
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Zhengwei Huang,
Shanghai Jiao Tong University, China

REVIEWED BY

Amanda Carroll-Portillo,
University of New Mexico, United States
Sunil Nagpal,
Tata Consultancy Services Ltd., India

*CORRESPONDENCE

Maureen Feucherolles

feucherolles.maureen@gmail.com

†These authors have contributed equally to
this work

RECEIVED 14 January 2025

ACCEPTED 05 May 2025
PUBLISHED 04 June 2025

CITATION

Meyers M, Stoffels CBA, Frache G, Letellier E
and Feucherolles M (2025) Microbiome in
cancer metastasis: biological insights and
emerging spatial omics methods.
Front. Cell. Infect. Microbiol. 15:1559870.
doi: 10.3389/fcimb.2025.1559870

COPYRIGHT

© 2025 Meyers, Stoffels, Frache, Letellier and
Feucherolles. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 04 June 2025

DOI 10.3389/fcimb.2025.1559870
Microbiome in cancer
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The role of the microbiome in cancer metastasis has emerged as a critical area of

research, with growing evidence suggesting that microbial composition and

interactions within the tumour microenvironment may significantly influence

metastatic progression. This review explores the role of the microbiome in

cancer metastasis, as well as potential key bacteria and their mechanisms

through which they could impact tumour dissemination, seeding and growth.

Biological models used to study metastasis are discussed to provide context for

the further investigation of these interactions. In order to answer unresolved

questions regarding the microbiome’s involvement in metastatic dissemination,

recent advancements in spatial biology techniques are examined, including

spatial genomics, transcriptomics, proteomics and metabolomics, which

enable the spatial mapping of microbial interactions within the tumour

microenvironment. Additionally, multimodal-omics imaging approaches are

highlighted for their potential to integrate multiple molecular layers, offering

comprehensive insights into the microbiome’s role in cancer metastasis. The

review also addresses the challenges and limitations of these techniques,

underscoring the complexity of studying microbiome-tumour interactions and

offering directions for future research to better explore and target the

microbiological landscape in metastatic cancer.
KEYWORDS

cancer metastasis, microbiome, spatial omics, host-microbiome interactions,
tumour microenvironment
1 Introduction

It is predicted that there will be over 35 million new cancer cases in 2050, a 77%

increase from the estimated 20 million cases in 2022 (Bray et al., 2024). Of these, metastasis

has been described to be the “ultimate and most lethal manifestation” of cancer

(Gerstberger et al., 2023). It is the stage of the disease that places the most significant
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burden on cancer patient survival, as only a few treatment options

are available across all cancer types (Gui and Bivona, 2022).

Metastasis can be characterised as an accumulation of genetic and

epigenetic changes that allow a cancer to spread from a primary

tumour site to distant organs. The spreading of tumour cells, also

referred to as circulating or invasive tumour cells, is far from

straight forward, having been found to be able to travel through

either the circulatory or lymphatic system (Leong and Witte, 2024),

or directly invade neighbouring structures (Gerstberger et al., 2023).

Additionally, two models of metastatic evolution have been

proposed that present challenges for the clinical treatment of

cancer metastasis. Firstly, the long-standing belief that metastasis

forms in a linear evolution, meaning that only after the primary

tumour has progressed to later stages do the cells become invasive

and pose a risk of metastasis formation (Gui and Bivona, 2022).

However, a phenomenon of parallel evolution has recently been

observed in which it is noted that metastatic spread can also occur at

earlier stages of the disease than previously thought. This would

then mean that the metastatic tumour may develop in parallel and

partially separately to the primary tumour (Klein, 2009). Secondly,
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the phenomenon of metastatic dormancy, which occurs when the

disseminated tumour cells that have colonised a distant organ

survive in a dormant state. This means that they no longer

actively proliferate, and thus often go unnoticed. However, when

the conditions become favourable, these dormant cells can regain

their proliferative phenotype (Neophytou et al., 2019).

For the purpose of this review, we have condensed the complex

metastatic cascade into four main steps: 1. dissemination potential

of the primary tumour, 2. dissemination of invasive tumour cells,

3. seeding of cancer cells at a distant site and 4. growth of the

metastasis (Figure 1). Each of these steps is dependent on the

tumour cell being able to adopt the different phenotypic cell states

necessary to sustain the surrounding tumour microenvironment

(TME), including the stromal compartment, and evade the immune

system and biophysical properties such as pressure (Quail and

Joyce, 2013). Several factors have been identified to play a role in

contributing to or shaping the tumour cells’ ability to adopt the

different phenotypic cell states and thereby the metastatic spread.

The main factors include, but are not limited to, genetics,

epigenetics, the immune landscape and the TME (stroma).
FIGURE 1

An overview of bacteria suggested to be involved in various stages of metastatic dissemination and cancer types. The varying microbiome-cancer
interaction types are represented in the top left and indicated by different colours. The simplified stages of metastatic dissemination are indicated in
the bottom left of the figure and denoted by the numbers 1 to 4. A systematic review of the current literature in terms of the different bacterial
species suggested to be involved per cancer type is represented on the right of the figure. As an example, it is suggested that Fusobacterium
nucleatum, a well-known cancer-associated bacterium, interacts with colorectal cancer in several ways and at several different stages. One of which
is that it is known to affect the metastatic dissemination potential (1) via the direct interaction between bacterium and CRC cell (green). Created in
BioRender (https://BioRender.com/q18n156).
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However, it is the microbiome, in particular, that has recently been

gaining traction.

There is growing consensus that cancer is frequently associated

with a dysbiosis, defined as an imbalance or deviation from a

normal, “healthy” microbiome. While this disruption has

traditionally been attributed to alterations in the gut microbiome,

recent research has also identified dysbiosis within the local TME

across a range of malignancies (Greenhalgh et al., 2016; Coggshall

et al., 2019; Liu et al., 2020). It is now suggested that several cancer

types—including, but not limited to, breast, lung, ovarian,

pancreatic, melanoma, bone, brain, and colorectal cancers—

harbour distinct microbiomes. Yet the extent to which these

microbiomes are polymorphic, and involved in cancer

progression, remains to be explored (Nejman et al., 2020;

Battaglia et al., 2024). Nonetheless, Hanahan’s hallmarks of

cancer was updated in 2022 to include “polymorphic

microbiomes” (Hanahan, 2022). This has led to increased interest

in gaining insights into the potential interactions between the

microbiome and cancer, with the goal of being able to develop

microbiome-based therapies.

Despite being a relatively new field in cancer research, much

progress has been made in understanding the intricate interactions

between the microbiome and primary cancer (Ternes et al., 2020).

While the microbiome includes yeasts, fungi and viruses—each of

which has been implicated in tumour progression (Saftien et al., 2023;

Mjelle et al., 2025)—this review is focused specifically on the bacterial

component of the microbiome. When exploring microbiome-tumour

interactions, the interaction types can be approximately classified into

three types: 1. direct attachment and/or invasion, 2. indirect

secretion of metabolites or toxins, and 3. indirect interaction

through the immune system (Figure 1) (Ternes et al., 2020).

Direct interactions could include attachment and/or invasion,

which could alter tumour cell signalling or downstream phenotypic

changes such as cytoskeletal rearrangement (Fu et al., 2022).

Alternatively, it has been demonstrated that the secretion of

metabolites or toxins from tumour-associated microbes themselves

could influence cancer progression (Pleguezuelos-Manzano et al.,

2020; Ternes et al., 2022). And lastly, the bacteria can indirectly affect

tumour progression through interacting with it and thereby altering

the immune system (Xu et al., 2021). However, much less is known

about these interactions of the microbiome with metastatic stages

of cancer.

In this review, we will explore: (1) the interactions of the

microbiome in cancer metastasis identified thus far and how this

influences disease progression mechanistically, (2) related biological

models for the study of these microbiome metastases crosstalk and

(3) subsequent analysis of methodologies based on the principle of

spatial omics, which can be used to investigate the interactions

between metastases and the microbiome and answer the

outstanding biological questions regarding the microbiome

metastasis crosstalk. We thereby aim to shed light on how to

better explore this evolving, heterogeneous, systemic disease, and

the involvement of the microbiome, thus instilling new approaches

in the field.
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2 Biological aspects of the
microbiome in cancer metastasis

2.1 The influence of the microbiome on
cancer metastasis

The breakthrough discovery that bacteria are able to invade into

and co-migrate with them during dissemination has evoked a whole

new approach to viewing the involvement of the microbiome in

cancer metastasis (Bullman et al., 2017). A recent pan-cancer

analysis study highlighted the vast variety of tumour resident

microbes and their involvement in metastasis. Through integrated

in silico analyses, they explored the presence of the tumour resident

microbes in 4,160 metastatic tumour biopsies, thereby identifying

an organ-specific tropism of microbes, and were able to

demonstrate that the microbial diversity within the metastasis

altered the local immune infiltration, as well as the response to

immune checkpoint blockade treatment (Battaglia et al., 2024).

Furthermore, a certain spatial organisation of the microbiome

within the tumour and TME has been demonstrated, which

appears to be highly organised and affect both the immune and

epithelial function (Galeano Niño et al., 2022). Interestingly, a study

by Fu and colleagues on metastatic breast cancer showed that

eradicating the intratumoral microbiome at the primary site in

vivo actually alleviates metastatic formation (Fu et al., 2022),

similarly, Li and colleagues showed that a disrupted gut

microbiome, also increased metastasis in a different context of

CRC (Li et al., 2019), demonstrating the vital role of the

microbiome in the metastatic cascade (Rosean et al., 2019). It has

been suggested that the microbiome can affect all the

aforementioned stages of metastatic disease (dissemination

potential, dissemination, seeding and growth, as summarised in

Figure 1) by influencing the cancer cell’s ability to overcome the

constraints of the extracellular matrix, sheer stress, anoikis and

immune surveillance (Fu et al., 2023). In Figure 1, we have

summarised the current literature concerning the potential

involvement of the microbiome in cancer metastasis (Figure 1).

One of the most widely studied cancer-related bacteria is

Fusobacterium nucleatum, with its overabundance being noted in

an array of cancers, including oesophageal, pancreatic, breast, and

most notably, colorectal cancer (CRC) (Alon-Maimon et al., 2022).

It was one of the first bacteria to be identified as travelling together

with disseminated cancer cells (Bullman et al., 2017), and is best

known for inducing epithelial mesenchymal transition (EMT) in

the primary tumour, a vital process in the first step of metastatic

spreading (Rubinstein et al., 2013; Kong et al., 2021). It has been

shown that F. nucleatum invasion into primary breast cancer cells

can help the disseminated cell overcome the sheer stress of

travelling through the circulatory system (Fu et al., 2022). Not

only is F. nucleatum known to interact directly with cancer cells

through attachment and/or invasion, but in the context of CRC, it

has also been demonstrated to be able to induce metastatic potential

by upregulating the invasive capacity of the primary cells via one of

its secreted metabolites, formate, and altering the tumour immune
frontiersin.or
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system (Ternes et al., 2022). In breast cancer, F. nucleatum was

found to suppress the accumulation of tumour-infiltrating T cells at

the primary tumour site, thereby contributing to metastatic

potential (Parhi et al., 2020). Similarly, in CRC, F. nucleatum was

found to promote CRC metastasis by affecting M2 polarisation at

the primary site (Xu et al., 2021). However, this also occurs at the

site of metastasis, the liver, in the case of CRC, where F. nucleatum

was shown to lead to a lower density of CD8+ T cells (Sakamoto

et al., 2021). In general, it has become widely accepted that F.

nucleatum may play a central role in orchestrating metastatic

dissemination, while also being known that it is not the only one

and potentially does not act alone.

Another well-established cancer-associated bacterium is

enterotoxigenic Bacteroides fragilis (ETFB). In breast cancer, it has

been found that direct interaction between ETFB and primary

tumour tissue potentiates metastatic spread via the activation of

Notch and b-catenin axes (Parida et al., 2021). Moreover, in CRC

it also affects the potential of primary cancer cells to metastasise via c-

Myc expression (Wu et al., 2003). Furthermore, a well-known

pathogen that has been associated to CRC, Campylobacter jejuni,

has recently been found to increase the CRC metastatic potential by

activating the JAK2/STAT2/MMP9 axis via its secreted toxin,

cytolethal distending toxin (CDT) in the primary tumor site (He

et al., 2024). There are also organ-specific cases, such as the well-

known gastric cancer-associated bacterium Helicobacter pylori which

has been linked to EMT in primary gastric cancers on multiple

occasions, as observed by Eddin and colleagues (Jamal Eddin et al.,

2023). In oral squamous cell carcinoma (OSCC), Porphyromonas

gingivalis was found to not only induce the migration of cancer cells

(via the induction of EMT and MMP secretion) (Lee et al., 2017), but

also contribute to the acquisition of stem cell-like properties (Ha

et al., 2015), both of which contribute to increasing the metastatic

dissemination potential of the primary tumour. Similarly, although

remaining at the genera level, a recent study identified Bacteroidetes

as contributing to the induction of EMT via a TLR4/Myd88/NF-kB

axis at the primary site due to lipopolysaccharide (LPS) translocation

into the blood in oesophageal squamous cell carcinoma (Wu et al.,

2024). In muscle-invasive bladder carcinoma, specific strains of

Escherichia coli have been linked to EMT signatures (Ha et al.,

2015), albeit largely correlatively, suggesting that they play a role in

increased metastatic potential. Meanwhile in non-small cell lung

cancer, increased metastatic potential was observed after a

Streptococcus pneumoniae infection (Gowing et al., 2017).

Growing evidence highlights a variety of bacterial roles in

metastatic spread, yet fundamental aspects remain largely

unknown. For instance, a gut microbiome dysbiosis has been

linked to melanoma progression and treatment response

(Makaranka et al., 2022; Pal et al., 2022), underscoring the need

to understand how remote microbiome can impact metastasis from

a distance. Similarly, a disruption of the vascular barrier integrity of

the gut has been correlated with bacterial levels in distant metastatic

sites (Bertocchi et al., 2021). This raises the question of whether the

microbiome plays only a local role at the site of the tumour or

whether it can have a systemic effect from distant sites (local vs.
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systemic influence). This approach can also be applied to the

microb iome i t se l f . Wi th in the microb iome , ce r ta in

microorganisms are not uniformly harmful (Makaranka et al.,

2022). Some bacteria may drive metastasis, while others might

have protective roles, such as the secretome of Lactobacillus

plantarum YYC-3, which was shown to partially protect against

CRC metastatic spread (Yue et al., 2020). Uncovering this balance

between harmful and beneficial bacteria is crucial for designing

targeted microbial therapies (pathogenic vs. protective microbes).

Additionally, microbial species do not act alone. For example,

studies show that together, F. nucleatum and P. gingivalis

promote greater cancer cell migration than individually (Lee

et al., 2017). Understanding these cooperative dynamics between

bacteria could be key to tackling microbial influence on metastasis.

Therefore, the crosstalk is not limited to the cancer and bacteria

themselves. Bacteria have also been demonstrated to modulate

immune responses, as well as potentially impact treatment

efficacy. Leveraging this relationship could unlock strategies to

strengthen immune-targeted therapies for metastatic disease.

These questions demand robust, multifaceted models to capture

the dynamic, multi-layered interactions between microbiome and

the host. The following section explores the current range of

biological models available, assessing their ability to dissect

different stages of metastasis and the ways in which they can be

used for studying microbiome-host crosstalk. This is followed by a

section shedding light onto the new and upcoming techniques that

could be used to help answer these outstanding questions of the role

of the microbiome in cancer metastasis.
2.2 Biological models for the study of
metastasis

The complex process of cancer metastasis is often not only

multicellular but also multicompartmental, consisting of several

factors and environments at different organ sites. The biological

models currently available for the study of this complex, multi-

component disease vary from easier yet simplified in vitro models,

to complex yet difficult to study in vivo models (some of them

highlighted in Figure 2). Each has its own restrictions in terms of cost,

time, ethical considerations, complexity, and thus throughput and

insights gained (Bouchalova and Bouchal, 2022). The models range

from those that provide insights into specific steps and interaction

types to those that capture the whole metastatic cascade, yet making it

difficult to explore each specific step in mechanistic detail.

In vitromodels provide the advantages of being relatively low in

terms of cost, time and ethical considerations, and thus potentially

high throughput. However, the complexity and aspects of the

cascade that they can capture are limited. To date, in vitro models

have been mainly applied for the study of the initial step in

metastasis, the dissemination potential of the primary tumour,

namely cell migration, invasion, EMT signatures and their

respective interactions with the extracellular matrix (ECM). In

vitro models can vary from 2D and 3D cell culture systems,
frontiersin.org
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which can range from simple setups such as the Boyden invasion

chambers to assess the invasive capacity of cells (Falasca et al.,

2011), to more complex setups such as organ-on-chip systems that

allow for the study of more physiologically relevant factors such as

movement, gas and nutrients (Zervantonakis et al., 2012; Bersini

et al., 2014; Ruiz-Espigares et al., 2021), as well as the combination

of several organ sites (Liu et al., 2019; Lucchetti et al., 2024).

Furthermore, when the study of the role of bacteria in metastasis

is added to these in vitromodels, they become increasingly complex.

Considerations need to be made in terms of culture media, nutrient

and oxygen compatibility, as well as pH and waste accumulation

levels (Średnicka et al., 2023). In many cases, the bacteria of interest,

such as those from the gut microbiome, are anaerobic and therefore

an intricate balance needs to be found between aerobic conditions

for the eukaryotic cells and anaerobic conditions for the bacteria. In

order to address this, several techniques have been applied, such as

limiting exposure time with only short co-cultures, only using the

spent medium from the bacterial cultures, or adding oxygen

scavengers (Qi et al., 2023). However, none of these are optimal

as one could miss the window of interaction when limiting the

exposure time or would be working under the assumption that the

responsible factor is either secreted in the spent medium or could

alter the metabolic state of the cells in the co-culture with the

oxygen scavengers. Alternatively, one could use dual chamber

systems or oxygen gradient cultures, such as some organ-on-chip

systems (Lucchetti et al., 2024; Lee et al., 2024). These

microphysiological systems enable targeted study of specific

compartments, while also allowing for their combination to better
Frontiers in Cellular and Infection Microbiology 05
reflect the overall biological context. As well as addressing the

different oxygen and medium requirements in the dual chamber

systems, these culture systems can also address the waste

accumulation consideration as there is often a continuous flow in

such a system. Another (Qi et al., 2023) elegant example of

overcoming these considerations is the microinjection of bacteria

into the lumen of 3D organoids (Puschhof et al., 2021). In this

setup, the bacteria are at reduced oxygen concentrations in the

lumen of the organoid (Williamson et al., 2018), and are closer to

their physiologically relevant setting (Lee et al., 2024). Thanks to

both the dual chamber culture systems and the organoid

microinjections, this gap between bacterial and cancer cell growth

requirements has been partially bridged. However, this all works

under the overarching assumption that we can culture and work

with the bacteria of interest (Średnicka et al., 2023), something

which remains a highly limiting factor of bacteria that have been

explored in the context of disease.

An in vivo approach allows for a broader capture of the

metastatic process, including the intravasation up to the

colonisation of distant organs. However, it is costly, often

requiring long experiments with high ethical considerations.

Despite a diverse range of in vivo models being available for the

study of metastases, the gold standard remains murine models,

within which there are several variations. Some capture the whole

metastatic cascade, while others are focused on a specific step. Some

allow for the capture of all environmental factors including the

immune system (syngeneic), while others need to be performed in

immunocompromised mice (allogeneic). The disease can be
FIGURE 2

An overview of some biological models that can be used to study aspects of metastasis. Models can be largely classified into the overarching types
of in vitro, ex vivo, in vivo and in silico. In vitro assays include 2D and 3D cultures that can be used in a variety of assays as well as adapted to organ
on chip or dual chamber assays. Ex vivo setups such as organotypic slide cultures and the analysis of patient samples are valuable approaches that
allow for patient relevance. The gold standard remains the variety of in vivo murine models that are available for capturing the whole cascade or
specific aspects with certain assays. And lastly, the recent vast advances in in silico analyses have also allowed it to also become a pilar of scientific
exploration. Created in BioRender (https://BioRender.com/q18n156).
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introduced to the model through injections, either orthotopically or

via a xenograft, or they can form “naturally” through the use of

genetically engineered mouse models (GEMMS). Here, the best

large-scale example is the MMTV-PyMT breast cancer metastasis

model (Attalla et al., 2020). Alternatively, certain aspects of the

metastatic cascade such as the seeding potentially can be studied

using specific experimental setups such as intrasplenic or portal

vein injections to mimic metastatic dissemination from the

pancreas or colon to the liver (O’Brien et al., 2023). Likewise,

general tail vein injection assays or iliac artery injections have been

used to better mimic intra-venous dissemination and thereby assess

seeding capacity (Zhang et al., 2021; Ternes et al., 2022). This model

has the advantage of still having all the factors that contribute to the

TME that may play a responsible role while focusing on just one

step of the whole cascade.

In the context of in vivo models, the introduction of the

microbiome or single bacteria becomes slightly easier as the

physiological context of growth for the bacterium is closer to

their natural habitat (Campisciano and Biffi, 2022). Depending on

the murine model context (specific pathogen free (SPF) or

gnotobiotic/germ-free) and the engraftment potential of the

bacterium in the disease context, it may or may not be necessary

to pre-treat the mice with antibiotics to allow for stable bacterial

engraftment (Campisciano and Biffi, 2022). Alternatively, in specific

assays such as the tail vein dissemination assay, cells used for the in

vivo experiment could simply be pre-exposed to the bacterium to

mimic infection prior to the assay (Ternes et al., 2022). The murine

models are more complex in terms of the aspects of disease they

capture, and including the microbiome aspect. Often, using an SPF

background of a complex microbiome can generate a lot of noise in

the data, making it difficult to infer specific mechanistic insights.

Therefore, researchers have tried to use controlled communities of

bacteria, such as the Oligo-Mouse-Microbiota 12 (OMM12), a

simplified model of the gut microbiome, with characterized

metabolic and ecological interactions, to allow for host-

microbiome interaction studies (Eberl et al., 2020). Additionally,

the gut microbiome of mice has previously been humanised to make

the murine model more physiologically relevant to the human

disease context (Lundberg, 2019; Tsenkova et al., 2025).

One must also not forget that with recent significant

advancements in omics data generation and analysis, in silico

predictions have become another vital aspect of studying complex

biological processes that were not previously available. A promising

avenue is the use of computational modelling for studying either the

microbiome’s ecological interactions within the TME, or even the

metabolic crosstalk between the microbiome and the host through

genome scale metabolic models (Greenhalgh et al., 2019; Clark

et al., 2021; Ternes et al., 2022). An example of how in silico

approaches can contribute to gaining better insights is the pan-

cancer analysis of over four thousand omics metastasis biopsies that

revealed organ-specific tumour microbiome (Battaglia et al., 2024).

Likewise, the use of ex vivo models such as organotypic slide

cultures or patient sample analyses can help to bridge the gap

between fundamental research and patient relevance, however, they
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are difficult to obtain and only represent one snapshot of a very

dynamic disease. Each of these models offers a unique insight into

different aspects of the metastatic cascade and possesses various

advantages and limitations. Often it is best, as well as necessary, to

use a combination of models to fully understand the metastatic

process in question and thereby evaluate potential therapies. Not

only do the biological models themselves have limitations, it is very

diffiucult to analyse it has been very difficult to analyse the microbial

component technically. However, with advances in spatial biology,

new technical approaches are emerging that allow for the precise

localisation and co-detection of microbes within the TME. The next

sections will focus on these innovative tools, highlighting how they

can help map microbial populations and interactions within

metastatic sites, providing deeper insights into the outstanding

questions regarding the role of the microbiome in cancer metastasis.
3 Technical approaches for exploring
the microbiome in cancer metastasis

When exploring the microbiome’s potential role in cancer

metastasis, bulk omics-powered technology, including genomics,

transcriptomics, proteomics and metabolomics, are important as

they provide different layers of information that could address

current critical questions. For this, conventional techniques are

commonly employed, such as whole-genome sequencing, RNA

sequencing, mass spectrometry-based proteomics and liquid

chromatography-mass spectrometry for metabolomics, applied to

bulk samples o specific areas isolated by laser capture

microdissection (LCM). However, determining the co-localisation

of microorganisms and/or the localisation of biomolecules within

specific organelles, cells, or anatomically and histologically defined

tissue or organ components presents challenges. Consequently,

interpreting omics data poses difficulties, hindering the

correlation of overarching metabolic changes with specific tissues,

organs or spatially delimited abnormalities, such as tumours or

metastases. Recent advancements in spatial biology, driven by next-

generation sequencing (NGS), mass spectrometry or fluorescence

imaging techniques, have demonstrated efficacy in investigating

cell-to-cell interactions and facilitating the visualisation of spatial

organisation within cells and tissue structures. These advancements

have also made it feasible to map the microbiome and image host-

microbiome interactions efficiently and might be directly applicable

for metastasis/tumour microbiome research (Bullman et al., 2017;

Shi et al., 2021; Galeano Niño et al., 2022; Zhang et al., 2023;

Ahkami et al., 2024). The molecular heterogeneity of cancer

contributes significantly to drug resistance and treatment failures.

Thus, gaining a deeper understanding of cancer heterogeneity holds

the key to more precise diagnoses and improved patient outcomes.

This knowledge can inform better treatment strategies tailored to

individual patients (Hu et al., 2022). The subsequent sections will

explore a range of spatial technical (summarised in Figure 3 and

Table 1) approaches relevant to deciphering the intricate crosstalk

between the tumour microbiome and cancer metastasis
frontiersin.or
g

https://doi.org/10.3389/fcimb.2025.1559870
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Meyers et al. 10.3389/fcimb.2025.1559870
environment and elucidate the construction of a microbiological

microenvironment tumour or metastasis atlas.
3.1 Spatial genomics: how do microbial
communities spatially organise within
metastatic sites, and do specific bacteria
exhibit preferential colonisation patterns
within metastases?

Understanding how microbial communities are organised

within metastatic sites and whether specific bacteria prefer

metastatic over primary tumours remains an important open

question in cancer research. Additionally, investigating how the

spatial distribution of the microbiome evolves during metastatic

progression and identifying potential microbial signatures unique

to different stages are crucial steps toward deciphering the role of

the microbiome in metastasis. Addressing these questions requires

technologies that preserve the spatial context of both microbial and
Frontiers in Cellular and Infection Microbiology 07
host cells within tissues, an area in which spatial genomics is

particularly powerful. Spatial genomics combines genomic

analysis with spatial information to examine genetic and

microbial elements within their native tissue environments.

Unlike traditional genomic techniques that lose spatial

information, spatial genomics preserves these crit ical

relationships, enabling detailed mapping of microbial

communities relative to tumour cells.

3.1.1 Fluorescence light microscopy
3.1.1.1 Fluorescence in situ hybridisation

Fluorescence in situ hybridisation (FISH) has emerged as a

powerful tool to address the questions of microbial spatial

organisation within metastatic sites and the potential interactions

between microbial communities and host genetic elements. FISH is

a powerful molecular cytogenetic technique that visualises and

maps the spatial organisation of nucleic acids (DNA or RNA)

within cells and tissues (Bayani and Squire, 2004). It involves

hybridising fluorescently labelled probes to specific sequences in
FIGURE 3

Comprehensive overview of spatial biology applied to the metastasis microbiome to examine spatial interaction between the microbiome and the
cancer progression. Created in BioRender (https://BioRender.com/a19q596).
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TABLE 1 Summary of spatial omics techniques for investigating the microbiome in metastasis biology.

Potential applications in
Pros Cons

ies

.

High sensitivity and specificity. Limited multiplexing, pre-
designed probes.

ity High genomic resolution. Limited spatial resolution,
potential tissue degradation.

l Broad view of microbial
diversity, culture-independent,
high taxonomic resolution.

Lower spatial resolution
compared to FISH.

ur High sensitivity and specificity at
single-molecule level.

Limited number of detectable
targets per experiment (1–4
genes in a single experiment),
fixed samples.

ion High multiplexing capability,
single-cell to sub-
cellular resolution.

Costly, time-consuming and
complex data analysis, errors
may accumulate over multiple
rounds of hybridisation,
targeted approach.

d

High multiplexing capability,
highly robust with minimal
error, single-cell to sub-cellular
resolution, high-throughput,
high sensitivity.

Costly, requires special
equipment, high
computational demand.

High-throughput, broad tissue
coverage, protocols for fresh and
fixed samples, compatible
with IHC.

Costly, limited spatial resolution,
designed primarily for eukaryotic
mRNA and requires adaptation
for microbial targets, tissue
preparation-sensitive.

High specificity for
targeted areas.

Labour-intensive, low
throughput, mRNA degradation
during LCM.

gal

rly

Captures microbial influence on
host gene expression.

Lower resolution than single-cell
approaches, risk of capturing
environmental
contamination signal.
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Omics Technique
Spatial resolution

(pixel size)
Description microbiome

in metastasis
Sp
at
ia
l G

en
om

ic
s

Fluorescence in situ hybridisation
(FISH)

~200 nm Uses fluorescent probes to detect
specific DNA sequences in
tissue samples.

Localises defined microbial spe
in tissues, exploring microbial
distribution in metastatic niche

Slide-DNA-seq
~25 µm Sequencing-based method that

captures DNA in tissue sections
for spatial mapping.

Maps tumour DNA heterogene
in metastasis, associating it with
microbial presence.

Metagenomic Plot Sampling by
Sequencing
(MaPS-seq)

~20-30 mm median diameter Metagenomics-based approach
for sequencing microbial
communities in tissue sections.

Identifies and localises microbia
communities in
metastatic microenvironments.

Sp
at
ia
l t
ra
ns
cr
ip
to
m
ic
s

single-molecule FISH
(smFISH)

~200 nm Single-molecule FISH, visualising
individual mRNAs with
fluorescent probes.

Detects microbial RNA in tumo
microenvironments to explore
their impact on gene expression
in metastasis.

Sequential FISH
(seqFISH)

~100–200 nm Sequential FISH allowing
multiplexing of hundreds of
mRNA targets.

Spatial mapping of gene expres
changes in metastatic tissues
influenced by microbial factors

Multiplexed error-robust FISH
(MERFISH)

~100 nm Multiplexed error-robust FISH,
allowing detection of many
mRNA species.

Studies how microbial presence
and associated gene expression
patterns influence tumour cell
behaviour, immune response an
metastatic survival.

Arrays-based methods
(e.g. 10x Visium)

~2-55 µm Microarray-based sequencing,
capturing RNA with
spatial coordinates.

Maps the temporal and spatial
dynamics of gene expression in
metastasis influenced by
microbial presence.

Laser capture microdissection-
based approaches
(e.g. Tomo-seq, GeoMx DSP,
Geo-seq)

~5-100 µm Laser-based microdissection
isolates regions for sequencing.

Studies specific tumour and
microbial regions in metastatic
samples to analyse localised
gene expression.

Spatial meta-transcriptomics
(SmT)

~55 µm Meta-transcriptomics focusing
on microbial RNA
spatial mapping.

Analyses how bacterial and fun
communities evolve during
metastatic progression, particul
in response to host immune
pressure or cancer treatments.
c

s

s

.

a
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TABLE 1 Continued

Potential applications in
Pros Cons

Well-established, wide
availability, high specificity.

Limited multiplexing,
dependency on antibody quality,
tissue preparation-sensitive.

High sensitivity and specificity,
subcellular resolution.

Fluorescence overlap, limited
multiplexing, antibody
availability, cross-reactivity,
limited dynamic range.

Higher multiplexing than
standard IHC, high sensitivity.

Costly, labour-intensive, longer
acquisition times, signal
degradation, dependency on
antibody quality.

Higher multiplexing than
standard IF,
subcellular resolution.

Complexity, costly, fluorescence
overlap, potential
photobleaching,
antibody availability.

High multiplexing and
sensitivity, cellular to subcellular
resolution, no spectral overlap,
no background signal, prepared
samples are stable indefinitely.

Costly, expensive equipment,
complex data processing.

No labelling needed, broad range
of metabolites, potential for
3D imaging.

Lower spatial resolution, ion
suppression effects, less sensitive
for low-abundance metabolites,
matrix interference and
preparation, limited
quantitative accuracy.

Minimal sample preparation,
ambient conditions, rapid spatial
analysis on intact samples,
sequential analysis on the same
tissue, broad range of
metabolites, high throughput.

Limited spatial resolution, less
sensitive for low-abundance
metabolites, instrument cost.

High multiplexing, sensitivity
and spatial resolution, minimal
signal overlap.

Costly, instrument cost, long
acquisition times for detailed
mapping, optimised for
protein analysis.
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Omics Technique
Spatial resolution

(pixel size)
Description microbiome

in metastasis
Sp
at
ia
l p

ro
te
om

ic
s

Immunohistochemistry
(IHC)

~1 µm Uses antibodies to detect
proteins in tissues with
chromogenic markers.

Identifies protein markers of
immune cells influenced by
microbes in metastasis.

Immunofluorescence
(IF)

~200 nm – 1 µm Uses fluorescent antibodies to
visualise proteins in tissues.

Visualises spatial distribution of
immune proteins influenced by
microbes in metastatic niches.

Multiplexed
immunohistochemistry
(mIHC)

~1 µm Cyclic antibody staining to
visualise multiple proteins in
one sample.

Identifies immune markers and
microbial influences in
metastatic niches.

Multiplexed immunofluorescence
(mIF)

~200 nm Cyclic IF to detect multiple
proteins, expanding
multiplexing capability.

Identifies how specific bacteria
influences metastatic niches, affects
the immune response, and
contributes to tumour progression.

Mass Spectrometry
Immunohistochemistry
(MS-IHC, e.g. MALDI

IHC, MIBI™)

~400 nm - 10 µm Metal/photocleavable-tagged
antibodies used to detect proteins
with mass spectrometry.

Characterises the tumour-immune
environment, identifies immune-
modulatory proteins or
neurotransmitters linked or altered
due to microbial presence
in metastasis.

Sp
at
ia
l m

et
ab
ol
om

ic
s

Matrix-assisted laser desorption/
ionisation mass spectrometry
imaging
(MALDI-MSI)

~5-50 µm Matrix-Assisted Laser
Desorption/Ionisation Mass
Spectrometry Imaging.

Maps microbial and host
metabolites in metastatic tissues,
identifies metabolite accumulation
related to tumour progression.

Desorption electrospray
ionisation mass spectrometry
imaging
(DESI-MSI, nanoDESI)

~10-200 µm Desorption Electrospray
Ionisation, offering ambient
ionisation for MSI.

Rapidly identifies microbial
metabolites in metastatic tissues,
exploring their roles in tumour
invasion and immune evasion.

Imaging mass cytometry
(IMC)

~1 µm Imaging Mass Cytometry using
metal-labelled antibodies for
spatial proteomics.

Examines immune cell populations
within the tumour
microenvironment, providing
insights into how microbiome
interactions modulate
immune responses.
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TABLE 1 Continued

Description
Potential applications in

microbiome
in metastasis

Pros Cons

Secondary Ion Mass
Spectrometry for nanoscale
analysis of
elemental composition.

Visualises microbial metabolic
activity and its interactions with
tumour cells at a single-cell and
sub-cellular level in metastatic
niches (or tracing isotopic labels
in situ).

Extremely high spatial resolution,
single-cell level analysis,
elemental and isotopic sensitivity.

Instrument cost, skilled
operators, complex sample
preparation, potential molecular
fragmentation,
destructive analysis.

Laser Ablation Inductively
Coupled Plasma Mass
Spectrometry for
elemental imaging.

Visualises metal distribution in
microbial regions within metastatic
tissue, exploring metal-associated
metabolic pathways in the
tumour microenvironment.

High sensitivity for trace
element, useful for drug-tissue
interaction studies, elemental and
isotopic analysis, quantitative
analysis, preserving
tissue integrity.

Limited to elemental analysis,
low molecular information,
challenging
biological interpretations.

Fluorescent labelling of
metabolites for imaging
biochemical processes.

Studies microbial metabolite
spread from primary tumour to
metastasis, to understand
microbial influence on metastatic
development (tumour and
metastasis spread).

High specificity, real-time
visualisation, dynamic studies.

Requires specific metabolic
labelling; limited to detectable
fluorophores, dependence on
cell metabolism.

tial to unravel the complex interplay between the microbiome and metastatic processes, with a focus on spatial resolution, and the strengths and challenges associated with
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Omics Technique
Spatial resolution

(pixel size)

Secondary ion mass spectrometry
(SIMS, nanoSIMS, TOF-SIMS,
Orbi-SIMS)

~50–500 nm

Laser ablation–inductively
coupled plasma–mass
spectrometry imaging
(LA-ICP-MSI)

~1-100 µm

Metabolic oligosaccharide
engineering and bioorthogonal
click chemistry
(MOE-BCC)

~1 µm

This table provides a comparative analysis of spatial omics techniques, highlighting their poten
each technique.
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the target sample, allowing the direct visualisation of these

sequences through fluorescence microscopy. FISH is particularly

valuable in spatial genomics, where it is used to map the distribution

of specific DNA sequences or genomic features within tissue

samples. Its ability to use multiple fluorescent colours enables the

simultaneous monitoring of multiple genes, making it especially

useful in tumour biology, for example, for analysing the localisation

and quantification of a specific consortium of bacteria (e.g. Oligo-

Mouse-Microbiota, OMM12) or mobile genetic elements (e.g.

antimicrobial resistance plasmids) in its host (Brugiroux et al.,

2022; Grodner et al., 2024). However, FISH has limitations,

particularly its dependence on predesigned probes, which restricts

its ability to provide comprehensive spatial descriptions of

unknown microbiomes, comprising up to thousands of microbial

species. Despite this, advancements in FISH technology, such as

multiplex FISH, Combinatorial Labelling and Spectral Imaging

FISH (CLASI-FISH) (Valm et al., 2012), High Phylogenetic

Resolution microbiome mapping by FISH (HiPR-FISH) (Shi

et al., 2020), sequential error-robust FISH (SEER-FISH) (Cao

et al., 2023), and more recently, mobile genetic elements FISH

(MGE-FISH) (Grodner et al., 2024) have significantly expanded the

potential of this technique. These innovations have improved the

sensitivity, specificity and resolution of FISH, enabling more

detailed and accurate genomic and microbial analyses. For

instance, Cao and colleagues developed the SEER-FISH workflow,

a multiplex approach to mapping microbial communities at the

micron scale, based on error-robust encoding schemes. They

applied their methodology directly to spatially mapping root-

colonised microbial communities of Arabidopsis and their relative

spatial patterns. More details regarding the operating mode are

provided in the original article (Cao et al., 2023). Such an approach

might be relevant when investigating short-range interactions (e.g.

quorum sensing), as well as the attachment and invasion of cancer

cells. By leveraging these techniques, the evolution of microbial

communities over time during metastatic progression, the

identification of specific bacterial species that preferentially

colonise metastatic rather than primary tumours, and the

exploration of the potential impact of microbial-host interactions

on tumourigenesis and metastasis, is possible.

3.1.1.2 Expansion microscopy

Metastasis or the TME may contain a high population of

heterogenous cells, including bacteria and immune cells, making

it challenging to distinguish between cell species and the specific

physiological related states identified. As previously mentioned,

FISH is routinely used to visualise targeted DNA sequences of

microbes. Nevertheless, such a method is not suitable for

investigating physiological changes in bacterial cells that are

modulated by their local environment and are thought to be

crucial for the microbes’ spatial organisation. To overcome this

challenge, the cells were successfully physically expanded prior to

imaging. Lim and colleagues introduced the expansion microscopy

method (mExM) (Lim et al., 2019), in which embedded fluorescent-

engineered bacterial cells, in a swellable polymer matrix, were

subjected to a physical expansion process before fluorescent
Frontiers in Cellular and Infection Microbiology 11
microscopy, leading to an enlargement of the cells and their

internal structures. In the end, the authors highlighted the

possibility of differentiating species within a defined in vitro

community of human gut commensals, conducting in vivo

imaging (e.g. bioluminescence imaging, magnetic resonance

imaging, positron emission tomography, ultrasound) of a model

gut microbiome, and accurately detecting cell-envelope damage

caused by antibiotics, as well as previously unnoticed cell-to-cell

phenotypic variability among pathogenic bacteria during

macrophage infection. The application of in vivo imaging

approaches to study host-microbiome interactions is detailed

elsewhere (Campisciano and Biffi, 2022). Such an approach could

provide valuable insights into the morphology, physiological state

and organisation of cells, as well as their interactions with their

micro-environment, when in contact with a test molecule.

3.1.2 Slide-DNA-sequencing
Metastasis, as well as tumour heterogeneity, are the results of

the accumulation of a variety of DNA mutations or alterations, and

extensive chromosomal rearrangement. Therefore, there is a need to

develop a workflow enabling the visualisation of both genomic

sequences and phenotypic displays. Technologies like Slide-DNA-

seq (Zhao et al., 2022) enable a spatial mapping of DNA sequences,

directly from intact tissue, by transferring tissue sections to a slide

prepared with beads containing a unique DNA barcode that

corresponds to a specific coordinate. After sample preparation,

the DNA sequencing library is paired and end sequenced. By

using the barcode on specific coordinates, the spatial organisation

of DNA in tissue can be reconstructed without needing a

microscope. In their work, Zhao and colleagues successfully

demonstrated that the method accurately preserves sample

architecture, and detects clonal heterogeneity and its related

localisation (Zhao et al., 2022). This technique could be either

used as it is, to provide a genetic map of the microenvironment in

which the metastasis microbiome evolves, or the indexed array

could be customised to investigate microbial DNA sequences. In

any case, and as mentioned by the authors, the slide-DNA-seq may

be used in the future for a large-scale study to create atlases of

tumour or metastasis evolution.

3.1.3 Spatial metagenomics
Two main drawbacks of using imaging approaches based on the

hybridisation of DNA probes (e.g. FISH) to image microbial

community, are the (1) spectral diversity limitation, leading to

poor taxonomic resolution, and (2) the fact that bacteria are packed

in communities, limiting the analysis of individual cells (Welch

et al., 2017). Over the last decade, metagenomics has emerged as a

powerful tool for investigating the microbial diversity and

functions. Metagenomic Plot Sampling by Sequencing (MaPS-seq)

(Sheth et al., 2019) is a cutting-edge technique designed to

overcome the limitations of traditional methods in characterising

complex microbiomes. It suggests a culture-independent solution to

map microbial communities with micron-scale resolution,

involving the embedding of intact microbiome samples in a gel

matrix, cryo-fracturing them into smaller particles and then
frontiersin.org
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encapsulating these particles into droplets. Within each droplet,

microbial DNA is amplified using barcoded 16S rRNA primers, and

the products undergo deep sequencing. This process allows for the

detailed spatial and taxonomic profiling of the microbiome,

revealing intricate microbial interactions and spatial arrangements

that are often missed by other techniques. MaPS-seq thus represents

a significant advancement in metagenomics, providing a more

comprehensive and nuanced view of microbial communities in

complex ecosystems. In this context, MaPS-seq should be applied

directly onto metastatic tissues to better understand the spatial

organisation of microbiome communities.

All things considered, spatial genomics techniques could be

used to study the microbiomes of metastasis because they provide a

thorough understanding of the spatial arrangement of genetic

features in metastatic tissues, making it possible to characterise

both the microbial and host components at the same time. This

method could clarify the relationship between a particular genomic

feature in the tumour cells and the surrounding microenvironment

and the spatial distribution of microbial populations within

metastatic lesions. This could provide insights into the role of the

microbiome in the progression of metastasis and identify potential

targets for therapy.
3.2 Spatial transcriptomics: how does a
microbial presence within metastatic
niches influence cancer cell gene
expression and support metastatic
survival?

To understand how microbial presence and gene expression

within metastatic niches influence cancer cell gene expression and

support metastatic survival, it is crucial to examine the complex role

that microbes play in shaping cancer progression. The advent of

single-cell transcriptomics (scRNA-seq) has revolutionised

biomedical research by facilitating the investigation of cellular

heterogeneity and gene expression profiles at unprecedented

resolutions. However, scRNA-seq is not without limitations,

including the necessity for cell isolation procedures that may

induce stress, cell death or aggregation, and crucially, the loss of

spatial context inherent in dissociating cells from their tissue

microenvironment (Li et al., 2022; Williams et al., 2022). In this

context, the emergence of spatial transcriptomics (ST) has garnered

significant attention, being heralded method of the year in 2020 by

Nature Methods (Marx, 2021). ST represents a transformative

approach that enables the simultaneous capture of transcriptomic

information, i.e. RNA transcripts, and positional context within

tissue samples (Marx, 2021). This spatially resolved single-cell

analysis holds promise across various disciplines, including cancer

research, where it offers invaluable insights into tumour

heterogeneity, spatially dependent mechanisms, the tumour

immune microenvironment, and pathological classification. By

quantifying gene transcripts across distinct spatial locations

within tissues, ST techniques provide a nuanced understanding of

cellular interactions and spatial organisation, albeit with
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considerations such as tissue size, number of genes counted and

spatial resolution, often necessitating trade-offs. For a long time, the

literature on ST was unclear, with numerous techniques and

confusing acronyms. However, these techniques have been

subdivided into two main groups by other reviewers: imaging

mRNAs and sequencing-based spatial transcriptomics (Lewis

et al., 2021; Moses and Pachter, 2022; Williams et al., 2022). This

categorisation helps streamline the understanding and application

of spatial transcriptomics in metastasis microbiome research. A

detailed list of existing ST techniques and a comprehensive

elucidation of these methodologies can be found in previous

literature (Moses and Pachter, 2022; Williams et al., 2022; Cheng

et al., 2023).

3.2.1 Imaging mRNAs-based spatial
transcriptomics

The imaging of mRNAs in situ via microscopy constitutes the

foundational principle of imaging-based spatial transcriptomics

technologies. This method primarily relies on fluorescence in situ

hybridisation (FISH), a technique utilised for labelling and

visualising mRNAs using fluorescent oligonucleotide probes. This

approach encompasses two distinct methodologies: in situ

hybridisation (ISH)-based and in situ sequencing (ISS)-based.

ISH-based techniques, such as single-molecule FISH (smFISH)

(Femino et al., 1998), entail multiple rounds of hybridisation,

with each labelled transcript either appearing as a distinct spot

under microscopy, with multiple variants such as sequential FISH

(seqFISH) (Lubeck et al., 2014), seqFISH+ (Eng et al., 2019) and

multiplexed error-robust FISH (MERFISH) (Chen et al., 2015) or

providing enhanced multiplexing capabilities. Commercial

platforms, such as Merscope (Vizgen) or CosMX (NanoString)

(He et al., 2022), further expand the utility of these techniques.

For instance, the SeqFISH method has been adapted for bacterial

studies (ParseqFISH), enabling the identification and spatial

resolution of heterogeneous metabolic and virulence-related

transcriptional states within Pseudomonas aeruginosa populations

during planktonic growth (Dar et al., 2021). In contrast, ISS-based

approaches involve the direct sequencing of amplified mRNAs

within tissue sections using sequencing by ligation (SBL).

3.2.2 Sequencing-based spatial transcriptomics
In sequencing-based ST approaches, mRNA molecules are

captured from tissue samples, converted into cDNA, before gene-

specific sequences are counted via next-generation sequencing (NGS).

This category encompasses two main methods: microdissection-based

and array-based techniques. Microdissection-based methods involve

laser capture microdissection (LCM) to isolate regions of interest (ROIs)

within tissue sections, enabling transcriptomic profiling via

microarrays. Noteworthy developments include Tomo-seq (Kruse

et al., 2016) and Geo-seq (Chen et al., 2017), alongside commercial

platforms like Nanostring’s GeoMx DSP (Merritt et al., 2020), which

offer spatially resolved RNA and protein profiling from distinct tissue

compartments. However, limitations include spatial resolution

constraints and mRNA degradation during LCM. On the other

hand, array-based methods, exemplified by the Visium platform
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from 10x Genomics, provide larger tissue sections and positional

barcoding for mRNA capture (Ståhl et al., 2016). Galeano and

colleagues used an adapted 10x Visium to determine the identity and

the in-situ location of intra-tumoural microbial communities within

patient tissues (CRC and OSCC). With the GeoMx DSP, they

quantified the expression profile of 77 proteins associated with anti-

tumour immunity and cancer progression (Galeano Niño et al., 2022).

Recent advancements, such as Visium HD Spatial Gene Expression,

offer increased spatial resolution, i.e. 11 million features in a continuous

grid-pattern of 2 mm squares. Other notable developments include

Slide-seq (Rodriques et al., 2019), Slide-seqV2 (Stickels et al., 2021),

High-definition spatial transcriptomics (HDST) (Vickovic et al., 2019)

and Stereo-seq (Chen et al., 2022), the latter promising 500 nm spatial

resolution, which might be of interest for the purpose of microbiome

research. Despite these advancements, array-based methods may not

accurately capture cellular morphology contours. Notably, in the

context of microbiome research and cancer metastasis, there is a

pressing need to elucidate host-microbiome interactions while

preserving accurate spatial context (Chatterjee et al., 2024). Emerging

techniques like Spatial host–microbiome sequencing (SHM-seq) offer

all-sequencing-based approaches, enabling simultaneous capture of

tissue histology, host transcripts and bacterial 16S sequences

(Lötstedt et al., 2023). Studies by Galeano and colleagues, and

Lötstedt and colleagues exemplify the utility of these methods in

mapping intra-tumoural microbial communities and correlating

spatial gene expression programmes with a bacterial presence,

underscoring their significance in investigating the metastasis

ecosystem and related microbial communities.

3.2.3 Spatial meta-transcriptomics
While ST methodologies are mainly used for investigating the

bacterial spatial gene expression over a complex bio-sample, these

techniques are unable to obtain bacterial and host transcriptional

information simultaneously. Spatial meta-transcriptomics (SmT) is

an innovative molecular biology approach that provides a holistic

understanding of gene expression patterns within spatial contexts,

encompassing both the host and microbial communities, including

bacteria, fungi and viruses. Based on modified commercial solutions

such as NanoString Digital Spatial Profiler and 10x Genomics

Visium protocols, SmT has been instrumental in uncovering

spatial associations within diverse microbiome ecosystems, from

tumours to plant microbiome (Wong-Rolle et al., 2022; Saarenpää

et al., 2023). For instance, it has revealed correlations between intra-

tumour bacterial burden and lung cancer progression, shedding

light on disease mechanisms. Indeed, Wong-Rolle and colleagues

highlighted the link between oncogenic b-catenin expression and

the bacterial burden, thanks to a method characterising abundance

of bacteria (16S rRNA), fungi (28S rRNA), cytomegalovirus (UL83)

transcripts and around 1,800 human genes products involved in

both cancer and immune pathways, boosting insights into tumour

biology (Wong-Rolle et al., 2022). Along the same lines, a

multimodal 16S/18S/ITS/poly-d(T) array capable of characterising

host transcriptomes and microbiomes at a resolution of 55 µm was
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designed by Saarenpää and colleagues, to investigate inter- and

intra-kingdom spatial dynamics. They linked local changes in host

gene expression to the size and composition of local microbial

populations in the model system Arabidopsis thaliana leaves

(Saarenpää et al., 2023).

Overall, ST could be employed to investigate metastasis

microbiomes by providing a comprehensive understanding of the

spatial organisation of gene expression profiles within metastatic

tissues, thereby enabling the simultaneous characterisation of host

and microbial components. This approach could elucidate how the

spatial distribution of microbial populations within metastatic lesions

correlates with knownmetastatic genes such as SOX9 and SNAI1 (Cai

et al., 2024), in both the tumour cells and the surrounding TME,

offering insights into the role of the microbiome in metastasis

progression and potential therapeutic targets.
3.3 Spatial proteomics: how do microbial
interactions shape the spatial organisation
and immune modulation of metastatic
niches?

To understand how the microbiome modulates the immune

response in metastatic niches, it is essential to explore the intricate

interactions between microbial communities, host cells and the

immune system. Recent advancements in spatial proteomics have

provided valuable insights into how proteins are organised spatially

within tissues, shedding light on the mechanisms by which the

microbiome can influence immune cell function and response in

these metastatic environments. Spatial proteomics, which maps the

localisation of proteins and their interactions within tissues, is key

to understanding how immune cells are recruited, activated or

suppressed in the presence of microbial signals. Techniques such as

immunohistochemistry (IHC), immunofluorescence (IF) and

proximity-based assays (e.g. proximity ligation assays) are

commonly used to visualise protein localisation and interactions,

allowing for a detailed analysis of immune responses in the

microbiome context. By examining the spatial distribution of

immune-related proteins and their interactions with microbial-

derived factors in metastatic niches, spatial proteomics enables

the identification of immune modulators influenced by microbial

presence. This approach not only deepens our understanding of

immune microenvironment and tumour progression, but also

highlights potential therapeutic targets to modulate the immune

response in metastatic disease.

3.3.1 Antibody-based sequential multiplexed
imaging

To understand how the microbiome modulates the immune

response in metastatic niches, advanced techniques for detecting

and localising immune-related proteins within tissues are essential.

IHC and IF are widely used techniques for detecting and localising

proteins in cells and tissues by exploiting the specific binding
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between antibodies and antigens using light and fluorescence

microscopy, respectively. Traditionally, antibodies are visualised

through enzyme-mediated indirect labelling or direct conjugation

with chromogens or fluorophores. However, these methods are

limited in the number of markers that can be imaged

simultaneously. Emerging technologies, such as multiplexed

immunoh i s t o c h em i s t r y (m IHC ) a n d mu l t i p l e x e d

immunofluorescence (mIF), address this limitation by allowing

the simultaneous visualisation of numerous proteins within a

single tissue section (Taube et al., 2020; Park et al., 2022). mIHC

and mIF utilise a cyclic staining approach to analyse the same

sample in multiple rounds (e.g. COMET™ from Lunaphore). After

each staining cycle, image assembly algorithms were employed to

integrate the data. Examples of sequential mIF techniques include

Cyclic Immunofluorescence (CyCIF) (Lin et al., 2018), which uses

repeated cycles of staining and imaging, Iterative Bleaching Extends

Multiplexity (IBEX) (Radtke et al., 2020), which involves iterative

bleaching to extend the range of detectable antigens, Iterative

Indirect Immunofluorescence Imaging (4i) (Gut et al., 2018), Co-

Detection by Indexing (CODEX, newly PhenoCycler by Akoya

Biosciences) (Goltsev et al., 2018) and Immunostaining with

Signal Amplification by Exchange Reaction (Immuno-SABER)

(Saka et al., 2019). Unlike traditional methods, Immuno-SABER

and CODEX use antibodies conjugated to unique DNA

oligonucleotides rather than fluorescent dyes. It is worth noting

that recent studies have also shown the possibility of combining

multiple techniques, such as mIF and MS imaging (Goossens et al.,

2022). Overall, the development of such methods has allowed the

simultaneous assessment of multiple biomarkers to study the

tumour immune microenvironment. Despite these advances,

challenges such as lengthy acquisition times and potential signal

degradation remain, which may limit the scalability of these

techniques for high-throughput studies. Nevertheless, the ability

to assess multiple immune and microbial biomarkers within the

tumour-immune microenvironment is crucial for understanding

how microbial modulation supports immune evasion and

metastatic progression.

3.3.2 Antibody-based one-shot multiplexed
imaging

One-shot multiplexed imaging approaches, such as Digital

Spatial Profiling (DSP) (Ahmed et al., 2022), Stimulated Raman

Scattering (SRS) microscopy (Wei et al., 2017) and Mass

Spectrometry Imaging (MSI), produce highly detailed and

informative images. However, their widespread use is often

limited by the high cost of the consumables and specialised

equipment required. Mass Spectrometry Immunohistochemistry

(MS-IHC) is an increasingly important method for characterising

the spatial organisation of proteins in biological samples using

metal-tagged antibodies, allowing for the simultaneous detection of

up to 40 different protein markers. Current MS-IHC techniques

include Multiplexed Ion Beam Imaging (MIBI™) (Keren et al.,

2019), developed by IonPath, which utilises a charged primary ion

beam, and Imaging Mass Cytometry (IMC), which employs a

pulsed laser beam (Giesen et al., 2014; Feng et al., 2022; Kuett
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et al., 2022), reaching a spatial resolution of 400 nm. In the work of

Keren and colleagues, MIBI-TOF technology was used to resolve

regional heterogeneity in the tumour-immune microenvironment

by analysing the localisation of 36 proteins, including tumour and

immune cell phenotypes, and immuno-regulatory proteins, such as

vimentin and EpCAM molecules which are highly expressed in

metastatic cancer, in single triple negative breast tumours (Spizzo

et al., 2011; Keren et al., 2019; Berr et al., 2023).

Similarly, while conventional MSI techniques, such as Matrix-

Assisted Laser Desorption/Ionisation (MALDI) MSI, are well

known for not requiring prior tagging to detect a broad range of

biomolecules, including peptides and proteins, in a single scan

without altering the native sample (Feucherolles and Frache, 2022),

it is possible to target specific hardly ionisable molecules by using

photocleavable mass tags, enabling the simultaneous imaging of

several intact proteins (MALDI-IHC) (Yagnik et al., 2021).

Commercial solutions like Miralys™ from AmberGen propose

several panels, such as immune-oncology, tissue morphology,

lung and breast cancer, neurological and cancer core, for targeted

spatial proteomic studies. Although commercial panels for

immune-oncology and cancer studies are available, microbial

proteomic panels, particularly for analysing the bacterial

microbiome in metastatic niches, have yet to be fully developed

using a customised conjugation kit. Such panels could provide

essential information on how microbial communities interact

with immune cells to modulate immune responses, influencing

metastasis progression. Incorporating microbial proteomics into

spatial imaging techniques could significantly enhance our

understanding of how the microbiome shapes the immune

response within metastatic microenvironments, offering new

targets for therapeutic intervention.
3.4 Spatial metabolomics: are specific
microbial metabolites spatially associated
with regions of tumour cell invasion or
metastasis formation, and how do these
metabolites impact cellular behaviour?

Specific microbial metabolites have been increasingly

recognised for their role in modulating the TME, particularly in

regions of tumour cell invasion and metastasis formation. These

metabolites, such as short-chain fatty acids (SCFAs), bile acids and

other microbial by-products, can influence tumour cell behaviour

by altering cellular metabolism, immune responses and the

extracellular matrix, all of which are crucial for metastatic

progression (Zhou et al., 2022). Spatial metabolomics techniques,

including mass spectrometry imaging (MSI), enable the high-

resolution mapping of metabolites within tissues, allowing for the

identification of spatial associations between specific microbial

metabolites and regions of tumour cell invasion. MSI provides a

powerful tool to visualise the distribution of these metabolites in

both targeted and untargeted approaches, revealing how microbial

metabolites may accumulate in areas of active invasion or

metastasis. By mapping metabolic heterogeneity within the TME,
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1559870
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Meyers et al. 10.3389/fcimb.2025.1559870
spatial metabolomics offers valuable insights into how microbial-

derived metabolites can impact tumour cell plasticity, as well as

their ability to invade surrounding tissues. Understanding these

metabolic interactions provides a foundation for new therapeutic

strategies aimed at targeting microbial metabolic pathways in order

to prevent or disrupt metastasis.

3.4.1 Mass spectrometry-based methods
Mass spectrometry-based methods like Matrix-Assisted Laser

Desorption/Ionisation (MALDI), Desorption Electrospray

Ionisation (DESI), Secondary Ion Mass Spectrometry (SIMS),

Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry

(LA-ICP-MS) and Imaging Mass Cytometry (IMC) are integral to

spatial metabolomics, allowing for the precise mapping of

metabolites within biological tissues. These techniques enable the

high-resolution localisation of metabolites, crucial for unravelling

the spat ia l complex i ty o f b iochemica l processes in

tissue architecture.

In microbiology, MALDI-MSI could play a significant role in

visualising metabolites involved in microbial and host-pathogen

dynamics, either in 2D or in 3D, providing insights into biofilm and

microbial mat formation, chemical characterisation, drug

distribution (e.g. antimicrobials distribution within microbial

biofilms (Shen et al., 2024)) and effects (Feucherolles and Frache,

2022; Zou et al., 2022; Burguet et al., 2024; Kuik et al., 2024; Vats

et al., 2024). Blanc and colleagues’ work highlighted the distribution

of the phosphat idyl inos i tol mannosides spec ies and

phosphatidylinositol, largely found in Mycobacterium spp. lipids

fingerprint, observed by MALDI MSI, which shared the same shape

around the granuloma cavity, matching the Mycobacterium

distribution demonstrated by antibody-labelling (Blanc et al.,

2018). While the current spatial resolution of commercialised

MALDI MSI devices could go down by 5 µm, new demonstrators

highlighted the possibility of going down the micrometre scale,

making it suitable for potential single-cell analysis in complex

biological systems (Kompauer et al., 2016).

Likewise, atmospheric-pressure MALDI MSI, DESI-MSI offers

the advantage of a simplified procedure of sample preparation and

an ambient ionisation, making it suitable for the rapid spatial

analysis of intact biological samples. Microbial imprints, cross-

section, suspension and extraction, could be directly analysed to

monitor the exchange of metabolites or production of natural

products (Watrous et al., 2010; Parrot et al., 2018). Interestingly,

the direct visualisation of living bacterial colonies and biofilms, i.e.

Shewanella oneidensis, Bacillus subtilis and Streptomyces coelicolor,

has been performed by nanospray DESI (nanoDESI) (Watrous

et al., 2013). Along the same lines, the rapid detection and

identification of bacteria directly in human colorectal tissues,

based on DESI-MSI, was reported (Chen et al., 2024). After

developing a database containing 3274 bacterial strains and 232

bacterial species using taxon-specific markers, i.e. conserved small

metabolite-based markers capable of identifying specific bacterial

taxa based on shotgun rapid evaporative ionisation mass

spectrometry (REIMS), DESI-MSI was directly used in situ to

detect a wide range of bacterial biomarkers, including B. fragilis
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and F. nucleatum, known to play a key role in the occurrence and

the progression in CRC (Strittmatter et al., 2014; Chen et al., 2024).

While the study focused on tumour tissue, this type of approach

might be considered for metastasis studies. However, it is worth

noting that while rapid, DESI or nanoDESI present a critical spatial

resolution (ca. 50-200 µm for DESI and <12 µm for nanoDESI) to

perform single cell analysis in metastasis.

IMC combines mass spectrometry with high-resolution

imaging, enabling the detailed study of microbial populations at

the single-cell level (Glasson et al., 2023). IMC can probe up to 40

antigens and transcripts simultaneously in a single experiment,

using metal-labelled antibodies, at an attractive spatial resolution

(e.g. 1 µm for the Hyperion+ Imaging System from Standard

Biotools) and hence, is becoming increasingly popular in the

growing field of spatial biology. As an example, Feng and

colleagues developed an IMC approach for investigating breast

cancer tumoural microbiome interactions, using specific tagged

labels for localising gram-positive and -negative bacteria and

mammalian cells within the fixed tissue (Feng et al., 2022). Kuett

and colleagues took the experiment a step further by mapping the

cancer breast TME three-dimensionally by combining 152 IMC

images, resulting in a voxel of 304x488x652 mm3, and enabling

metabolic interactions to be studied at high spatial resolution (Kuett

et al., 2022). Nevertheless, such a targeted approach requires time-

consuming acquisition for volume imaging. Here, IMC could be

used to enable the simultaneous co-localisation of immune and

bacterial cells in metastasis at a single cell resolution.

SIMS, especially nanoSIMS, offers nanoscale imaging (down to

50 nm) to analyse the elemental and isotopic composition of

microbial cells (Nuñez et al., 2018). By sputtering secondary ions

from the sample with a focused ion beam and analysing them via

mass spectrometry, NanoSIMS could provide detailed insights into

microbial metabolic activities and interactions at a single cell level,

by imaging natural elemental composition or isotopic distribution,

in both cells and spores, and their behaviour in different

environmental conditions (Behrens et al., 2008; Ghosal et al.,

2008; McGlynn et al., 2015; Chadwick et al., 2019; Pett-Ridge and

Weber, 2012). To our knowledge, such methodology has never been

directly applied to specifically investigate the microbiome related to

either the tumoural or the metastasis microenvironment. However,

several studies highlighted its utility individually or combined with

other imaging modalities (e.g. FISH and a FISH-based approach)

for microbial metabolic activities, such as 15N assimilation, 13C

tracking, sulphur cycling, or biofilm characterisation (Gao et al.,

2016). For instance, the anabolic activity of Geobacter

sulfurreducens biofilms was measured to better understand the

phenomenon of microbial conductivity (Chadwick et al., 2019).

In the same way, SIMS equipped with a time-of-flight analyser

(TOF-SIMS) or an Orbitrap mass analyser (Orbi-SIMS) enables

metabolite (e.g. bacterium-derived metabolites and antimicrobials

like ciprofloxacin) analysis with precise subcellular localisation in

complex matrices, such as native-sate biofilms (Davies et al., 2017;

Akbari et al., 2023; Kern et al., 2024). However, a significant

drawback of the TOF analyser is its excessive fragmentation

during ionisation and its limited mass resolving power (m/Dm
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~30,000), which complicates molecule identification and reduces

the amount of information obtainable about the metabolic

landscape. In contrast, the Orbitrap mass analyser offers the

advantages of high mass resolution (>240,000 at m/z 200), high

mass accuracy (<1 ppm) and high spatial resolution (down to 2

µm). Kern et al. have developed a workflow combing Orbi-SIMS

with fluorescent imaging and histological staining, allowing

metabolic segmentation with simultaneous cell identification in

the tumour microenvironment (segmentation of tumour cells,

immune cells, and stromal areas) (Kern et al., 2024).

Like other elemental methods, LA-ICP-MSI might be used to

perform an elemental pre-screening of intact biological tissues at a

micrometre level (1-100 µm), as it provides the atomic distribution

across the sample surface by using an UV laser. Such an approach

has already been investigated to evaluate the elemental distribution

(e.g. Mg, Fe, Zn, Ca) and organisation in bacterial colonies or in

microbial contaminated tissue abscesses (Corbin et al., 2008;

Latimer et al., 2009). More recently, Cassat and colleagues

developed a high-resolution imaging platform to investigate the

associated alterations of S. aureus-triggered infections in mice

(Cassat et al., 2018). Here, LA-ICP-MSI was used to follow the

distribution of elements, such as calcium, copper, magnesium,

manganese, phosphorous, zinc and iron, on adjacent tissues, to

highlight the metal starvation responses during Staphylococcus

infection. Interestingly, in cancer research, such a method has

been used extensively for imaging the interaction between

anticancer drugs and the cancer cells (Ma and Fernández, 2024).

To our knowledge, such an approach has not been used yet to

explore the close interaction between metastasis microbiome and its

surroundings environment. It might be interesting to evaluate the

directly impact of anticancer drugs on the metastasis or on

the oncosphere.

In this sense, mass spectrometry-based methodologies

combined with other described bulk or spatial omics-powered

methods might be a game changer for enhancing our knowledge

regarding metastasis microbiome metabolism pathway, through a

temporal design experiment at different cancer progression stages,

or for the rapid in situ detection and identification of

bacterial markers.

3.4.2 Fluorescent-based methods
In spatial metabolomics, fluorescent-based methods involve

labelling metabolites with fluorescent dyes to visualise their

distribution within tissues. This approach allows the real-time

tracking and mapping of metabolites using fluorescence

microscopy, offering insights into metabolic processes,

interactions and tissue organisation. It is especially valuable for

studying dynamic biochemical changes and the molecular basis of

physiological and pathological conditions. In microbiology, such an

approach was investigated for resolving the challenge of

understanding the host-commensal interactions within an

anaerobic intestinal environment (Geva-Zatorsky et al., 2015). By

using metabolic oligosaccharide engineering and bioorthogonal

click chemistry (MOE-BCC) to label anaerobes in vivo within the

mouse gut, including Bacteroides fragilis, authors were able to assess
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distribution and colonisation preferences. Overall, metabolic

labelling might be suitable for better understanding the microbial

dissemination from the tumour to the metastasis localisation.
3.5 Spatial multimodal-omics imaging: how
do microbial interactions and metabolic
activity within anatomical structures
influence metastasis progression?

Considered individually, previously introduced methods are not

able to characterise host-metastasis metabolite crosstalks

comprehensively, as they either (1) do not have the spatial

resolution to reach single-cell size for metabolic interactions (e.g.

MALDI MSI), (2) are not able to explain complex heterogeneity in

biological ecosystems (e.g. FISH) or (3) do not provide a holistic

and non-targeted view of metabolic interactions (e.g. IMC), which

further limits our understanding of complex metabolic interactions

between the microbiome and the metastasis microenvironment. To

close this gap, a tailor-made in situ spatial metabolomics workflow

needs to be developed, based on the combination of several

imaging modalities.

3.5.1 2D Combination of modalities
Combining different 2D MSI modalities with complementary

techniques such as LC-MS, H&E staining and RNA scope offers a

promising strategy to address key questions regarding microbial

and metabolic interactions within metastatic environments. Such an

approach has already enabled the study of metabolic and lipidomic

variations at the single-cell level in human or mouse liver tissues

(Tian et al., 2024). Although this approach is not currently utilised

in microbiome research, it presents a promising avenue

for exploration.

Integrating MSI with fluorescence-based imaging methods, like

FISH and autofluorescence, has been reported in various studies,

and has proven useful in mapping microbial distributions and

metabolic alterations within infected tissues (Good et al., 2024).

For instance, Guiberson and colleagues investigated intestinal

tissues infected with Clostridium difficile using MALDI MSI,

elemental imaging and autofluorescence, observing significant

lipid modulation during infection (Guiberson et al., 2022). Parrot

and colleagues employed a combination of FISH and DESI to

analyse the microbiome and metabolome of brown algae Fucus

vesiculosus (Parrot et al., 2019). These examples underscore how

integrated modalities can resolve microbial and host metabolic

interactions spatially, which may parallel microbial involvement

in metastasis.

While previous attempts to combine MALDI MSI and FISH on

a single tissue section were unsuccessful due to the MALDI laser’s

destructiveness, the development of a spatial metabolomics pipeline

named metaFISH now allows for the simultaneous imaging of host-

microbiome symbioses and their metabolic interactions (Geier

et al., 2020; Bourceau et al., 2023). This pipeline offers a culture-

independent approach to linking metabolic phenotypes with

community members in situ, serving as a powerful tool for
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microbiologists across disciplines. MetaFISH is especially relevant

to studying metastasis as it offers a culture-independent method to

link microbial presence with host tissue alterations, facilitating the

examination of microbiome-tumour crosstalk at the metabolic level.

While previous modalities mainly target the molecular

information, it is worth adding elemental imaging modalities to the

workflow, as they are both complementary. Such a workflow was

discussed and presented by Karst’group (University of Münster,

Germany) during the second annual conference on Mass

Spectrometry Imaging and Integrated Topics (9–12 September

2024 in Münster, Germany) for biological samples. The

multimodal bioimaging approach should rely on both elemental

(e.g. micro x-ray fluorescence and LA-ICP-MS) and molecular (e.g.

MALDI MSI and QCL-IR microscopy) modalities, on a single tissue

sample, as they validate each other and offer complementary insights.

However, as biological interactions are inherently three-

dimensional, the transition to 3D approaches would further

enhance the understanding of complex metastasis microbiome

interactions in situ.

3.5.2 From 2D to 3D
Transitioning from 2D to 3D imaging approaches offers a

promising avenue to deepen our understanding of the metabolic

and anatomical characteristics within complex microbiological

ecosys tems l ike pr imary tumours or the metas tas i s

microenvironment. While many studies have traditionally focused

on correlating metabolic distributions in a 2D manner, a shift

towards a 3D approach provides an opportunity to glean

additional insights into tissue functions and the dynamics of the

metastasis microbiome.

One strategy involves integrating bulk omics-powered data,

such as mass spectrometry and microbial 16S rRNA amplicon

sequences. For instance, Bouslimani et al. demonstrated a method

to visualise the chemical composition and microbial community

composition of the human skin surface through 3D topographical

maps, utilising mass spectrometry data and 16S sequencing, thereby

shedding light on the modulation of the skin microbiome and its

implications for human health. Another approach entails stacking

consecutive images of a single modality to construct 3D

reconstructions. For instance, 3D-MALDI MSI was employed to

analyse colon cancer-fibroblast co-culture spheroids, yielding

detailed maps of metabolic distributions that reflect tissue

architecture (Cordes et al., 2021; Iakab et al., 2022).

Another approach combines 2D MSI with advanced 3D

imaging workflows such as the chemo-histo-tomography

(CHEMHIST) workflow. By integrating, MALDI MSI, micro-

computed tomography (micro-CT), FISH and brightfield

microscopy, CHEMIST enables the exploration of the relationship

between anatomic structure and metabolic function in symbiotic

animals, showcasing the potential for the detailed visualisation of

microbial interactions and metabolites (Geier et al., 2021). Applied

to the metastasis microbiome, a multimodal imaging pipeline

combining MALDI MSI, FISH, antibody-based imaging, micro-

CT and spatial transcriptomics can uncover the anatomical and

metabolic relationships between microbiome constituents and the
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tumour environment, providing key insights into microbial

contributions and functions to metastasis progression.

By harnessing advanced imaging techniques, researchers can

address critical needs in microbiome research, including analysing

microbial interactions, determining microbial diversity, managing

microbiomes and identifying microbial dark matter, as pre-

visualised by Biteen and colleagues in 2016 (Biteen et al., 2016).

This aligns with recent initiatives such as the CartoHostBug project

(https://www.embl.org/news/science/embl-scientists-receive-

prestigious-erc-synergy-grants/), which aims to study the spatial

architecture of microbiome-host crosstalk in the human gut using

novel imaging approaches, spatial transcriptomics technologies and

computational modelling techniques.
3.6 Interpretation of imaging data in the
context of microbiome

To advance our understanding of microbial metabolite

interactions within metastatic tumours, it is critical to address the

current technical limitations of spatial biology methods. Certain

techniques face limitations inherent to their technology,

exemplified by MALDI MSI’s potential inadequacies in covering

microbial metabolites due to the inefficient ionisation of specific

biomolecules (Feucherolles and Frache, 2022). Traditional single

laser MALDI methods often yield mass spectra dominated by

abundant or easily ionisable analyte molecules, thereby

overlooking low-abundance or poorly ionisable molecules, which

may be vital in metabolic pathways (Karas et al., 2000; Niehaus

et al., 2019). This gap restricts our ability to explore how specific

low-abundant microbial metabolites spatially associate with

metastasis and impact cellular behaviour.

To mitigate this challenge, innovative approaches like post-

ionisation have emerged to enhance ion yield without necessitating

additional sample preparation steps. During post-ionisation, a

second MALDI-like ionisation event occurs, interacting with the

already desorbed particle plume. For instance, Brockmann and

colleagues applied post-ionisation techniques to examine

microbial communities cultured on polyamide membranes and

investigate the inhibition of P. aeruginosa by a b-lactam antibiotic

(Brockmann et al., 2021). Through overlay images, distinct

structures were revealed, showcasing the high abundance of key

molecules integral to the quorum-sensing machinery of P.

aeruginosa proximal to the inhibition zone. The implementation

of post-ionisation offers a promising avenue for improving the

accuracy of chemical communication analysis within microbial

communities by boosting the ion yield of essential biomolecules.

In addressing challenges related to ion yield in imaging techniques,

several other strategies have been proposed to maximise the signal

detection for specific metabolites or lipids. Firstly, the selection of the

matrix plays a crucial role in optimising signal detection for specific

metabolites or lipids. For instance, Feenstra and colleagues introduced

a multiple matrix MSI approach targeting dual polarities alongside

tandem MSI to tackle low metabolite coverage, despite limitations

persisting in identifying metabolites with low ionisation energies
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(Feenstra et al., 2015). Similarly, Angerer and colleagues explored

various MALDI matrices to identify the most suitable one for lipid

detection (Angerer et al., 2022). However, there is currently a lack of

research investigating the optimal matrix for detecting microbial

components in MALDI MSI. Adapting and expanding such matrix

optimisation strategies could enhance the detection of microbial

metabolites. Moreover, sample preparation optimisation techniques,

including washing with different solvent and buffer combinations, and

recrystallisation, have been employed to improve the detection of

specific metabolites such as proteins and lipids (Seeley et al., 2008;

Wang et al., 2011; Angel et al., 2012). Additionally, on-tissue chemical

derivatisation has emerged as an alternative method to enhance

ionisation efficiency. For example, Kaya and colleagues demonstrated

the effectiveness of derivatisation reagents in tagging molecules

containing carboxylic acid and aldehydes (Kaya et al., 2023). In this

sense, there are commercial kits, i.e. Tag-ON™, for the on-tissue

chemical derivatisation of phenolic hydroxyl and amine functional

groups to visualise endogenous neurotransmitters and metabolites

(Shariatgorji et al., 2019). However, it is imperative to ensure that

such modifications to the sample do not compromise the spatial

integrity of the microbial community or interfere with other

imaging modalities.

In addition to wet-lab methodologies, leveraging dry-lab

techniques offers valuable insights into overcoming various

challenges, particularly in enhancing imaging spatial resolution and

addressing issues related to multimodal imaging. Spatial resolution

limitations pose a significant hurdle, especially when comparing or co-

registering results from modalities with disparate spatial resolutions.

Techniques like MALDI MSI typically exhibit spatial resolutions of

around 15 µm per pixel, even if in-house demonstrators allow for

single-cell resolution at 1.4 µm pixel size (Kompauer et al., 2016).

Spatial transcriptomics (ST) solutions, both current and upcoming,

typically offer resolutions ranging from 0.5 µm to 55 µm.

As spatial omics platforms generate increasingly high-

dimensional data across genomics, transcriptomics, proteomics,

and metabolomics, artificial intelligence (AI) methods, particularly

AI-powered multimodal (deep) learning, have emerged as a critical

tool for data integration and interpretation in cancer research

(Boehm et al., 2022; Rajdeo et al., 2024). Multimodal AI tools (e.g

SOmicsFusion) facilitates the co-registration of data from multiple

imaging modalities, such as spatial transcriptomics and mass

spectrometry imaging-mediated spatial metabolomics, enabling

potential precise mapping of microbial, hosts signals and co-

expression patterns within the TME (Guo et al., 2024). These

models can uncover patterns of microbial influence on metastatic

niches that may not be discernible through single-modality analyses

alone. For instance, data fusion workflow, mainly AI-driven, provide

a promising paradigm for improving imaging spatial resolution (Van

De Plas et al., 2015). By combining techniques with high chemical

information but poor spatial resolution (e.g. MALDI MSI) with those

possessing low chemical information but high spatial resolution (e.g.

TOF-SIMS, microscopy images) through computational tools,

sharper ion images with enhanced spatial resolution and chemical
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specificity can be achieved (Borodinov et al., 2020; Liang et al., 2024).

For instance, recent studies have introduced multi-modal image

fusion workflows incorporating MALDI imaging mass

spectrometry and microscopy, using AI models, i.e. two-

dimensional convolutional neural network and random forest, to

predict intensity values and patterns while enhancing spatial

resolution (Liang et al., 2024). At the end, the original MALDI

image was acquired at 25 µm, and the fusion-based image was

approximately 2.5 µm, i.e. a ten-fold zoom, suggesting their

potential in resolving microbiome-host crosstalk at metastatic

fronts.Despite the promise of multimodal imaging approaches,

challenges such as the co-registration of imaging datasets,

preservation of spatial sample integrity and interpretation of

multimodal data, persist. Future efforts, aided by new AI-powered

methods, will be pivotal in unravelling complex relationships between

data generated by various imaging methods, leading to a more

comprehensive understanding of biological systems and pathways

(Neumann et al., 2020). Looking ahead, the integration of multimodal

biomedical artificial intelligence and imaging technologies with other

modalities like biosensors, and genome and microbiome sequencing

holds significant promise in advancing our understanding of tumour

and metastasis biology (Acosta et al., 2022).
4 Conclusion

Much like the multifactorial and multicompartmental nature of

cancer metastasis, the methods available to explore and study the

disease are just as varied and complex. In this review, we have

delved into the relevance of the microbiome in cancer metastasis

progression, emphasising its potential role in modulating the TME,

immune responses and metabolic pathways. A growing body of

research has established that the microbiome plays a crucial role in

various stages of the metastatic cascade. The field has progressed

beyond correlation studies, increasingly focusing on uncovering

mechanistic insights. However, many of these findings remain

limited to single-microbe, single-mechanism insights, which do

not fully capture the complexity of the physiological context nor

the disease. We have also examined a range of spatial omics

techniques that are currently being used to address critical

questions within the field. These questions include the spatial

organisation of microbes within metastatic tissues, the

microbiome’s impact on host gene expression and the way in

which microbial interactions influence the immune and metabolic

landscapes of the TME. However, as promising as these

technological advancements appear, they introduce significant

challenges in terms of data interpretation and the pinpointing of

specific bacterial mechanisms. The sheer volume and complexity of

data generated by omics and untargeted methodologies can be

overwhelming, often leading to a level of “noise” that makes it

difficult to confidently associate specific microbial factors with

metastasis. Despite these challenges, we remain optimistic about

the future of this field. The integration of spatial omics, multimodal
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imaging and AI-driven technologies holds immense promise for

advancing our understanding of the microbiome’s contribution to

metastasis and gaining deeper insights into the intricate relationship

between the microbiome and metastatic progression.
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Evolution of metastasis study models toward metastasis-on-A-chip: the ultimate
model? Small 17, 2006009. doi: 10.1002/smll.202006009

Saarenpää, S., Shalev, O., Ashkenazy, H., Carlos, V., Lundberg, D. S., Weigel, D., et al.
(2023). Spatial metatranscriptomics resolves host–bacteria–fungi interactomes. Nat.
Biotechnol. 42, 1–10. doi: 10.1038/s41587-023-01979-2

Saftien, A., Puschhof, J., and Elinav, E. (2023). Fungi and cancer. Gut 72, 1410–1425.
doi: 10.1136/gutjnl-2022-327952

Saka, S. K., Wang, Y., Kishi, J. Y., Zhu, A., Zeng, Y., Xie, W., et al. (2019). Immuno-
SABER enables highly multiplexed and amplified protein imaging in tissues. Nat.
Biotechnol. 37, 1080–1090. doi: 10.1038/s41587-019-0207-y
Frontiers in Cellular and Infection Microbiology 22
Sakamoto, Y., Mima, K., Ishimoto, T., Ogata, Y., Imai, K., Miyamoto, Y., et al. (2021).
Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal
cancer liver metastasis. Cancer Sci. 112, 4470–4477. doi: 10.1111/CAS.15126

Seeley, E. H., Oppenheimer, S. R., Mi, D., Chaurand, P., and Caprioli, R. M. (2008).
Enhancement of protein sensitivity for MALDI imaging mass spectrometry after
chemical treatment of tissue sections. J. Am. Soc Mass Spectrom. 19, 1069–1077.
doi: 10.1016/j.jasms.2008.03.016

Shariatgorji, M., Nilsson, A., Fridjonsdottir, E., Vallianatou, T., Källback, P., Katan,
L., et al. (2019). Comprehensive mapping of neurotransmitter networks by MALDI–
MS imaging. Nat. Methods 16, 1021–1028. doi: 10.1038/s41592-019-0551-3

Shen, Y., Wang, Y., Wang, J., Xie, P., Xie, C., Chen, Y., et al. (2024). High-resolution
3D spatial distribution of complex microbial colonies revealed by mass spectrometry
imaging. J. Adv. Res. 1-12. doi: 10.1016/J.JARE.2024.08.031

Sheth, R. U., Li, M., Jiang, W., Sims, P. A., Leong, K. W., and Wang, H. H. (2019).
Spatial metagenomic characterization of microbial biogeography in the gut. Nat.
Biotechnol. 37, 877–883. doi: 10.1038/s41587-019-0183-2

Shi, H., Grodner, B., and De Vlaminck, I. (2021). Recent advances in tools to map the
microbiome. Curr. Opin. Biomed. Eng. 19, 1-13. doi: 10.1016/j.cobme.2021.100289

Shi, H., Shi, Q., Grodner, B., Lenz, J. S., Zipfel, W. R., Brito, I. L., et al. (2020). Highly
multiplexed spatial mapping of microbial communities. Nature 588, 676–681.
doi: 10.1038/s41586-020-2983-4

Spizzo, G., Fong, D., Wurm, M., Ensinger, C., Obrist, P., Hofer, C., et al. (2011).
EpCAM express ion in primary tumour t i ssues and metastases : An
immunohistochemical analysis. J. Clin. Pathol. 64, 415–420. doi: 10.1136/
jcp.2011.090274

Ståhl, P. L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J. F., Magnusson, J., et al.
(2016). Visualization and analysis of gene expression in tissue sections by spatial
transcriptomics. Science 353, 78–82. doi: 10.1126/science.aaf2403

Stickels, R. R., Murray, E., Kumar, P., Li, J., Marshall, J. L., Di Bella, D. J., et al. (2021).
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.
Nat. Biotechnol. 39, 313–319. doi: 10.1038/s41587-020-0739-1

Strittmatter, N., Rebec, M., Jones, E. A., Golf, O., Abdolrasouli, A., Balog, J., et al.
(2014). Characterization and identification of clinically relevant microorganisms using
rapid evaporative ionization mass spectrometry. Anal. Chem. 86, 6555–6562.
doi: 10.1021/AC501075F/SUPPL_FILE/AC501075F_SI_001.PDF

Taube, J. M., Akturk, G., Angelo, M., Engle, E. L., Gnjatic, S., Greenbaum, S., et al.
(2020). The Society for Immunotherapy in Cancer statement on best practices for
multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and
validation. J. Immunother. Cancer 8, e000155. doi: 10.1136/jitc-2019-000155

Ternes, D., Karta, J., Tsenkova, M., Wilmes, P., Haan, S., and Letellier, E. (2020).
Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism?.
Trends Microbiol. 28, 401–423. doi: 10.1016/j.tim.2020.01.001

Ternes, D., Tsenkova, M., Pozdeev, V. I., Meyers, M., Koncina, E., Atatri, S., et al.
(2022). The gut microbial metabolite formate exacerbates colorectal cancer
progression. Nat. Metab. 4, 458–475. doi: 10.1038/s42255-022-00558-0

Tian, H., Rajbhandari, P., Tarolli, J., Decker, A. M., Neelakantan, T. V., Angerer, T.,
et al. (2024). Multimodal mass spectrometry imaging identifies cell-type-specific
metabolic and lipidomic variation in the mammalian liver. Dev. Cell 59, 1–13.
doi: 10.1016/j.devcel.2024.01.025

Tsenkova, M., Brauer, M., Pozdeev, V. I., Kasakin, M., Busi, S. B., Schmoetten, M., et al.
(2025). Ketogenic diet suppresses colorectal cancer through the gut microbiome long
chain fatty acid stearate. Nat. Commun. 16, 1–16. doi: 10.1038/s41467-025-56678-0

Valm, A. M., Mark Welch, J. L., and Borisy, G. G. (2012). CLASI-FISH: Principles of
combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35, 496–502.
doi: 10.1016/j.syapm.2012.03.004

Van De Plas, R., Yang, J., Spraggins, J., and Caprioli, R. M. (2015). Image fusion of
mass spectrometry and microscopy: A multimodality paradigm for molecular tissue
mapping. Nat. Methods 12, 366–372. doi: 10.1038/nmeth.3296

Vats, M., Cillero-Pastor, B., Cuypers, E., and Heeren, R. M. A. (2024). Mass
spectrometry imaging in plants, microbes, and food: a review. Analyst. 149, 4553–
4582. doi: 10.1039/D4AN00644E

Vickovic, S., Eraslan, G., Salmén, F., Klughammer, J., Stenbeck, L., Schapiro, D., et al.
(2019). High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods
16, 987–990. doi: 10.1038/s41592-019-0548-y

Wang, H. Y. J., Liu, C.B., andWu, H.W. (2011). A simple desalting method for direct
MALDI mass spectrometry profiling of tissue lipids. J. Lipid Res. 52, 840–849.
doi: 10.1194/jlr.D013060

Watrous, J., Hendricks, N., Meehan, M., and Dorrestein, P. C. (2010). Capturing
bacterial metabolic exchange using thin film desorption electrospray ionization-
imaging mass spectrometry. Anal. Chem. 82, 1598–1600. doi: 10.1021/ac9027388

Watrous, J., Roach, P., Heath, B., Alexandrov, T., Laskin, J., and Dorrestein, P. C.
(2013). Metabolic profiling directly from the petri dish using nanospray desorption
electrospray ionization imaging mass spectrometry. Anal. Chem. 85, 10385–10391.
doi: 10.1021/ac4023154

Wei, L., Chen, Z., Shi, L., Long, R., Anzalone, A. V., Zhang, L., et al. (2017). Super-
multiplex vibrational imaging. Nature 544, 465–470. doi: 10.1038/nature22051
frontiersin.org

https://doi.org/10.1038/s41592-019-0536-2
https://doi.org/10.1116/1.4993628/14583751/03B301_1_ACCEPTED_MANUSCRIPT.PDF
https://doi.org/10.1016/J.XPRO.2022.102021
https://doi.org/10.1016/J.XPRO.2022.102021
https://doi.org/10.1172/JCI157340
https://doi.org/10.1038/s41467-020-16967-2
https://doi.org/10.1038/s41467-020-16967-2
https://doi.org/10.1158/2159-8290.CD-20-0537
https://doi.org/10.1186/S13059-022-02824-6/FIGURES/1
https://doi.org/10.1038/s41598-018-37914-8
https://doi.org/10.1055/s-0044-100188
https://doi.org/10.1007/978-1-61779-827-6_13
https://doi.org/10.1038/s41586-020-2080-8
https://doi.org/10.1038/s41596-021-00589-z
https://doi.org/10.1016/J.MICRES.2023.127336
https://doi.org/10.1038/NM.3394
https://doi.org/10.1073/PNAS.2018488117/SUPPL_FILE/PNAS.2018488117.SM09.MP4
https://doi.org/10.1073/PNAS.2018488117/SUPPL_FILE/PNAS.2018488117.SM09.MP4
https://doi.org/10.1016/bs.acr.2024.08.001
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1158/0008-5472.CAN-18-3464
https://doi.org/10.1016/j.chom.2013.07.012
https://doi.org/10.1002/smll.202006009
https://doi.org/10.1038/s41587-023-01979-2
https://doi.org/10.1136/gutjnl-2022-327952
https://doi.org/10.1038/s41587-019-0207-y
https://doi.org/10.1111/CAS.15126
https://doi.org/10.1016/j.jasms.2008.03.016
https://doi.org/10.1038/s41592-019-0551-3
https://doi.org/10.1016/J.JARE.2024.08.031
https://doi.org/10.1038/s41587-019-0183-2
https://doi.org/10.1016/j.cobme.2021.100289
https://doi.org/10.1038/s41586-020-2983-4
https://doi.org/10.1136/jcp.2011.090274
https://doi.org/10.1136/jcp.2011.090274
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1021/AC501075F/SUPPL_FILE/AC501075F_SI_001.PDF
https://doi.org/10.1136/jitc-2019-000155
https://doi.org/10.1016/j.tim.2020.01.001
https://doi.org/10.1038/s42255-022-00558-0
https://doi.org/10.1016/j.devcel.2024.01.025
https://doi.org/10.1038/s41467-025-56678-0
https://doi.org/10.1016/j.syapm.2012.03.004
https://doi.org/10.1038/nmeth.3296
https://doi.org/10.1039/D4AN00644E
https://doi.org/10.1038/s41592-019-0548-y
https://doi.org/10.1194/jlr.D013060
https://doi.org/10.1021/ac9027388
https://doi.org/10.1021/ac4023154
https://doi.org/10.1038/nature22051
https://doi.org/10.3389/fcimb.2025.1559870
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Meyers et al. 10.3389/fcimb.2025.1559870
Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I., and Borisy, G. G. (2017).
Spatial organization of a model 15-member human gut microbiota established in
gnotobiotic mice. Proc. Natl. Acad. Sci. U. S. A. 114, E9105–E9114. doi: 10.1073/
pnas.1711596114

Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R., and Haque, A. (2022). An
introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 1–18.
doi: 10.1186/s13073-022-01075-1

Williamson, I. A., Arnold, J. W., Samsa, L. A., Gaynor, L., DiSalvo, M., Cocchiaro, J.
L., et al. (2018). A high-throughput organoid microinjection platform to study
gastrointestinal microbiota and luminal physiology. CMGH 6, 301–319. doi: 10.1016/
j.jcmgh.2018.05.004

Wong-Rolle, A., Dong, Q., Zhu, Y., Divakar, P., Hor, J. L., Kedei, N., et al. (2022).
Spatial meta-transcriptomics reveal associations of intratumor bacteria burden with
lung cancer cells showing a distinct oncogenic signature. J. Immunother. Cancer 10,
4698. doi: 10.1136/jitc-2022-004698

Wu, Z., Guo, J., Zhang, Z., Gao, S., Huang, M., Wang, Y., et al. (2024). Bacteroidetes
promotes esophageal squamous carcinoma invasion and metastasis through LPS-
mediated TLR4/Myd88/NF-kB pathway and inflammatory changes. Sci. Rep. 14, 1–
12. doi: 10.1038/s41598-024-63774-6

Wu, S., Morin, P. J., Maouyo, D., and Sears, C. L. (2003). Bacteroides fragilis
enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124,
392–400. doi: 10.1053/GAST.2003.50047

Xu, C., Fan, L., Lin, Y., Shen, W., Qi, Y., Zhang, Y., et al. (2021). Fusobacterium
nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and
M2 polarization. Gut Microbes 13, 1-17. doi: 10.1080/19490976.2021.1980347
Frontiers in Cellular and Infection Microbiology 23
Yagnik, G., Liu, Z., Rothschild, K. J., and Lim, M. J. (2021). Highly multiplexed
immunohistochemical MALDI-MS imaging of biomarkers in tissues. J. Am. Soc Mass
Spectrom. 32, 977–988. doi: 10.1021/jasms.0c00473

Yue, Y. C., Yang, B. Y., Lu, J., Zhang, S. W., Liu, L., Nassar, K., et al. (2020).
Metabolite secretions of Lactobacillus plantarum YYC-3 may inhibit colon cancer cell
metastasis by suppressing the VEGF-MMP2/9 signaling pathway.Microb. Cell Fact. 19,
1-12. doi: 10.1186/S12934-020-01466-2

Zervantonakis, I. K., Hughes-Alford, S. K., Charest, J. L., Condeelis, J. S., Gertler, F.
B., and Kamm, R. D. (2012). Three-dimensional microfluidic model for tumor cell
intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U. S. A. 109,
13515–13520. doi: 10.1073/pnas.1210182109

Zhang, W., Bado, I. L., Hu, J., Wan, Y. W., Wu, L., Wang, H., et al. (2021). The bone
microenvironment invigorates metastatic seeds for further dissemination. Cell 184,
2471–2486.e20. doi: 10.1016/J.CELL.2021.03.011

Zhang, N., Kandalai, S., Zhou, X., Hossain, F., and Zheng, Q. (2023). Applying multi-
omics toward tumor microbiome research. iMeta 2, e73. doi: 10.1002/imt2.73

Zhao, T., Chiang, Z. D., Morriss, J. W., LaFave, L. M., Murray, E. M., Del Priore, I.,
et al. (2022). Spatial genomics enables multi-modal study of clonal heterogeneity in
tissues. Nature 601, 85–91. doi: 10.1038/s41586-021-04217-4

Zhou, X., Kandalai, S., Hossain, F., and Zheng, Q. (2022). Tumor microbiome
metabolism: A game changer in cancer development and therapy. Front. Oncol. 12.
doi: 10.3389/fonc.2022.933407

Zou, Y., Tang, W., and Li, B. (2022). Mass spectrometry imaging and its potential in food
microbiology. Int. J. Food Microbiol. 371, 109675. doi: 10.1016/j.ijfoodmicro.2022.109675
frontiersin.org

https://doi.org/10.1073/pnas.1711596114
https://doi.org/10.1073/pnas.1711596114
https://doi.org/10.1186/s13073-022-01075-1
https://doi.org/10.1016/j.jcmgh.2018.05.004
https://doi.org/10.1016/j.jcmgh.2018.05.004
https://doi.org/10.1136/jitc-2022-004698
https://doi.org/10.1038/s41598-024-63774-6
https://doi.org/10.1053/GAST.2003.50047
https://doi.org/10.1080/19490976.2021.1980347
https://doi.org/10.1021/jasms.0c00473
https://doi.org/10.1186/S12934-020-01466-2
https://doi.org/10.1073/pnas.1210182109
https://doi.org/10.1016/J.CELL.2021.03.011
https://doi.org/10.1002/imt2.73
https://doi.org/10.1038/s41586-021-04217-4
https://doi.org/10.3389/fonc.2022.933407
https://doi.org/10.1016/j.ijfoodmicro.2022.109675
https://doi.org/10.3389/fcimb.2025.1559870
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	Microbiome in cancer metastasis: biological insights and emerging spatial omics methods
	1 Introduction
	2 Biological aspects of the microbiome in cancer metastasis
	2.1 The influence of the microbiome on cancer metastasis
	2.2 Biological models for the study of metastasis

	3 Technical approaches for exploring the microbiome in cancer metastasis
	3.1 Spatial genomics: how do microbial communities spatially organise within metastatic sites, and do specific bacteria exhibit preferential colonisation patterns within metastases?
	3.1.1 Fluorescence light microscopy
	3.1.1.1 Fluorescence in situ hybridisation
	3.1.1.2 Expansion microscopy

	3.1.2 Slide-DNA-sequencing
	3.1.3 Spatial metagenomics

	3.2 Spatial transcriptomics: how does a microbial presence within metastatic niches influence cancer cell gene expression and support metastatic survival?
	3.2.1 Imaging mRNAs-based spatial transcriptomics
	3.2.2 Sequencing-based spatial transcriptomics
	3.2.3 Spatial meta-transcriptomics

	3.3 Spatial proteomics: how do microbial interactions shape the spatial organisation and immune modulation of metastatic niches?
	3.3.1 Antibody-based sequential multiplexed imaging
	3.3.2 Antibody-based one-shot multiplexed imaging

	3.4 Spatial metabolomics: are specific microbial metabolites spatially associated with regions of tumour cell invasion or metastasis formation, and how do these metabolites impact cellular behaviour?
	3.4.1 Mass spectrometry-based methods
	3.4.2 Fluorescent-based methods

	3.5 Spatial multimodal-omics imaging: how do microbial interactions and metabolic activity within anatomical structures influence metastasis progression?
	3.5.1 2D Combination of modalities
	3.5.2 From 2D to 3D

	3.6 Interpretation of imaging data in the context of microbiome

	4 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


