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Introduction: Condyloma acuminatum (CA) is the most common sexually

transmitted disease and the presence of microbiota dysbiosis has been observed

to promote the progress of the disease. However, the explicit characteristics of

microbiota dysbiosis in CA patients have not been well elucidated yet.

Methods: We recruited 40 CA patients who received QYXJ (an in-hospital

prescription that has been used to treat CA for many years) treatment and 40

healthy controls (HC) in the current study. Before and after two weeks QYXJ

administration, the skin microbiome of each patient was assessed using 16S rRNA

gene sequencing.

Results: Here, we found increased relative abundances of Staphylococcus and

Lactobacillus, whereas a decreased Escherichia in CA patients relative to healthy

controls (HC). Moreover, we also observed significant alpha and beta diversity

differences between the CA and HC groups, and QYXJ treatment effectivity

attenuated these alterations of genus level andmicrobial diversity in patients with

CA. Importantly, further microbial interaction and function analyses revealed the

significantly enriched relative abundance of Caldivirga and Streptococcus in

microbial community, decreased complexity of microbial interactions and

downregulated metabolic pathways in CA patients, including membrane

transport, lipid metabolism and carbohydrate metabolism. Remarkably, QYXJ

administration partially restored these microbiota dysbiosis, which subsequently

shifts microbiomes of patients with CA towards healthy-like microbiota.

Conclusion: This study further confirmed the changes of skin microbiome in CA

pathogenesis and firstly revealed the protective effects of QYXJ in microbiota

dysbiosis resolution, suggesting its potential role as a novel method for CA treatment.
KEYWORDS

condyloma acuminatum (CA), skin microbiome, microbiota dysbiosis, microbial
interaction and function, dysbiosis resolution
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1 Introduction

Condyloma acuminatum (CA) is the most common sexually

transmitted disease and is mainly caused by human papillomavirus

(HPV) infection, predominantly affecting the genital and anal

regions (Park et al., 2015; Zhou et al., 2022). The World Health

Organization reports that CA is a widespread disease and the global

incidence of CA is 160 to 289 per 100,000 people each year, with an

increasing trend year by year (Patel et al., 2013). According to the

carcinogenic capacity, HPV genotypes can be divided into low-risk

(non-cancer-related type) and high -risk (cancer-related type) types

(Della Fera et al., 2021). Up to now, more than 200 types of HPV

have been found, of which more than 40 types are related to CA

(Hua et al., 2021). It was reported that about 90% of CA are caused

by low-risk type HPV infection, with HPV 6 and 11 as the most

common type, and high-risk type like HPV 16, 18, 30, 31, 35, 42, 43

have also been detected occasionally (Lorincz et al., 2002; Cong

et al., 2016; Wang et al., 2019). Once infected with high-risk type,

CA patients may develop into penile cancer and cervical cancer

(Sakamoto et al., 2019; Piña-Sánchez, 2022). Although low-risk

HPV infection don’t induce reproductive tract malignant tumors,

CA patients are usually accompanied with other sexually

transmitted diseases, which leading to a worse prognosis and

recurrence of CA (Zhou et al., 2019). Moreover, HPV virus also

has been shown to damage the human immune system and the

reproductive organs of CA patients (Sand and Thomsen, 2017).

Therefore, HPV infection (especially low-risk type) is a major

pathogenic factor to cause the occurrence and recurrence of CA,

but the underlying potential mechanisms are yet to be identified.

Vaginal microbiota (VMB) is an important part of vaginal

microenvironment that maintains the vaginal health and is the first

line of defense against sexually transmitted infections (Kalia et al.,

2020). Previous research reported that Lactobacillus are the key

microbes in healthy women and maintains a low pH vaginal

environment to preventing growth of other bacteria (Kwon and

Lee, 2022). Moreover, the stability of the cervicovaginal microbial

composition was commonly associated with the prevalence of

Lactobacillus and a low microbial diversity, and another clinical

study reported the association between a higher vaginal microbial

diversity and the development of squamous intraepithelial lesions

(SIL) (Curty et al., 2019; Li et al., 2024). Therefore, when the factors

like HPV infection can lead to dysbiotic vaginal microbiota and the

physical, chemical, and immune barrier functions of the skin are

damaged, which increasing the susceptibility to infection by other

microorganisms (Liu et al., 2016; Harris-Tryon and Grice, 2022). In

addition, the infection of specific microorganisms also makes the

treatment of HPV more difficult and complicated (Karim et al., 2018;

Romero-Morelos et al., 2019). Meanwhile, there is also a study

reported that HPV infection is associated with the imbalance of

vaginal microbiota and the vaginal microbiota is strongly associated

with vaginal inflammation and carcinogenesis (Santella et al., 2022).

Thus, the microbiome of CA patients will be changed because of HPV

infection. However, the explicit characteristics of microbiota dysbiosis

in CA patients are yet to be well elucidated, and whether microbiota

dysbiosis is the cause or result of CA requires further investigation.
Frontiers in Cellular and Infection Microbiology 02
In this study, we analyzed the microbial community

compositions, calculated the microbial alpha and beta diversity,

and explored the microbial co-occurrence networks and functions

in healthy controls and CA patients (before and after received a two

weeks QYXJ treatment), to identify the explicit characteristics of

microbiota dysbiosis in CA patients and reveal the protective effects

of QYXJ in microbiota dysbiosis resolution.
2 Methods

2.1 Study design

In this study, a total of 40 patients who were diagnosed with CA

and received QYXJ (an in-hospital prescription that has been used

to treat CA for many years) treatment (dilute warm baths for 20

minutes, twice daily) in the dermatology department of Wuhan No.

1 Hospital, from May 2023 to June 2024 were recruited, and 40

individuals who underwent physical examination were enrolled as

the comparable healthy controls (HC). Before and after two weeks

treatment, the healthy or lesional tissue were collected as previously

described (Li et al., 2021). All the participants have signed the

informed consent before the study and the demographic data from

all participants were listed in Table 1. This study was approved by

the ethics committee of Wuhan No. 1 Hospital (2022S042).
2.2 Sample collection

After treatment, only 20 CA patients returned to the hospital and

completed the sample collection. Samples obtained from the skin

were collected with a sterile swab and placed in a 5 ml sterile plastic

tube, and immediately frozen at -80°C for later DNA extraction.
2.3 DNA extraction and 16S rRNA gene
sequencing

Microbial DNA was extracted from each sample using an Ezup

column DNA extraction kit (Sangon Biotech, Shanghai, China)

according to the manufacturer’s instructions. The V4-V5 region of
TABLE 1 Demographic characteristics of the patients in this study.

Characteristics HC group
(n=40)

CA group
(n=20)

p value

Age, years (mean ± SEM) 35.78 ± 2.160 29.35 ± 1.800 > 0.05

Male, n (%) 31 (77.5) 16 (80) > 0.05

Distribution, n (%)

Perianal - 2 (10.00)

Genitals - 16 (80.00)

Perianal and genitals - 1 (5)

Urethral - 1 (5)
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the microbial 16S ribosomal RNA gene was amplified by PCR (94°C

for 3 min, followed by 30 cycles at 94°C for 40 s, 56°C for 60 s, and

72°C for 60 s and a final extension at 72°C for 10 min) using primers

515F (5 ’- GTGCCAGCMGCCGCGG-3 ’) and 909R (5 ’-

CCCCGYCAATTCMTTTRAGT-3 ’) . Purified amplicons

(concentration >10 ng/ml) then were sequenced (2X250 bp

pairwise) on a MiSeq platform (Illumina, San Diego, United

States). The original 16S rRNA FASTQ sequences were uploaded

to a public database on the European Nucleotide Archive (ENA,

http://www.ebi.ac.uk/ena) (accession number: PRJEB80314).
2.4 Bioinformatic analysis

The raw FASTQ sequencing data were performed sequence

stitching and quality trimming by the QIIME (quantitative insights

into microbial ecology) pipeline (version 1.7.0) (Zhu et al., 2022).

Chimeric sequences were identified and removed using Usearch

(version 7.0) and the remaining sequences were clustered to

generate operational taxonomic units (OTUs) with a 97%

similarity identity using UPARSE (http://drive5.com/uparse/)

(Edgar, 2013). Then the OTUs were annotated with taxonomic

information according to a ribosomal database project (RDP)

database (Cole et al., 2014). In addition, alpha diversity (Observed

species and Shannon’s index) and beta diversity (based on the Bray-

Curtis and Jaccard distance matrices) of microbial communities

were visualized by principal co-ordinates analysis (PCoA), and

predictive analyses of microbial functions were performed using a

PICRUSt2 (phylogenetic investigation of communities by

reconstruction of unobserved states) software (Douglas et al., 2020).
2.5 Statistical analysis

The differences in microbial relative abundance between groups

were calculated by the analysis of variance (ANOVA). The

differences in alpha diversity were calculated by the Kruskal-

Wallis (K-W) test and the differences in beta diversity were

calculated by the permutational multivariate analysis of variance

(PERMANOVA). Spearman’s correlation was calculated in R using

Hmisc package and the correlation with p < 0.05 and |r| > 0.4 was
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selected for subsequent analysis. Microbial co-occurrence network

analyses were performed using Gephi software (version 0.10.1) and

the functional differences were analyzed using STAMP (statistical

analysis of metagenomic profiles) software. P < 0.05 was considered

to be statistically significant in this study.
3 Results

3.1 Microbial community composition and
diversity

To explore how the skin microbiome changed among groups,

relative abundance at kingdom, phylum and genus levels was

analyzed. Bacteria were the dominated microbe among three

groups (Figure 1A), while Proteobacteria, Crenarchaeota and

Firmicutes dominated the microbial community at the phylum

level (Figure 1B). Additionally, Escherichia, Staphylococcus and

Lactobacillus were the most abundant genera and the alterations

of these three microbes were observed among groups. Compared to

the healthy controls (HC) group, decreased Escherichia (72.47 vs.

89.27%, p < 0.05), increased Staphylococcus (0.25 vs. 0.09%, p < 0.05)

and Lactobacillus (1.30 vs. 0.08%, p < 0.05) were detected in the CA

group. However, QYXJ treatment attenuated the changes in these

genera (Escherichia, 88.92 vs. 72.47%, p < 0.05; Staphylococcus, 0.13

vs . 0.25%, p < 0.05; Lactobacillus 0.31 vs . 1.30%, p <

0.05) (Figure 1C).

In order to distinguish the species diversity of each group, we

calculated the alpha diversity of skin microbiota in different groups

by Observed analysis and Shannon analysis, respectively.

Comparing with the HC group, we found that the alpha diversity

was significantly increased in the CA group, while QYXJ treatment

markedly decreased the alpha diversity of the CA patients, as

revealed by the Observed and Shannon diversity indices

(Figures 2A, B). We then analyzed the differences of microbial

communities between groups. Principal coordinate analysis (PCoA)

shown that the plots in the HC group and the TM group are

clustered together whereas the plots in the CA cluster are dispersed

(Figure 2C). Moreover, permutational multivariate analysis of

variance (PERMANOVA) revealed significant differences in

microbial beta diversity between CA and HC groups (Bray-Curtis,
FIGURE 1

Microbial community composition in different groups. (A) Relative abundance of skin microbiota at the kingdom level in the three groups.
(B) Relative abundance of skin microbiota at the phylum level in the three groups. (C) Relative abundance of skin microbiota at the genus level in the
three groups. HC, healthy control group; CA, CA patient group, before treatment; TM, CA patient group, after two weeks treatment.
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p=0.026; Jaccard, p=0.011) (Figures 2C, D). Remarkably, QYXJ

treatment also significantly alleviated the beta diversity of the CA

group (Bray-Curtis, p=0.003; Jaccard, p=0.001) (Table 2). Taken

together, these results revealed the changes of microbial community

composition and diversity in patients with CA, and QYXJ treatment

effectively alleviates the microbiota dysbiosis of the CA patients.
3.2 Significantly different operational
taxonomic units and microbial co-
occurrence network

To better understand the microbial diversity among the three

groups, we constructed Venn diagrams to illustrate the common and
Frontiers in Cellular and Infection Microbiology 04
unique OTUs of each group. As shown in Figure 3A, a total of 50433

OTUs were uniquely identified in the HC cluster, 19259 OTUs were

uniquely identified in the CA patients, 19241 OTUs were uniquely

identified in the TM group, and 2916 OTUs were commonly identified

in the three groups. By comparing the OTUs between groups, we found

that the HC group has the fewer common OTUs with the CA group

(667), whereas has the more common OTUs with the TM group

(4429). These results suggested that QYXJ treatment partially rescue

the skin microbiota dysbiosis of the CA patients. According to the

abundance of OTU in each sample, enrichment analysis of significantly

different OTUs in the three groups were displayed in a heatmap plot

(Figure 3B). In comparison with the HC group, the relative abundance

of some microbiomes at the phylum level of Proteobacteria

(Thermoprotei, Caldivirga) and Firmicutes (Bacilli, Streptococcus)

were significantly enriched in the CA patients (p < 0.05). However,

QYXJ treatment obviously decreased the abundance of Caldivirga and

Streptococcus in the TM group (p < 0.05) (Figure 3C).

Co-occurrence networks inferred from the abundance data of

microbial communities have been widely developed to predict

microbial interactions that shape the structure and function of

microbial communities (Riera and Baldo, 2020). We then performed

co-occurrence network analysis to explore the microbial interactions in

each group. After removing unconnected nodes, the final network

consists of 99 nodes and 404 edges (387 co-occurrence edges) in HC
FIGURE 2

Alpha and beta diversity in different groups. (A, B) Analysis of alpha diversity of skin microbiota in different groups by Observed analysis (A) and
Shannon analysis (B). *, CA vs. HC; #, TM vs. CA, Kruskal-Wallis test. **p < 0.01, #p < 0.05, ###p < 0.001. (C, D) Principal coordinate analysis (PCoA)
plots of beta diversity based on Bray-Curtis analysis (C) and Jaccard analysis (D) in different groups. HC, healthy control group; CA, CA patient group,
before treatment; TM, CA patient group, after two weeks treatment. P-value was estimated by permutational multivariate analysis of
variance (PERMANOVA).
TABLE 2 Permutational multivariate analysis of variance (PERMANOVA)
revealed significant differences in beta diversity between groups.

PERMANOVA
Bray-Curtis Jaccard

F R2 p F R2 p

CA vs HC 5.386 0.092 0.026 4.561 0.078 0.011

TM vs CA 7.807 0.191 0.003 7.751 0.181 0.001
Bold values indicated the p<0.05.
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group, 68 nodes and 191 edges (180 co-occurrence edges) in CA

patients, 80 nodes and 456 edges (439 co-occurrence edges) in TM

group (Figure 4, Table 3). Our results suggesting a co-occurrence

pattern in these microbial networks. Moreover, we also observed that

the nodes, edges and average degree in CA group are small in

comparison with the co-occurrence network in HC group. However,

QYXJ treatment increased the clustering coefficient and decreased the

modularity of the co-occurrence network in CA patients (Figure 4).

Collectively, these results demonstrated that QYXJ treatment

remarkably decreases the relative abundance of Caldivirga and
Frontiers in Cellular and Infection Microbiology 05
Streptococcus in microbial community, and increases the complexity

of microbial interactions in CA patients.
3.3 Functional analysis reveals obviously
different metabolic pathways among
groups

To further investigate the differential function of the microbial

communities among groups, we finally performed phylogenetic
FIGURE 3

Enrichment analysis of microbial operational taxonomic units (OTUs) and communities in different groups. (A) Venn diagram displaying the
distribution of the common and unique OTUs in the three groups. (B) Heatmap plot showing the representatively different OTUs in each group.
(C) Heatmap plot showing the most abundant microbial communities in each group. HC, healthy control group; CA, CA patient group, before
treatment; TM, CA patient group, after two weeks treatment. Significant difference was estimated by analysis of variance (ANOVA, p < 0.05).
FIGURE 4

Correlation analysis reveals the microbial interactions in each group. Spearman’s rank correlation test, p < 0.05, |r| > 0.4. HC, healthy control group;
CA, CA patient group, before treatment; TM, CA patient group, after two weeks treatment.
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investigation of communities by reconstruction of unobserved

states (PICRUSt) to predict microbial functional pathways (Hu

et al., 2022). As shown in Figure 5A, 13 significantly enriched

KEGG pathways were selected between CA and HC groups. We

found that several metabolic pathways are downregulated in the CA

group in comparison with the HC group, including membrane

transport, lipid metabolism and carbohydrate metabolism.

Expectedly, QYXJ treatment visibly enhanced the enrichment of

these metabolic pathways in the CA group (Figure 5B). Importantly,
Frontiers in Cellular and Infection Microbiology 06
a carbohydrate metabolism pathway (K00972) was significantly

downregulated in CA patients and markedly reversed after QYXJ

administration (Figure 5). Overall, these findings strongly suggested

the metabolic dysregulation of skin microbiome in CA patients and

QYXJ alleviated microbiota dysbiosis of CA patients through

targeting these metabolic pathways.
4 Discussion

In the current study, we reported a more accurate and

comprehensive understanding of microbiota dysbiosis, including

the alterations of Staphylococcus, Lactobacillus and Escherichia in

CA patients. As reported, HPV infection caused vaginal microbiota

changes in Chinese women and Lactobacillus derivatives served as

sensors for changes in the vaginal microenvironment (Chee et al.,

2020; Zhang et al., 2022). Another research found that

Staphylococcus aureus is an opportunistic pathogen which can

lead to vaginal dysbiosis, aerobic vaginitis, or life-threatening

disorders including aerobic vaginitis (AV) and menstrual toxic

shock syndrome (mTSS) (Maduta et al., 2024). Similarly, previous

studies reported that penile microbiome shape the local micro-

environment and are associated with local inflammation and HIV

susceptibility, and modify the penile microbiome could potentially

prevent HIV transmission (Liu et al., 2017; Prodger et al., 2021;

Mehta et al., 2022). Moreover, 16S rRNA gene sequencing revealed
TABLE 3 Topological features of microbial co-occurrence network in
different groups.

Characteristic HC CA TM

Nodes 99 68 80

Edges 404 191 456

Average degree 8.162 5.618 11.4

Average path length 3.357 3.472 2.747

Graph diameter 9 9 7

Graph density 0.083 0.084 0.144

Clustering coefficient 0.545 0.659 0.666

Modularity 0.546 0.626 0.443

P (%) 95.79 94.24 96.27
FIGURE 5

Functional analysis reveals obviously different metabolic pathways in different groups. (A, B) The significantly altered microbial functional pathways in
CA vs. HC (A) and TM vs. CA (B), as revealed by the extended error bar method. Wilcoxon rank sum test. HC, healthy control group; CA, CA patient
group, before treatment; TM, CA patient group, after two weeks treatment.
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that penile microbiome is involved in penile squamous cell

carcinoma and the greater relative abundances of Staphylococcus

in penile microbiome of HIV-infected men also are observed

(Onywera et al., 2020; De Deus et al., 2024). Thus, our results will

help to clarify the relationship between microbiota dysbiosis and the

occurrence of CA.

Importantly, we also confirmed the previous findings of

increased alpha diversity in CA patients relative to healthy

controls (HC) and a significant difference in microbial beta

diversity between the CA and HC groups (Zhou et al., 2019). It is

known that the diversity of vaginal microbiota as a modifier of HPV

infection and the alpha diversity was significantly higher in HPV-

infected group than in healthy control group (Chao et al., 2019;

Zhang et al., 2022). Notably, cervical intraepithelial neoplasia

progression is associated with increased vaginal microbiome

diversity (Chen et al., 2020), and the highest microbial alpha

diversity was found in multiple high-risk HPV infected women

compared with other infections (Liu et al., 2022). These findings

suggesting the interactions between microbial diversity and the risk

of HPV infection or CA progression. Moreover, we also

demonstrated that QYXJ treatment obviously decreases the alpha

diversity of skin microbiome and remarkably attenuates the

difference in species composition. Overall, these results confirmed

the changes of skin microbiome in CA patients and revealed the

association between microbial diversity and CA progression.

Simultaneously, a previous study reported the existence of

cervical microbial diversity and compositional differences between

patients with cervical dysplasia and cervical cancer, and

demonstrated that the Proteobacteria was particularly enriched in

cervical cancer patients (Sims et al., 2020). Another recent research

using meta-analysis revealed the microbial dysbiosis and reported

similar results that the opportunistic pernicious microbes

Streptococcus was enriched in cervical carcinogenesis (Li et al.,

2024). Consistent with these reports, we found that the relative

abundance of Proteobacteria (especially Caldivirga) and Firmicutes

(especially Streptococcus) were significantly enriched in CA patients.

These results suggested that the enriched Caldivirga and

Streptococcus are associated with the development and

progression of CA. In agreement with this, Gen Wei and

colleagues demonstrated that a probiotic nanozyme hydrogel

regulates vaginal microbiota via decreasing the proportion of

Proteobacteria to reduce the recurrence of candida vaginitis (Wei

et al., 2023). Remarkably, we also observed that QYXJ treatment

resulted in a lower proportion of Caldivirga and Streptococcus to

reshape a healthy microbiota in CA patients. Collectively, we

demonstrated the microbial composition changes in CA patients,

but the direct role of Caldivirga or Streptococcus alterations in the

disease progression of CA needs to be further investigated.

Perturbations of the microbial community composition

accompany alterations in microbial metabolites that damage the

immune barrier, increase the susceptibility to infection and

promote the disease progression (Chen et al., 2018; Dong et al.,

2023). However, little is known about the microbial metabolite

changes with the skin microbiota dysbiosis in CA patients. Here, we
Frontiers in Cellular and Infection Microbiology 07
reported that several metabolic pathways, including membrane

transport, lipid metabolism and carbohydrate metabolism are

downregulated in CA patients in comparison with the healthy

controls. Moreover, we also found that QYXJ treatment partially

restored the enrichment of these metabolic pathways in patients

with CA, which subsequently shifts microbiomes towards healthy-

like microbiota. Consistent with these findings, previous studies

reported that vaginal microbiota transfer (VMT) partially

normalizes the microbiome and neurodevelopment of cesarean-

born infants via regulating the metabolic functions of amino acid

and carbohydrate metabolisms (Dominguez-Bello et al., 2016; Zhou

et al., 2023). Another similar study also found a successful VMT

with dysbiosis resolution and live birth after recurrent pregnancy

loss (Wrønding et al., 2023). Taken together, these results suggested

that dysbiosis resolution is a potential target for various microbial

dysbiotic diseases and QYXJ is an effective therapeutic approach for

these diseases. Because of the relatively small sample size and the

single center in this study, collected more samples in multiple

centers are needed. Moreover, further research on the role of

microbial metabolite changes in the development of CA and the

clinical application of QYXJ in treatment of other dysbiotic

microbiota-related diseases are required.
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