2021). However, the current

study employed Raman spectroscopy for the in situ identification of

C. difficile within raw stool samples and for distinguishing between

toxin-producing and non-toxin-producing strains. This application

provides valuable data that could inform the use of this technique in

diagnosing C. difficile infections. In this investigation, the accuracy

of Raman spectroscopy in identifying toxin-producing versus non-

toxin-producing strains of C. difficile ranged from moderate to high.

Future research will involve a larger sample size and the

implementation of increasingly sophisticated methods for variable

analysis to enhance the diagnostic accuracy of this approach.
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