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Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by

chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and

CD4+T cells are important in the development of IBD. A lot of studies have shown

that GM and their metabolites like short-chain fatty acids, bile acids and

tryptophan can be involved in the differentiation of CD4+T cells through

various mechanisms, which in turn regulate the immune homeostasis of the

IBD patients. Therefore, regulating CD4+T cells through GM may be a potential

therapeutic direction for the treatment of IBD. Many studies have shown that

Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect

CD4+T cell differentiation by regulating GM and its metabolites. In this review, we

mainly focus on the role of GM and their metabolites in regulating the

differentiation of CD4+T cells and their correlation with IBD. We also

summarize the current research progress on the regulation of this process

by TCM.
KEYWORDS

gut microbiota, CD4+ T cell, traditional Chinese medicine, inflammation bowel
disease, metabolites
1 Introduction

Inflammatory Bowel Disease (IBD) is a chronic, immune-mediated gastrointestinal

disorder characterized by relapsing episodes, primarily encompassing ulcerative colitis

(UC) and Crohn’s disease (CD). These conditions share similar gastrointestinal

manifestations including abdominal pain, diarrhea, and bloody stools (Torres et al.,

2017; Chang, 2020; Gros and Kaplan, 2023). UC, characterized by inflammation of the

mucosal and submucosal layers, starts primarily in the rectum and can progress to the
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entire colon. The clinical manifestations of CD are slightly different

from those of UC. CD is characterized by transmural inflammation

that can involve the entire digestive tract.

T cells, primarily including CD8+ and CD4+T cells, play a crucial

role in the pathogenesis of IBD. Previous studies have found that

cytotoxic CD8+ T cells (Tc1) and tissue resident memory CD8+ T cells

enriched in inflamed colon tissues, potentially contributing to the

pathogenesis of IBD. CD4+T cells, key cells in adaptive immune

responses, have emerged as crucial targets in the treatment of IBD

(Selby et al., 1984; Müller et al., 1998; Basso et al., 2018). Biologics

targeting CD4+T cell-related inflammatory cytokines can effectively

inhibit immune inflammation in IBD, bringing about a breakthrough

revolution in clinical practice (D’Haens and van Deventer, 2021).

However, quite a part of patients still faces the dilemma of primary or

secondary loss of response to these targeted drugs. Therefore, the

upstream regulatory factors of CD4+T-related immune response

deserve further investigation.

Gut microbiota (GM), mainly composed of bacteria, archaea,

fungi, and viruses, is one of the most complex microbial ecosystems

in the human body. GM is an essential component of immune

homeostasis (Fang et al., 2025). Substantial evidence indicates that

the composition of GM and their metabolites are closely associated

with immune dysregulation in IBD patients (Frank et al., 2007;

Morgan et al., 2012). Evidence from animal models suggests that

IBD is a multifactorial condition driven by immune dysregulation

and gut dysbiosis. GM is the culprit in initiating colon

inflammation, disrupting the mucosal barrier and recruiting pro-

inflammatory cells to infiltrate the mucosa in the early stage. Recent

researches have demonstrated an interaction between GM and

CD4+T cells, especially in autoimmune diseases such as IBD.

Dysbiosis of GM promotes the inflammation mediated by CD4+T

cells by creating an inflammatory microenvironment and

disrupting metabolic balance.

Traditional Chinese Medicine (TCM) has demonstrated good

clinical efficacy in the treatment of IBD, and its mechanisms may be

related to the regulation of the GM, inhibition of the inflammatory

response, and repair of the damaged intestinal barrier (Shen et al.,

2021; Xiaoling et al., 2024). Studies have shown that TCM

administration can increase the abundance of probiotics and

reduce the levels of inflammatory factors in the colon mucosa

and serum (Hu et al., 2024).Further studies have shown that TCM

formula or some herbal extracts can directly modulate the
Abbreviations: AHR, aryl hydrocarbon receptors; AIEC, adherent-invasive

Escherichia coli; ASCA, Anti-Saccharomyces cerevisiae antibody; BAs, Bile

acids; BSH, Bile salt hydrolase; CA, cholic acid; CD, Crohn’s disease; CDCA,

chenodeoxycholic acid; DCA, deoxycholic acid; Foxp3, forkhead box protein P3

FXR, Farnesoid-X-receptor; HDAC, histone deacetylase; IBD, Inflammatory

Bowel Disease; IECs, intestinal epithelial cells; GM, Gut microbiota; GPCR, G-

protein-coupled receptor; Kyn, kynurenine; LCA, lithocholic acid; NETs,

neutrophil extracellular traps; OXPHOS, oxidative phosphorylation; PBAs,

primary bile acids; PPARg, proliferator-activated receptor gamma; RORgt,

receptor-related orphan receptor gamma t; TCM, Traditional Chinese

Medicine; TLRs, Toll-like receptors; TNF-a, tumor necrosis factor-a; Trp,

tryptophan; UC, Ulcerative colitis; VDR, Vitamin D Receptor; B. adolescentis,

Bifidobacterium adolescentis; F. prausnitzii, Faecalibacterium prausnitzii.
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differentiation of CD4+T cells or indirectly regulate this process

through their involvement in the metabolism of short-chain fatty

acids (SCFAs), bile acids (BAs), and tryptophan (Trp) (Zhang et al.,

2025; Wang et al., 2021). In this review, we summarize the roles of

CD4+T cells and the GM in IBD, highlighting the regulatory role of

GM and its metabolites in CD4+T cell differentiation. Meanwhile,

we also summarize and discusses the potential of TCM in

modulating the microbiota-immune axis.
2 GM and IBD

2.1 Gut dysbiosis in IBD

Studies based on experimental colitis suggested the initiating

contribution of GM in colitis development. Early research has

found that resident enteric baicalin teria are necessary for the

development of spontaneous colitis and immune activation in

interleukin-10 (IL-10)-deficient mice (Sellon et al., 1998). A

recent study showed that microbial alterations are associated with

early intestinal barrier dysfunction and act as an initial

pathophysiological event in animal models of IBD, preceding

histological inflammation (López-Cauce et al., 2022). Further

studies found transplanting the GM of IBD model rats into the

healthy mice can elicit a significant intestinal inflammation,

confirming the causative role of gut dysbiosis in IBD (Schaubeck

et al., 2016). Correspondingly, antibiotic treatment can prevent or

mitigate the development of IL-10-deficient colitis in animal models

(Tamagawa et al., 2007).

In most healthy individuals, intestinal bacteria are mainly

composed of Firmicutes, Bacteroidetes, Proteobacteria, and

Actinobacteria, with Firmicutes and Bacteroidetes comprising

about 90% of the bacteria (Eckburg et al., 2005; Ley et al., 2008).

Clinical studies have demonstrated significant differences in GM

between IBD patients and healthy population. UC and CD patients

consistently exhibit a decrease in the relative abundance of

Firmicutes and Bacteroidetes, accompanied by an increase in

Proteobacteria and Actinobacteria at the phylum level (Frank

et al., 2007; Morgan et al., 2012). Furthermore, the abundances of

Roseburia and Phascolarctobacterium are significantly reduced in

both UC and CD at the genus level (Morgan et al., 2012; Lewis et al.,

2015; Yilmaz et al., 2019). An increased abundance of adherent-

invasive Escherichia coli (AIEC) has been observed in the ileum and

colon of IBD patients, especially in CD (Chervy et al., 2020).

Although UC and CD share certain inflammatory pathways and

microbial features, there are still differences in specific microbial

alterations. A study using 16S rRNA to analyze 2,045 fecal samples

from both non-IBD and IBD patients across four countries and

observed greater gut dysbiosis in CD, including a lower microbial

diversity, and higher variation in microbiome composition in the

Spanish cohort. Researchers also found that GM can be used to

differentiate CD and UC. Faecalibacterium, Peptostreptococcaceae,

Anaeros t ipe s , Methanobrev ibac te r , Co l l in se l l a , and

Christensenellaceae were more abundant in UC, whereas

Fusobacterium and Escherichia were enriched in CD (Pascal

et al., 2017). An increased abundance of AIEC has been observed
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in the ileum and colon of IBD patients, especially in CD. AIEC is

capable of interacting with intestinal epithelial cells (IECs) and

immune cells, leading to disruption of the intestinal barrier and

promotion of pro-inflammatory cytokine (Chervy et al., 2020). The

specific change of gut bacteria in UC and CD patients are

summarized in detail in Table 1.

Most researches about gut dysbiosis have primarily focused on

bacteria, yet fungi, viruses, and archaea also play significant roles in
Frontiers in Cellular and Infection Microbiology 03
the pathogenesis of IBD (Sokol et al., 2017; Maronek et al., 2020;

Houshyar et al., 2021). Studies have demonstrated that in IBD

patients, the ratio of Basidiomycota to Ascomycota, as well as the

abundance of Candida albicans, are significantly increased

compared to healthy individuals. In contrast, the abundance of

Saccharomyces cerevisiae is markedly reduced (Chehoud et al., 2015;

Sokol et al., 2017). Anti-Saccharomyces cerevisiae antibody is also a

biomarker for CD (Giaffer et al., 1992; Quinton et al., 1998).
TABLE 1 Bacteria dysbiosis in IBD patients.

Type Method Level Gut dysbiosis Reference

CD 16S rRNA+
metagenomics sequencing

Phylum Bacteroidetes↑ (Gevers et al., 2014)

Order Erysipelotrichales, Bacteroidales, Clostridiales ↓

Family Enterobacteriaceae, Pasteurellacaea,
Veillonellaceae, Fusobacteriaceae↑

CD 16S rRNA Species Clostridium cluster XIVa, Dialister invisus, F. prausnitzii, B.
adolescentis↓
Ruminococcus gnavus ↑

(Joossens et al., 2011)

CD metagenomic sequencing Genus Prevotella, Eubacterium, Odoribacter, Akkermansia, Roseburia,
Parabacteroides, Alistipes, Coprococcus, Dorea, Ruminococcus ↓
Escherichia, Klebsiella, Enterococcus, Veillonella ↑

(Lewis et al., 2015)

CD 16S rRNA Genus Bacteroides, Eubacterium, Faecalibacterium, Ruminococcus ↓
Actinomyces, Bifidobacterium ↑

(Takahashi et al., 2016)

Species Blautia faecis, Roseburia inulinivorans, Ruminococcus torques,
Clostridium lavalense, Bacteroides uniformis, F. prausnitzii ↓

CD RT-PCR Species F. prausnitzii ↓ (Fujimoto et al., 2013)

CD 16S rRNA Phylum Proteobacteria, Bacteroidetes↑ (Gophna et al., 2006)

CD 16S rRNA Genus Lachnospira, Blautia, Dorea, Coprococcus, Roseburia, Oscillospira,
Bilophila ↓

(Yilmaz et al., 2019)

UC 16S rRNA Phylum Firmicutes, Bacteroidetes ↓
Proteobacteria ↑

(Walujkar et al., 2014)

UC RT-PCR Species Roseburia hominis, F. prausnitzii↓ (Machiels et al., 2014)

UC 16S rRNA Genus Roseburia ↓ (Bajer et al., 2017)

Species Akkermansia muciniphila, Butyricicoccus pullicaecorum,
Clostridium colinum↓

UC+CD 16S rRNA+
metagenomic sequencing

Genus In CD and UC: Roseburia, Phascolarctobacterium ↓ Clostridium ↑ (Morgan et al., 2012)

UC+CD 16S rRNA Family In CD: Peptostreptococcaceae, Christensenellaceae↓
In UC: Peptostreptococcaceae ↑

(Pascal et al., 2017)

Genus abundant UC and absent or almost absent in CD: Faecalibacterium,
Anaerostipes, Methanobrevibacter, Collinsella
abundant CD and absent or almost absent in UC:
Fusobacterium, Escherichia

UC+CD metagenomic sequencing Family Neisseriaceae, Fusobacteria, Enterobacteriaceae, Pasteurellaceae ↑ (Ryvchin et al., 2021)

UC+CD metagenomic sequencing Species Roseburia inulinivorans, Burkholderiales species↑ (Ananthakrishnan et al., 2017)

UC+CD 16S rRNA Phylum In CD: Firmicutes, Bacteroidetes ↓ Proteobacteria ↑ (Nishino et al., 2018)

Genus In CD: Escherichia, Ruminococcus, Cetobacterium, Actinobacillus
Enterococcus ↑
Faecalibacterium, Coprococcus, Prevotella, Roseburia ↓

IBD qPCR Species F. prausnitzii↓
Escherichia coli↑

(Lopez-Siles et al., 2014)
↑, upregulated; ↓, dwonregulated.
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Notably, Saccharomyces cerevisiae has been shown to alleviate

intestinal inflammation by inhibiting the colonization of the

intestinal mucosa by AIEC, suggesting the close interaction

between fungi and bacteria (Liguori et al., 2016). Additionally,

fungal dysbiosis is more pronounced in CD patients than in those

with UC (Chehoud et al., 2015; Sokol et al., 2017). Bacteriophages is

the most common virus of the GM (Breitbart et al., 2003). A

significant expansion of Caudovirales bacteriophages is the major

virome change in IBD patients, which may be associated with

decreased bacterial diversity (Norman et al., 2015; Zuo et al.,

2019). As for archaea, Methanogens, the predominant archaeal

group, are more abundant in the ileum and colon of IBD patients,

especially UC patients (Massimino et al., 2021).
2.2 Microbial metabolites and IBD

2.2.1 SCFAs
GM ferments non-digestible polysaccharides such as dietary fiber

into SCFAs, such as acetate, propionate, and butyrate (Rowland et al.,

2018). SCFAs are themajor source of energy for the colonic epithelium,

playing a role in maintaining the integrity of the intestinal barrier.

Studies found that the level of SCFAs in the feces of IBD patients were

significantly lower than those of normal individuals, which is more

pronounced during the active phase of the disease (Kumari et al., 2013;

Lloyd-Price et al., 2019). In IBD patients, SCFAs-producing bacterial

species such as Roseburia inulinivorans, Roseburia hominis,

Ruminococcus torques, Clostridium lavalense, Bacteroides uniformis,

Phascolarctobacterium and Faecalibacterium prausnitzii (F. prausnitzii)

were significantly reduced (Machiels et al., 2014; Takahashi et al., 2016).

Among all SCFAs, the function of butyrate in IBD has been relatively

well studied (Haneishi et al., 2023). Butyrate can maintain intestinal

mucosal integrity by strengthening connections between IECs and

promoting IECs regeneration. Butyrate also regulates innate and

adaptive immune responses by modulating macrophage (Chang

et al., 2014) and CD4+T cell differentiation (Arpaia et al., 2013) and

inhibiting the pro-inflammatory ability of neutrophils and formation of

the neutrophil extracellular traps (NETs) (Li et al., 2021a).

2.2.2 BAs
BAs is important in lipid absorption and immune homeostasis

(Hang et al., 2019; Song et al., 2020). There is disruption in BAs

metabolism of IBD patients, characterized by an increased level of

primary bile acids (PBAs) (e.g., cholic acid (CA) and chenodeoxycholic

acid (CDCA)) and a decreased level of secondary bile acids (SBAs) (e.g.,

deoxycholic acid (DCA) and lithocholic acid (LCA)) (Franzosa et al.,

2019). CD patients with lower serum levels of DCA tend to less respond

to anti-TNF therapy (Ding et al., 2020). GM deeply involved in the

production of SBAs and BA-derivatives through deconjugation,

desulphation, dehydrogenation, dehydroxylation, and epimerization

(Wahlström et al., 2016). Bile salt hydrolase (BSH) enzymes are able

to deconjugate glycine or taurinebound PBAs. The abundance of specific

bacteria that contain BSH like Clostridium, Bifidobacterium, Bacteroides

and Lactobacillus have been found to be decreased in IBD. Some species

of the genus Clostridium including Clostridium scindens, Clostridium
Frontiers in Cellular and Infection Microbiology 04
hiranonis, and Clostridium hylemonae can convert PBAs to SBAs by

dihydroxylation (Guzior and Quinn, 2021). BAs and BA-derivatives

contribute to maintaining intestinal barrier, reducing secretion of

inflammation-related molecules, and regulating the differentiation of

immune cells via binding to certain receptors. Additionally, the

decreased level of SBAs in IBD may increase the risk of Clostridium

difficile in IBD patients (Allegretti et al., 2016).

2.2.3 Trp
Trp is an essential amino acid in humans and is mainly

metabolized through the kynurenine (Kyn) pathway. Trp is degraded

into Kyn through indoleamine 2,3-dioxygenase (IDO) and tryptophan

2,3-dioxygenase, and further metabolized into active molecules such as

quinolinic acid and picolinic acid through a series of enzymes. Besides,

approximately 5% of Trp is metabolized through the GM and

transformed into indole and its derivatives (Gao et al., 2018; Xue

et al., 2023). In IBD patients, microbiota metabolic pathway for Trp is

inhibited, whereas the Kyn pathway is relatively increased. Compared

to the normal population, IBD patients, particularly those with CD,

have elevated Kyn/Trp ratios and quinolinic acid levels, along with

lower levels of indole and related metabolites (Gupta et al., 2012; Lee

et al., 2014; Nikolaus et al., 2017). Bacteroides, Bifidobacterium,

Clostridium, Akkermansia, and Lactobacillus can metabolize Trp into

indole metabolites (Agus et al., 2018; Roager and Licht, 2018). The

abundance of these bacteria is significantly reduced in IBD patients,

suggesting the alteration may be shaped by gut dysbiosis. Indole can

enhance the intestinal epithelial barrier by strengthening the tight

junctions between IECs. Indole and related metabolites are important

ligands for aryl hydrocarbon receptors (AHR). AHR is important for

modulating the immune homeostasis of CD4+T cells, which will be

discussed in the later section.
3 CD4+ T cell and IBD

Under specific exogenous stimulation, naïve CD4+T cells

can differentiate into different subsets including T helper 1

(Th1), Th2, Th9, Th17, Th22, and regulatory T (Treg) cells

(Gomez-Bris et al., 2023). They secrete distinct cytokines to

interact with IECs or other immune cells, thereby exerting pro-

inflammatory or anti-inflammatory effects. Notably, although UC

and CD share some immunologic features mediated by CD4+ T

cells, there are some differences in immune microenvironments. UC

exhibits more prominent neutrophilic inflammation activated by

Th17, such as the formation of NETs. CD is associated with more

pronounced Th1 and Th17 immune responses compared to UC

(Mitsialis et al., 2020).
3.1 Th1

The differentiation of Th1 cells depends on the activation of the

STAT4 signaling pathway, which is induced by IL-12 and IL-18

secreted by antigen presenting cel ls (APCs) . STAT4

phosphorylation induces the production of interferon-g (IFN-g)
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and T-bet, which are specific factors for the Th1 cell program. Th1

cells play an essential role in maintaining intestinal homeostasis

(Gomez-Bris et al., 2023). However, the excessive Th1 cell immune

responses were thought to be involved in the onset of mucosal

inflammation of IBD (Gwela et al., 2017; Zorzi et al., 2013).

Epithelium-infiltrated IFN-g can directly induce the chemotaxis of

macrophages and neutrophils by prompting IECs to express

adhesion molecules. Tumor necrosis factor-a (TNF-a) in the

epithelium activates the apoptosis pathway, induces IECs

apoptosis, and further exacerbates mucosal inflammation (Alfen

et al., 2018; Li et al., 2019). IFN-g can also drive CD8+cells to

differentiate into Tc1 cells (Mittrücker et al., 2014) and produce

more pro-inflammatory molecules including IFN-g, TNF-a,
granzyme B and perforin (St Paul and Ohashi, 2020), which play

a role in the initiation and development of colitis (Nancey et al.,

2006; Westendorf et al., 2006). Increased numbers of Th1 cells and

Th1 cell-related cytokines, such as IFN-g, IL-2, and TNF-a, can be

detected in the intestinal mucosal tissue and peripheral blood of

patients with UC and CD. In IBD mouse model, a lack of IFN-g in
CD4 T-cells prevents the development of Dextran Sulfate Sodium

(DSS)-induced colitis (Zimmermann et al., 2016).
3.2 Th2

Th2 cells differentiation is believed to be induced by activation

of the STAT-6 pathway and transcription of GATA binding protein

3 (GATA-3) under IL-4 stimulation (Walker and McKenzie, 2018).

Increased Th2 cells cytokines IL-4, IL-5, and IL-13 can be observed

in UC and CD (Nemeth et al., 2017; Walker and McKenzie, 2018).

IL-4 can also drive the differentiation of Tc2 cells, stimulating them

to secrete more IL-4, IL-5, and IL-13 (Mittrücker et al., 2014).

Although the immune inflammation in UC is generally believed to

be Th2 cells-mediated, the use of anti-IL-13 monoclonal antibodies

troleumab and onlucumab did not produced clinical benefits.

Interestingly, current clues suggest that Th2 cells seem to be

involved in the fibrosis in the later stages of inflammation. In a

trinitrobenzene sulfonic acid (TNBS)-induced colitis model, IL-13

production begins on day 28 and peaks on day 49 and is related to

increased collagen (fibrosis) production (Fichtner-Feigl et al., 2008).

A clinical study found that in the early stage of UC, the expression

of Th1-related genes increased, while in the late stage of the disease

(10 years), the expression of Th2 cells -related genes like IL4R,

GFI1, IL1RL1, PPARG, and IL5 increased (Mavroudis et al., 2019).

Thus, the role of Th2 cells in IBD still needs to be further explored.
3.3 Th17

Th17 cells are characteristically express Retinoic acid receptor-

related orphan receptor gamma t (RORgt) and secrete IL-17, whose

differentiation is usually initiated by transforming growth factor-b
(TGF-b) and IL-6. They activate STAT3 and SMAD pathways,

induce high expression of RORgt, then stimulate the transcription

of IL-17 (Jiang et al., 2023). In addition, IL-23 is very important for

Th17 cells. Although it cannot induce the differentiation of Th17
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cells, it can change the metabolic state of Th17 cells, which is

essential for maintaining its differentiation and inducing its

pathogenicity (Wu and Wan, 2020). Th17 cells play a key role in

the pathogenesis of IBD. Excessive IL-17 and IL-21 in the mucosa

can stimulate myofibroblasts to secrete matrix metalloproteinases,

leading to epithelial cell damage (Monteleone et al., 2012). In

addition, IL-17 can synergize with TNF-a to activate NF-kB,
ERK1/2, and p38 signal ing pathways, induce enteric

neuroendocrine cells and goblet cells to secrete IL-17C, and

promote IECs to secrete CCL20, a potent chemokine for Th17

(Song and Qian, 2013). IL-17A can promote IECs to secrete IL-8,

which can stimulate neutrophils and promote NETs formation. At

the same time, many studies have found that excessive immune

activation of Th1 cells during the development of UC is often

accompanied by enhanced immune response of Th17 cells, proving

that Th1 cells and Th17 cells have a synergistic effect.
3.4 Th9

Th9 cells are a subset of CD4+T cells characterized by their

secretion of IL-9. Its differentiation programming is regulated by

the transcription factor PU.1 and induced by the combination of IL-

4 and TGF-b (Neurath and Finotto, 2016). Expansion of PU.1+

lamina propria CD4+ T-cells is observed in UC, but not in CD

(Nalleweg et al., 2015). The level of IL-9 mRNA expression in colon

tissue from UC patients positively correlates with the endoscopic

and histological disease score (Nalleweg et al., 2015). Experimental

colitis studies explored the pathogenic mechanism of CD4+T cell-

derived IL-9 in IBD. IL-9 can induce mast cell activation, which

secretes trypsin and chymotrypsin, increasing intestinal

permeability during IBD (Mukai et al., 2018). In TNBS-induced

colitis, IL-9 deficiency led to milder intestinal inflammation,

accompanied by reduced Claudin1 level and increased occludin,

Claudin4 and Claudin7 level (Gerlach et al., 2015). In the

oxazolidinone-colitis model, wild-type mice showed a

compromised intestinal barrier compared to IL-9-deficient mice,

which led to an increased bacterial entry into the mucosa (Gerlach

et al., 2014). This suggests that IL-9 may contribute to IBD

pathogenesis by impairing the intestinal barrier, thereby

facilitating bacterial translocation into the mucosa and triggering

a pro-inflammatory response.
3.5 Treg

Treg cells can be divided into natural regulatory T cells (nTreg)

and inducible regulatory T cells (iTreg). nTreg cells are primarily

generated in the thymus, where they undergo differentiation in

response to self-antigens recognized via their T cell receptors to

produce immune tolerance. While iTreg cells are usually formed in

peripheral tissues, especially under the stimulation of specific

environmental cues, notably cytokines such as TGF-b and IL-2

(Bilate and Lafaille, 2012). Treg cells, which express forkhead box

protein P3 (Foxp3), are primarily secrete anti-inflammatory

cytokines such as TGF-b, IL-10, and IL-35 (Zhang et al., 2023).
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Treg cells play a key role in immune regulation by suppressing

various immune responses and inflammation (Omenetti and

Pizarro, 2015). Evidence from animal models showed that

depletion of Treg cells in the intestines of C57BL/6 mice

exacerbate DSS-induced colitis by triggering aberrant innate

immune responses, and transfer of Treg cells into colitis mice can

lead to resolution of colonic inflammation (Pedros et al., 2016).

Treg cells maintain intestinal epithelial stability by regulating the

proliferation of epithelial stem cells and the sensitivity of IECs to

inflammatory factors. A study using colon organoid have shown

that Treg cells produce IL-10 to promote stem cell renewal (Biton

et al., 2018). In addition, Treg cells-derived IL-10 limits mucosal

inflammation by reducing the sensitivity of IECs to inflammatory

cytokines and to T cell-mediated apoptosis (Bharhani et al., 2006).
3.6 Th22

Th22 cells are a subset of CD4+T cells that secrete IL-22 but do

not produce IL-17 and IFN-g. The initiation of Th22 cell

differentiation is mediated by the combined action of cytokines

including IL-6 and TNF-a (Dudakov et al., 2017). Current studies

have shown that IL-22 play an important role in maintaining

intestinal epithelial homeostasis by binding to the receptor IL-

22R, the expression of which is mainly limited to epithelial cells

(Lindemans et al., 2015). In a study of colon organoids, it was found

that recombinant IL-22 directly targeted intestinal stem cells,

promoting intestinal stem cell expansion in a STAT3-dependent

manner (Lindemans et al., 2015). In a study based on colitis mouse

model, IL-22 expression was found to be significantly reduced. IL-

22 gene delivery by a local gene delivery system specifically

enhanced STAT3 activation in colonic epithelial cells, inducing

the expression of mucus-related molecules and the restoration of

mucus-producing goblet cells (Sugimoto et al., 2008). In addition,

IL-22 have been observed to promote the expression of

antimicrobial peptides-related genes such as REG1A, REG1B, and

DMBT1 to enhance the intestinal mucosal barrier. However,

elevated IL-22 levels can be detrimental. IL-22 regulates

proinflammatory pathways involved in immune cell chemotaxis,

particularly those involving CXCR2+ neutrophils (Xv et al., 2024b).

In UC patients, enrichment of IL-22 pathway genes in colon

biopsies correlated with colonic neutrophil infiltration and was

enriched in patients who did not respond to ustekinumab treatment

(Pavlidis et al., 2022).
4 GM and CD4+ T cells differentiation

The dynamics of naïve CD4+T cells underscore the plasticity

within the immune system, highlighting the adaptability of CD4+T

cells in response to environmental cues. Under homeostatic

conditions, pro-inflammatory and anti-inflammatory CD4+T cells

exist in a dynamic equilibrium, where they work together to

maintain the intestinal microenvironment and prevent pathogen

invasion. Since GM is deeply involve in the regulation of intestinal

function, the relationship between GM and CD4+T cells is central to
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maintaining mucosal barrier integrity and normal immune

response. Disruptions in this communication are linked to many

gastrointestinal diseases, including IBD (Xv et al., 2024a). In this

section, we will discuss in depth how GM and their metabolites

influence immune responses.
4.1 Regulating through
inflammatory microenvironment

Studies have proven that GM can regulate the differentiation of

CD4+ T cells by acting on APCs and IECs to promote certain

cytokines (Figure 1). A recent study transplanted nine types of

bacteria, including Escherichia coli and Klebsiella pneumoniae,

isolated from the small intestine of CD patients into germ-free

mice and found that the number of Th1 and Th17 cells in the

intestine of mice increased. Specifically, Escherichia coli 35A1

induced the production of Th1 cells in a strain-specific manner,

but the exact mechanism still needs exploration (Nagayama et al.,

2020). Klebsiella pneumoniae is a kind of oral bacterium usually

ectopic presence in the intestine of IBD patients, in which Klebsiella

pneumoniae 2H7 may create a microenvironment that promotes

Th1 cells differentiation through Toll-like receptors (TLRs) on IECs

(Atarashi et al., 2017). GM also deeply involved in Th17/Treg

differentiation. SFB is the first microbiota taxa found to be

associated with Th17 cells differentiation (Ivanov and Littman,

2010). SFB can promote the production of SAA1 and SAA2 by

IECs and IL-23 by dendritic cells (DCs) (Goto et al., 2014). SAA

may promote Th17 differentiation by activating RORgt in a TGF-b-
independent mechanism (Lee et al., 2020). The flagellin of SFB may

play an important role in this process (Wang et al., 2019).IL-23 is

important in maintaining the differentiation and allow Th17 cells

acquire pathogenicity. At the same time, IL-23 can amplify this

inflammatory cycle by promoting SAA secretion via IL-22 secreted

by ILCs (Sano et al., 2015). Pathogenic Th17 (pTh17) cells are a

special type of Th17 cells characterized by the expression of IL-17A,

IL-22, IFN-g, GM-CSF and are closely associated with intestinal

inflammation in IBD. AIEC promotes pTh17 differentiation

promoting the secretion of IL-23 from DCs. Further studies

revealed that rfaP (LPS-core heptose kinase) and ybaT (inner

membrane transport protein) in AIEC were responsible for

promoting the transition of non-pathogenic Th17 cells to pTh17

cells (Paroni et al., 2023; Leccese et al., 2024). These GM-induced

cytokines comprise an inflammatory microenvironment that can

promote and maintain Th17 differentiation and pathogenicity.

Some GM taxa, on the other hand, are associated with the

production of Treg cells (Figure 1). TLRs are expressed in many

different types of immune cells and epithelial cells and can

recognize microbe-associated molecular patterns, which usually

are specific structural components of bacteria. The b-glucan/
galactan polysaccharides derived from the cell wall of

Bifidobacterium bifidum can promote Treg cells induction by

acting on TLR2 expressed on intestinal DCs (Verma et al., 2018).

Roseburia intestinalis can promote thymic stromal lymphopoietin

(TSLP) expression via TLR5 on IECs. TSLP can promote Treg cells

differentiation by inducing DCs secreting IL-10 and TGF-b (Shen
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et al., 2022). In addition to inducing the differentiation of classic

Foxp3+Tregs, GM are also involved in the differentiation of some

special types of Treg cells like Tr1-like Tregs (Tr1 cells). Tr1 cells is

characterized by IL-10 secretion and negative Foxp3 expression, is

significant decreased in IBD patients. F. prausnitzii can activates

TLR2/6 on DCs, which further activates the downstream JNK

pathway to produce cytokines including IL-10, IL-27, CD39, and

IDO-1 to promote Tr1-like Treg differentiation (Alameddine

et al., 2019).
4.2 Regulating through
microbial metabolites

4.2.1 SCFAs
GM is deeply involved in the regulation of CD4+T cell

differentiation through SCFAs (Figure 2). Earlier studies found

clusters IV, XIVa, and XVIII of Clostridia could promote Treg

cells differentiation through SCFAs (Atarashi et al., 2011) and F.

prausnitzii can regulate Th17/Treg differentiation through butyrate

(Zhou et al., 2018). SCFAs, especially propionate and butyrate, can

inhibit the differentiation of Th1 cells, Th17 cells, Th22 cells and
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promote the differentiation of Treg cells through various

mechanisms (Arpaia et al., 2013; Kibbie et al., 2021). Firstly,

SCFAs accelerates the differentiation of colonic Treg cells in

conjunction with an increase in histone H3 acetylation in the

promoter and conserved non-coding sequence regions of the

Foxp3 locus (Furusawa et al., 2013). Specifically, propionate

regulates the activity of histone deacetylase (HDAC) through G

protein-coupled receptor (GPCR) signaling to regulate Foxp3

expression. SCFAs can specifically affect HDAC6 and HDAC9 in

a GPR43-dependent manner, promoting the differentiation of

Foxp3+Treg cells in the intestine of germ-free mice (Smith et al.,

2013). Using SCFAs to treat T cell transfer model mice can

significantly alleviate colon inflammation and increase the

proportion of Treg cells in the colon’s lamina propria.

Interestingly, although TGF-b is also a characteristic cytokine

secreted by Treg cells, Treg cells induced by SCFAs only

specifically and highly express IL-10 without affecting the

secretion of TGF-b (Smith et al., 2013). Propionate can also

active GPR15, which induces Treg cells homing to the colon

(Kim et al., 2013). Butyrate can inhibit HDAC1 and may

participate in Treg cells differentiation by activating GPR109a

(Singh et al., 2014; Zhou et al., 2018). Additionally, SCFAs can
FIGURE 1

GM modulates the differentiation of CD4+T cells through the inflammatory microenvironment. GM promotes the formation of different inflammatory
microenvironments induces CD4+T cells differentiation. KP2H7, AIEC and SFB can promote the production of IL-23, IL-6, IL-12 via TLRs on IECs and
DCs, thereby promoting the differentiation of Th1 and Th17 cells. SFB also promotes the secretion of SAA via IECs to promote the differentiation of
Th17 cells. Bifidobacterium bifidum (B. bifidum), Roseburia intestinalis (R. intestinalis) and F prausnitzii can promote the expression of IL-10, TGF-b,
IL-27, CD39, and IDO-1 by acting on TLR receptors on DCs and IECs, which in turn promotes the differentiation of Foxp3+Treg cells and Foxp3-Tr1
cells. Different strains of B. adolescentis regulate Th17/Treg homeostasis by different inflammatory microenvironments. Polysaccharide A produced
by B. fragilis can mediate the differentiation of CD4+T cells into different subtypes.
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affect Treg cells differentiation though energy metabolism. SCFAs

can directly affect the ATP/ADP levels through their integration in

the Krebs cycle as Acetyl-CoA. This leads to the activation of the

mammalian target of rapamycin, a critical kinase involved in T-cell

differentiation (Luo et al., 2017). Th17 cells depend more on

glycolysis whereas the main energy source for Treg cells is

oxidative phosphorylation (OXPHOS). A study found that

butyrate promotes Treg cell differentiation by shifting energy

metabolism from glycolysis to OXPHOS through activation of

proliferator-activated receptor gamma (PPARg) (Wen et al.,

2021). The role of SCFAs is not limited to simply promoting anti-

inflammatory Treg cells differentiation, but rather coordinating the

immune balance of pro-inflammatory and anti-inflammatory cells.

Acetate and propionate can selectively induce the differentiation of

naïve CD4+T-cells toward Th1 cells and Th17 cells in a specific

cytokine milieu. However, transfer of these SCFA-induced Th1 and

Th17 cells into mice only induced mild colonic inflammation. This

may be due to that acetate and propionate-induced differentiation

of these effector T cells while also promoting IL-10 expression by T

cells (Park et al., 2015). Therefore, although SCFAs can enhance the

differentiation of pro-inflammatory T cells under certain

conditions, they induce these T cells to co-express both pro-

inflammatory cytokines and immunosuppressive factors, thereby

preventing the colonic inflammation induced by a highly pro-

inflammatory environment. In addition, the regulatory role of
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SCFAs also correlates with the differentiated status of CD4+T

cells. A vitro study showed that exposing differentiated Th17 cells

to butyrate can induce RORgt expression and IL-17 secretion. In

contrast, exposing naïve CD4+T cells to butyrate in a pro-Th17

differentiation environment (IL-1b, IL-6, IL-23, TGF-b) led to

downregulation of RORgt and IL-17. This may be due to the fact

that naïve CD4 T cells and effector T cells have different metabolic

states and express different cellular receptors on the membrane

surface that can respond to environmental signals in different ways

(Sałkowska et al., 2017).

4.2.2 BAs
One study has shown that using probiotics can significantly

improve the composition of the GM of colitis mice, regulate BA

metabolism, increasing the levels of BAs including iso-LCA, iso-

CDCA, a-MCA, and hyodeoxycholic acid. A vitro experiment

found that BA mixtures mediated by probiotics, rather than the

microorganisms themselves, can influence Th17 cel ls

differentiation. Administration of these BA mixtures to colitis

mice can achieve similar therapeutic effects as giving probiotics,

and similarly reduces Th17 cells differentiation in the colon (Yan

et al., 2023).SBAs mainly include DCA and LCA, which can be

further modified by GM into different derivatives, including iso-

DCA, isoallo-LCA, iso-LCA, 3-oxo-LCA, etc. Iso-DCA and isoallo-

LCA can promote Treg cell differentiation. Iso-DCA-mediated Treg
FIGURE 2

Regulation of SCFAs on the differentiation of CD4+T cells. SCFAs (mainly including acetate, propionate, and butyrate) can affect CD4+T cell
differentiation through multiple mechanisms. SCFAs regulate HDAC activity and promote Treg cells differentiation in a GPR-dependent manner.
Propionate activates GPR15 to promote Treg homing. Butyrate promotes Treg cell differentiation by activating PPARg, which shifts energy
metabolism from glycolysis to OXPHOS. Acetate- and propionate-induced effector T cell differentiation is less inflammatory by promoting IL-10
secretion. The regulatory role of butyrate also correlates with the differentiated status of CD4+T cells.
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cells production is dependent on FXR receptors on DCs (Campbell

et al., 2020). Isoallo-LCA can promote Foxp3 expression by

generating mitochondrial reactive oxygen species and nuclear

receptor subfamily4 group A member 1 is necessary for the

process (Figure 3) (Hang et al., 2019; Li et al., 2021c). LCA and

its derivatives can inhibit the differentiation of Th17 cells. Iso-LCA

and 3-oxo-LCA can bind to RORgt, preventing it from binding to

the transcription start site of IL-17, thereby inhibiting the

differentiation of Th17 cells (Figure 3) (Hang et al., 2019; Paik

et al., 2022). The sulfate of LCA (LCA-3-S) exhibited better RORgt-
binging ability than its oxidated metabolite (3-oxo-LCA). LCA-3-S

selectively suppressed Th17 cell differentiation without influencing

on Th1, Th2, and Treg cells (Xiao et al., 2022). Bacteria are involved

in the transformation between different derivatives of LCA.

Research found eleven genera (including Bacillus, Bacteroides,

Bifidobacterium, Catenibacterium, Collinsella, Eggerthella,

Lachnospira, Lactobacillus, Parabacteroides, Peptoniphilus, and

Mediterraneibacter) belonging to the phylum Bacteroidetes are

responsible for the conversion from 3-oxo-LCA to isoallo-LCA

(Paik et al., 2022). LCA and its derivatives can activate the VDR,

which inhibit Th1 cells activation and promote the transition of Th1

cells to a Th2 phenotype by increasing the production of the

transcription factors GATA-3 and cMAF (Figure 3) (Boonstra

et al., 2001; Pols et al., 2017). RORgt is usually associated with

Th17 cells differentiation, but RORgt+Tregs have been observed in
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colonic tissues in IBD patients, where they represent a stable

regulatory T-cell effector lineage with enhanced suppressive

capacity during intestinal inflammation (Gomez-Bris et al., 2023).

Several intestinal bacteria including Clostridiae and Bacteroides can

promote the expression of RORgt+Treg (Sefik et al., 2015). Further

studies revealed that these bacteria may promote the differentiation

of RORgt+Treg through the activation of VDR receptors by BAs

(Song et al., 2020).

4.2.3 Trp
AHR is the key target linking Trp metabolism and

CD4+differentiation (Figure 4). Research found Bacteroides

thetaiotaomicron increased the levels of the AHR ligands indole

metabolites-indole acetic acid and indole propionic acid in DSS-

induced mice, which influence the differentiation of Treg cells (Li

et al., 2021b). Trp metabolites like Kyn, kynurenic acid, and indole-

derived metabolites are activators of AHR. On the one hand, AHR may

directly drive Treg cells differentiation by inducing Foxp3 expression

(Seo and Kwon, 2023). On the other hand, AHR can promote the

secreting of TGF-b1, which is one of the most potent inducers of Treg

cells differentiation (Nguyen et al., 2010). Moreover, AHR can directly

binds to open chromatin regions of the GPR15 locus to enhance its

expression, which is able to mediate the homing of circulating Treg cells.

In addition, AHR has also been associated with the production of Tr1

cells. AHR can synergize with the transcription factor cMAF to promote
FIGURE 3

Regulation of BAs and their derivatives on the differentiation of CD4+T cells. GM is involved in the production of SBA and its derivatives. Iso-DCA
promotes Treg cells differentiation through FXR on DCs. Isoallo-LCA promotes Treg cells differentiation through mitochondrial reactive oxygen
species and NR4A1. LCA and its derivatives can inhibit Th17 cells differentiation by binding to RORgt, inhibit Th1 activation by activating VDR. VDR can
also promote the transition of Th1 cells to a Th2 phenotype by increasing the production of the transcription factors GATA-3 and cMAF. Some
bacteria may promote RORgt+Treg differentiation by activating VDR receptors through BAs.
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IL-27-mediated Tr1 cell differentiation, which in turn promotes IL-10

and IL-21 (Apetoh et al., 2010). However, the role of AHR in Th17

differentiation is not consistent. In vitro studies have shown that AHR

promotes the production of IL-17 and IL-22 by Th17 cells (Veldhoen

et al., 2009; Lamas et al., 2018). AHR also promotes Th17 cells

differentiation by inhibiting STAT1 (Kimura et al., 2008). In contrast,

an animal study argues that AHR has a role in inhibiting Th17 cells

differentiation. It has been found that Th17 cells in the intestinal lamina

propria are increased in the colon tissues of AHR knockout mice,

suggesting that AHR plays a role in inhibiting Th17 cell differentiation in

vivo (Qiu et al., 2013). It is worth noting that under physiological

conditions, Th17 cells can undergo reprogramming and differentiate

into Tr1 cells, a process that occurs during infection to help maintain

homeostasis. Effector Th17 cells express high levels of AHR, the

activation of which can reduce the expression of IL-17A while

increasing the expression of IL-10. This shift led to the transformation

of Th17 cells into Tr1 cells and helps to terminate the excessive immune

response. Therefore, therapies targeting the interaction between the

microbiota and AHR may help restore immune tolerance in IBD, while

minimizing the harmful side effects associated with systemic

immunosuppressive therapies (Gagliani et al., 2015).
4.3 The plasticity of GM

Interactions between GM and the CD4+T cell differentiation

are extremely complex. Firstly, different GM exhibit subtle
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differences in inducing the differentiation of the same CD4+T cell

subsets. Candida albicans (C. albicans), Staphylococcus aureus (S.

aureus) (Zielinski et al., 2012), and SFB are all mucosal-associated

microbiota that can induce the differentiation of Th17 cells. The

Th17 cells induced by S. aureus and C. albicans show differences in

cytokine secretion. Th17 cells induced by C. albicans primarily

secrete IL-17 and IFN-g but do not secrete IL-10, whereas Th17 cells
induced by S. aureus secrete IL-17 and, upon restimulation, can

transiently downregulate IL-17 levels while simultaneously

secreting IL-10 (Zielinski et al., 2012). This discrepancy is related

to the high IL-1b levels in the microenvironment formed by

C. albicans.

The microbial background plays a crucial role in determining the

differentiation of CD4+T cells.While most studies have deeply explored

the mechanisms of individual bacteria, these findings may not

necessarily reflect the real effects of the GM in a symbiotic context.

One study used altered schaedler flora (ASF), consisting of Bacteroides,

Lactobacillus, Clostridium, and Mucispirillum, to colonize into germ-

free mice and observed a significant expansion and activation of Treg

cells in the colonic lamina propria. However, these changes were not

seen in the small intestinal lamina propria (Geuking et al., 2011).

Interestingly, when ASF was colonized in mice lacking the ability to

generate Treg cells, it induced the differentiation of Th17 cells. These

findings suggest that the differentiation capacity of the GM is

influenced by the immune status of the host and the specific

segment of the gut, which may explain why the immune

microenvironment in UC and CD is similar yet not identical.
FIGURE 4

Regulation of AHR on the differentiation of CD4+T cells. Trp metabolites such as Kyn, kynurenic acid and indole-derived metabolites are activators of
AHR. AHR can promote the differentiation of Treg cells by enhancing TGF-b secretion and Foxp3 expression, as well as Treg cells homing via GPR15.
AHR can promote the differentiation of Th17 cells differentiation in vitro but inhibit it in vivo. AHR can synergize with the transcription factor cMAF to
promote IL-27-mediated Tr1 cells differentiation. Activating AHR on mature Th17 cells can induce the transformation of Th17 cells into Tr1 cells by
altering cytokine secretion.
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The properties of the GM may explain why different strains from

the same species can differentiate CD4+ T cells into different subtypes.

Bifidobacterium adolescentis (B. adolescentis) strains IF1-11 and IF1-03

have similar adhesion capacities but different aggregation properties.

The auto-aggregative B. adolescentis strain IF1-11 induced higher IL-6

and lower IL-10 secretion from macrophage, which increase the

abundance of Th17 cells. The non-aggregating strain IF1-03 and its

exopolysaccharides induced more IL-10, less IL-6 and increase the

proportion of Treg cells, which is dependent on the TLR2/ERK/p38

MAPK signaling (Figure 1) (Yu et al., 2019). Besides, it is found that

polysaccharide A (PSA) produced by Bacteroides fragilis can mediate

the differentiation of CD4+T cells into different subtypes by binding to

TLR receptors on various cells. PSA can bind to TLR2 on DCs to

promote IL-12 secretion, which in turn drives Th1 cells differentiation,

enhancing the immune response to infection. Meanwhile, PSA can

bind to TLR2 on CD4+ T cells to directly promote Treg cells

differentiation and limit excessive inflammation to maintain immune

homeostasis (Figure 1) (Wang et al., 2006; Round and

Mazmanian, 2010).
5 TCM ameliorates IBD through
regulating GM and the differentiation
CD4+T cells

5.1 Understanding IBD from a TCM
theoretical perspective

Generally, IBD is categorize as “dysentery”, “abdominal pain” and

“diarrhea” within the framework of TCM theory. In TCM, the

pathogenesis of IBD is primarily understood as the spleen deficiency

coupled with an accumulation of dampness-heat. Thus, current

therapeutic approach typically emphasizes strengthening the spleen

and clearing heat and dampness simultaneously in the treatment. Some

studies have explored the biological underpinnings of the etiology and

pathogenesis of IBD. Spleen deficiency may be associated with

dysbiosis of the intestinal microbiota, while dampness-heat is

thought to be linked to the activation of immune-mediated

inflammation. A study found reduced abundance of Delftia and an

increased abundance of Lachnoclostridium may represent key

microbial signatures in UC patients with spleen deficiency,

distinguishing them from individuals with other TCM patterns

(Zhang et al., 2019b; Ma et al., 2020; Guo et al., 2024). Shenling

Baizhu San, a classic TCM formula for the treatment of diarrhea

associated with spleen deficiency, has been shown to ameliorate

diarrhea in mice by modulating SCFAs through the GM (Qiao et al.,

2024). In IBD patients with damp-heat symptoms, more pronounced

immune-inflammatory responses are observed compared to those

without damp-heat symptoms, characterized by higher levels of C-

reactive protein (CRP) and erythrocyte sedimentation rate (Zhang and

Shen, 2019). TCM with heat-clearing effect has been found to reduce a

range of pro-inflammatory cytokines in TNBS-induced colitis in mice

(Hu et al., 2024). These findings suggest that the association between

GM dysregulation and immune inflammation is the biological basis of

the TCM pathogenesis of IBD, highlighting the potential therapeutic
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value of TCM in treating IBD by modulating the immune response

mediated by GM.
5.2 TCM improves inflammation in
IBD patients

Substantial clinical trials have supported the effectiveness of

TCM in managing IBD. A systematic review included 28

randomized controlled trials of 18 herbal ingredients and found

that some herbs with translational potential, such as turmeric,

indigo, liquorice, and pomegranate peel (Iyengar et al., 2024). An

open-label study enrolled 11 patients with refractory UC who were

treated with oral indigo, of whom 10 achieved clinical remission

and all patients showed endoscopic improvement (Saiki et al.,

2021). Qingchang suppositories, consisting of indigo, panax

notoginseng, purslane et al, have demonstrated superior clinical

efficacy in treating UC compared to salicylazosulfapyridine

suppositories, significantly improving symptoms and CRP levels,

as well as promoting mucosal healing (Shen et al., 2021; Xiaoling

et al., 2024). Another study reported that the efficacy of TCM in

treating UC may be related to CD4 cells. Qingchang Xiaopi

Decoction was reported to be capable of effectively relieving

diarrhea and abdominal pain in patients with mild to moderate

UC and reducing the levels of Th17 cell-related cytokines IL-6, IL-

17, and IL-23 in serum (Jia et al., 2024). However, most current

research on TCM focus on UC, their clinical efficacy of CD still

needs further evaluation (Zeng et al., 2022).
5.3 TCM improve intestinal inflammation
through modulating GM profile and CD4+

T cells

Many studies have demonstrated that Chinese herbal extracts

and TCM formulas can help may rescue patients from intestinal

immune inflammation by modulating CD4+T cells through the GM

and its metabolites (Table 2). Despite the immunological and GM

differences between humans and animals, DSS and TNBS remain

the most commonly used models for studying IBD. These models

can satisfactorily mimic the overactive immune response, intestinal

barrier disruption, and GM dysbiosis characteristics observed in

IBD (Kolios, 2016). Similar to the microbial changes in humans

with IBD, a decrease in beneficial bacteria including Bacteroidetes,

Clostridium, and Lactobacillus can be observed in these models (De

Fazio et al., 2014). Bawei Xileisan can regulate the Treg/Th17

balance in a GM-dependent manner. The increased abundance of

Treg cells and decreased abundance of Th17 cells by Bawei Xileisan

may be may be associated with the restoration of Lactobacillus and

Bacteroides (Wen et al., 2016). Gegen Qinlian decoction (GQD) can

restore the Treg/Th17 and Th2/Th1 balance and reduce related

cytokines in TNBS-induced colitis. The immunomodulatory effects

of GQD may be achieved by the suppressed overgrowth of

pathogenic bacteria, such as Helicobacter, Proteobacteria, and

Mucispirillum, and improved abundance of beneficial bacteria,

including Lactobacillus, Muribaculaceae, Ruminiclostridium,
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TABLE 2 The mechanism of TCM extracts and TCM formula.

TCM formula
or extracts

Main
components

Model Alterations in
gut microbiota

Alterations in
CD4+T cell

Alterations
in cytokines

Reference

Wumei decoction Mume Fructus,
Asari Radix et
Rhizoma, Zingiberis
Rhizoma, Coptidis
Rhizoma, Angelicae
Sinensis Radix,
Typhonii Rhizoma,
Zanthoxyli
Pericarpium,
Ramulus
Cinnamomi,
Phellodendri
Chinensis Cortex,
Ginseng Radix
et Rhizoma

DSS mice Genus:
Allobaculum, Bacteroides↑
Ileibacterium ↓

Th1, Th17 ↓ IL-17A, TNF-a,
IFN-g, IL-1b↓

(Wu et al., 2022)

Kuijie decoction Radix Cynanchi
Paniculati, Herba
Portulacae, Radix
Caraganae, Radix
Sanguisorbae, Flos
Sophorae, Salvia
Miltirrhizae,
Setariae
Fructus Germinatus

DSS mice Family:
Lachnospiraceae ↑
Genus:
Lachnospiraceae
- NK4A136 group↑
Trp↑

Treg↑
Th17↓

IFN-g, TNF-a, IL-
1b, IL-6 ↓

(Peng et al., 2024)

Rhubarb
Peony Decoction

Rhei Radix et
Rhizoma, Moutan
cortex, Persicae
semen, Natrii sulfas,
Benincasae semen

DSS mice Phylum:
Firmicutes, Actinobacteria↑
Proteobacteria,
Bacteroidetes ↓
Species:
Butyricicoccus, pullicaecorum↑

Treg↑
Th17↓

IL-6, TNF-a, IFN-
g, IL-10, IL-17A,
IL-21, IL-22↓
TGF-b↑

(Luo et al., 2019)

Gegen
Qinlian Decoction

Pueraria lobata,
Scutellaria
baicalensis, Coptis
chinensis,
Glycyrrhiza
uralensis

TNBS mice Phylum:
Firmicutes, Verrucomicrobia↑
Bacteroidetes, Proteobacteria,
Deferribacteres↓
Genus:
Lactobacillus, Muribaculaceae,
Ruminiclostridium, Akkermansia ↑
Helicobacter, Proteobacteria,
Mucispirillum↓

Th2, Th1, Th17↓
Treg ↑

IL-10 ↑
IL-17A, IL-2, IL-5,
IL-6, IL-13↓

(Hu et al., 2024)

Modified Gegen
Qinlian Decoction

Pueraria lobata,
Scutellaria
baicalensis, Coptis
chinensis,
Glycyrrhiza
uralensis, Zingiberis
Rhizoma, Talcum

DSS mice Family:
Ruminococcaceae↑
Genus:
Lactobacillus ↑
Bacteroides ↓
Species:
Escherichia-Shigella,
Clostridium_Sensu_Stricto_1 ↓

Lachnospiraceae_NK4A136_group↑
Acetate, propionate, butyrate,
isobutyrate, isovalerate↑

Treg↑
Th17↓

TGF-b, IL-4 ↑
IL-17A, IL-21 ↓

(Wang et al., 2021)

Yiyi Fuzi
Baijiang formula

Coix seed, Radix
Aconiti Lateralis,
Patrinia villosa

TNBS rat Cholic acid, Taurocholic acid ↓

Glycocholic acid ↑
Th17 ↓ IL-17A, IL-21, IL-

22, IL-6, TNF-a,
IL-1b, IL-18 ↓

(Liu et al., 2023b)

Bawei Xileisan Watermelon frost,
calcite, cow
gallstone, pearl
powder, borax,
Indigo
naturalis, borneol

DSS mice Genus:
Lactobacillus,
Bacteroides ↑

Treg↑
Th17↓

IL-17A, IL-17F, IL-
22 ↓

(Wen et al., 2016)

(Continued)
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TABLE 2 Continued

TCM formula
or extracts

Main
components

Model Alterations in
gut microbiota

Alterations in
CD4+T cell

Alterations
in cytokines

Reference

Zuojin Pill Coptis chinensis,
Evodia rutaecarpa

DSS mice Phylum:
Actinobacteria ↑
Family:
Verrucomicrobiaceae,
Desulfovibrionaceae ↑
Class:
Betaproteobacteria,
Sphingobacteriia↑
Genus:
Akkermansia ↑

Treg ↑ IL-2, IL-6, IL-17A,
IL-4 ↓

(Zhou et al., 2020)

Xuanfei
Baidu Decoction

Ephedrae Herba,
Polygoni Cuspidati
Rhizoma et Radix,
Glycyrrhizae Radix
et Rhizoma, Coicis
Semen, Gypsum
Fibrosum,
Atractylodis
Rhizoma, Artemisia
Annua Herba,
Pogostemonis
Herba, Descurainiae
Semen Lepidii
Semen, Verbenae
Herba, Phragmitis
Rhizoma,
Exocarpium,
Armeniacae
Semen Amarum

DSS mice Family:
Lachnospiraceae,
Muribaculaceae↑
Genus:
Akkermansia, Enterorhabdus↑
Turicibacter ↓
Species:
Escherichia-Shigella, Eubacterium
nodatum, Clostridium sensu
stricto 1↓

Th1↓
Th2↑

TNF-a↓ (Ma et al., 2022)

Xianglian pill Coptidis Rhizoma,
Evodia Rutaecarpa,
Radix Aucklandiae

DSS rat Phylum:
Bacteroidetes, Verrucomicrobia ↑
Firmicutes ↓
Genus:
Bacteroides,
Phascolarctobacterium ↑

Treg ↑ TNF-a, IL-6 ↓
IL-10 ↑

(Liu et al., 2023a)

Stigmasterol / DSS mice Genus:
Ruminococcus, Prevotella,
Paraprevotella, Helicobacter,
Odoribacter ↑
Streptococcus, Escherichia,
Enterococcus, Allobaculum ↓
Species:
Clostridium_IV and XlVa ↑
Acetate, propionate, butyrate,
isobutyrate, valerate↑

Treg ↑
Th17↓

IL-10, TGF-b↑
IL-17A ↓

(Wen et al., 2021)

Liquiritin apioside / DSS mice Phylum:
Firmicutes↑
Bacteroidete ↓
Family:
Lachnospiraceae,
Erysipelotrichaceae,
Muribaculaceae, Lactobacillaceae,
Marinifilaceae ↑
Bacteroidaceae ↓
Genus:
Lachnospiraceae NK4A136 group,
norank_f:Muribaculaceae,
Turicibacter,
Lactobacillus, Odoribacter↑
Acetate, butyrate and isobutyrate ↑

Treg↑
Th17↓

IL-1b, IL-6, TNF-
a, IL17A↓
IL-10↑

(Xia et al., 2023)

(Continued)
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Akkermansia, and Ruminococcaceae (Hu et al., 2024). Furthermore,

TCM has been shown to inhibit the interaction between Th1 and

Th17 cells. Wumei Decoction (WMD) can inhibit the synergistic

effects of Th1 and Th17 cells by increasing the abundance of

Allobaculum and Bacteroides, which effectively terminated DSS-

induced colitis (Wu et al., 2022).

TCM can also regulate CD4+ T cell differentiation by

modulating GM metabolites (Figure 5). Stigmasterol is a plant-

derived sterol extracted from Chinese herbs such as Scutellaria

baicalensis Georgi and Phellodendron chinense Cortex (Bakrim

et al., 2022). Stigmasterol can promote the production of SCFA,

especially butyrate, by regulating GM (Wen et al., 2021).

Abelmoschus manihot can also restore the Th17/Treg balance by

increasing the level of SCFA-producing bacteria such as

Lachnospiraceae (Zhang et al., 2019a). Liquiritin apioside (LA) is
Frontiers in Cellular and Infection Microbiology 14
a flavonoid component extracted from licorice (Yang et al., 2017).

Xia et al. demonstrated that LA administration altered the

composition of GM at the phylum, family, and genus levels. The

increased abundance of Muribaculaceae, Lachnospiraceae

NK4A136 group, Odoribacter, and Lactobacillus promoted SCFAs

production, thereby modulating the Treg/Th17 balance in DSS-

induced colitis (Xia et al., 2023). Modified GQD significantly

increased the abundance of SCFA-producing GM, promoted Treg

cells differentiation, and inhibited Th17 cells differentiation.

Notably, this protective effect was not observed in mice that were

depleted of GM using a broad-spectrum antibiotic mixture, further

highlighting the critical role of SCFA-producing microbiota (Wang

et al., 2021). Rhubarb Peony Decoction has also been reported to

restore the Th17/Treg balance and regulate GM dysbiosis,

specifically by enhancing the abundance of the butyrate-
TABLE 2 Continued

TCM formula
or extracts

Main
components

Model Alterations in
gut microbiota

Alterations in
CD4+T cell

Alterations
in cytokines

Reference

Abelmoschus
manihot

/ DSS mice Phylum:
Firmicutes↑
Bacteroidetes↓
Genus:
Bacteroides, Alistipes, Lactobacillus,
Bilophila, Desulfovibri ↑
Acetate, butyrate↑

Treg↑
Th17↓

IL-17, IL-22, IL-
23↓
IL-10, TGF-b↑

(Zhang et al., 2019a)

Baicalin / TNBS rat Phylum:
Firmicutes↑
Proteobacteria
Actinobacteria↓
Genus:
Butyricimonas, Roseburia,
Subdoligranulum, Eubacterium↑
Acetate, propionate, butyrate↑

Treg↑
Th17↓

IL-10 ↑
IL-17 ↓

(Zhu et al., 2020)

Salidroside / DSS mice Phylum:
Firmicutes↑
Bacteroidetes↓
Family:
Lachnospiraceae
Ruminococcaceae↑

Treg↑ IL-1b, IL-17A, IL-
6, TNF-a, IFN-g↓
IL-10↑

(Liu et al., 2023c)

Astragalus
polysaccharides

/ DSS mice Family:
Muribaculaceae, Lachnospiraceae,
Rikenellaceae, Ruminococcaceae ↑
Genus:
Prevotellaceae_UCG-001, Alistipes,
Rikenellaceae_RC9_gut_group,
Muribaculum ↑
Bacteroides ↓
Acetate, propionate, n- butyrate,
isobutyrate, valeric acid ↑

Treg↑
Th17↓

IL-1b,IL-17A, IL-6,
TNF-a, IL-23↓
IL-10↑

(Zhang et al., 2025)

Berberine / DSS mice Genus:
Desulfovibrio ↓
Eubacterium, Bacteroides ↑

Treg↑
Th17↓

IL-17↓
IL-10↑

(Cui et al., 2018)

Resveratrol / TNBS mice Genus:
Ruminococcusc
Species:
Ruminococcus gnavus,
Akkermansia muciphila ↑
Bacteroides acidifaciens ↓
Acetate and i-butyrate↑

Treg↑
Th17↓

IFN-g, IL-17↓
IL-10↑

(Alrafas et al., 2019)
↑, upregulated; ↓, dwonregulated.
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producing species Butyricicoccus pullicaecorum (Luo et al., 2019).

Kuijie Decoction, a prescription composed of eight Chinese herbs,

has been shown to restore Th17/Treg homeostasis, regulate GM

dysbiosis, and increase the levels of metabolites such as glutamine

and Trp (Peng et al., 2024).
5.4 Specific molecular mechanism of TCM
components in regulating microbiome-
immune axis

Previous studies have shown that TCM prescriptions and extracts

have effects on GM and CD4. We are more focused on the molecular

mechanism of TCM to explore reliable druggable targets. One study

explored tissue distribution of the main active ingredients of GQD in

mice after oral administration and found the contents of baicalin,

puerarin, berberine, and glycyrrhizic acid were high in the colon,

which can be regarded as the main active ingredients of GQD for the

treatment of intestinal disease (Lu et al., 2022). In another study, the

anti-inflammatory active ingredients of GQD were screened by high-

throughput in the zebrafish model of inflammatory bowel disease.

Among the 7 active ingredients identified, baicalin, puerarin,

berberine, and glycyrrhizic acid were further found to significantly

reduce the expression of interleukins and chemokines in the colon

(Yu et al., 2021). Another study applied multi-omics sequencing and

found that GQD and baicalin had similar effects on intestinal flora
Frontiers in Cellular and Infection Microbiology 15
and microbiome. Interestingly, transcriptomics results showed that

the differentially expressed genes caused by GQD and baicalin were

both enriched in T cell activation, indicating the baicalin as the main

active ingredient of GQD in modulating microbiome-immune axis

(Xu et al., 2020).

Baicalin, derived from Scutellaria baicalensis Georgi, has been

shown to attenuate the TNBS-induced colitis, accompanied by

downregulation of the Th17/Treg ratio, increased SCFAs levels,

and improved GM dysbiosis. Specifically, butyrate-producing

bacteria such as Butyricimonas, Roseburia, Subdoligranulum, and

Eubacterium at the genus level were significantly enriched following

baicalin administration (Figure 5) (Zhu et al., 2020). Resveratrol

treatment could reverse the increase in the number of Bacteroides

acidulans and the decrease in the number of Ruminococcus gnavus

and Akkermansia mucinphilia caused by TNBS administration, and

increase the production of isobutyric acid. Subsequent fecal transfer

experiments confirmed that the resveratrol-induced microbiota

prompted recipient mice to show polarization of CD4+FOXP3+T

cells in response to TNBS, as well as a decrease in CD4+IFN+ and

CD4+IL-17+T cells (Figure 5) (Alrafas et al., 2019).
6 Discussion

IBD is a disease that results from the interaction of genetic

susceptibility and environmental factors, leading to an imbalance in
FIGURE 5

TCM interferes CD4+T cells differentiation by regulating GM in the treatment of IBD. TCM can affect CD4+T cell differentiation by influencing GM
and their metabolites, which mainly include the promotion of Treg cells and inhibition of Th17 cells. Although further studies are needed, targeting
CD4+T cells through the GM represents a promising therapeutic direction for TCM in the treatment of IBD. APS, Astragalus polysaccharides; LA,
Liquiritin apioside; AM, Abelmoschus Manihot.
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immune homeostasis. Our review found that regulating the

immune response via GM modulation of CD4+T cells holds

significant promise, as it allows for a multi-pronged approach to

restore immune balance such as stimulating APCs to secrete anti-

inflammatory cytokines, and regulating key transcription factors

through metabolites. In recent years, TCM has shown remarkable

potential and unique advantages in regulating immune response

balance. We offer a new perspective on the immunomodulatory role

of TCM based on the GM-immune axis. Modern studies, based on

the perspectives of GM and immune inflammation, have explored

the connotation of the TCM pattern of spleen deficiency and

dampness-heat in IBD. Further pharmacological research has

revealed that TCM regulates GM across multiple taxonomic

levels, influencing the level of related cytokines and metabolites,

which in turn modulate CD4+T cell differentiation, activation, and

alleviate intestinal inflammation.

These findings have profound implications for clinical practice.

Firstly, certain GM andmetabolites show important regulatory effects,

making them potential candidates for targeted drug development.

Secondly, in traditional IBD treatment, immunosuppressive drugs are

often used to control the overactivation of CD4+T cells. While these

drugs effectively manage symptoms, long-term use can lead to

immunosuppression and increased risk of infections. TCM, by

finely coordinating the interaction between the GM and the

immune system, may serve as a complementary therapy to reduce

the reliance on traditional drugs. Finally, some active extracts from

Chinese herbs have demonstrated significant therapeutic effects, which

can be considered as priority treatment options in clinical practice and

provide new ideas for drug development.

However, despite the unique potential of TCM in regulating

CD4+T cell immune responses, there are still challenges in its

practical application. Firstly, TCM formulas contain various

bioactive compounds, which complicates the study of their

mechanisms. Current research has not yet fully elucidated how

these compounds interact with immune pathways and how they

cooperate. Second, previous studies have shown significant

heterogeneity in the microbiota characteristics of IBD patients,

which increases the difficulty in effectively applying TCM. Future

research should focus on exploring the molecular basis of individual

differences and TCM patterns, and identify key targets for TCM

intervention to lay the foundation for precision medicine. Another

import concern is the safety of TCM components. Most studies

reported that the incidence of side effects was similar between the

treatment and control groups. However, in a study that involved

877 UC patients treated with Indigo naturalis, 40 patients reported

hepatic impairment, and 11 reported pulmonary artery

hypertension. Although these adverse effects were reversible after

discontinuing Indigo naturalis, they indicate that it is equally

important to monitor the safety of herbal components

(Naganuma et al., 2018). Thus, strict toxicological studies and

multi-center, large-scale clinical trials are needed to assess

potential safety risks. Finally, there has been less attention on

TCM’s role in treating CD. Future research could explore the

mechanisms of TCM in treating CD.

In conclusion, we comprehensively summarize the relationship

between GM and CD4+T cell-mediated inflammation in IBD, as
Frontiers in Cellular and Infection Microbiology 16
well as the regulatory role of TCM in this process. The aim is to

provide a solid theoretical foundation and innovative ideas for IBD

mechanism research and drug development, paving the way for

more precise and effective treatment options.
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