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Antimicrobial resistance (AMR) constitutes a significant global public health

challenge, posing a serious threat to human health. In clinical practice,

physicians frequently resort to empirical antibiotic therapy without timely

Antimicrobial Susceptibility Testing (AST) results. This practice, however, may

induce resistance mutations in pathogens due to genetic pressure, thereby

complicating infection control efforts. Consequently, the rapid and accurate

acquisition of AST results has become crucial for precision treatment. In recent

years, advancements in medical testing technology have led to continuous

improvements in AST methodologies. Concurrently, emerging artificial

intelligence (AI) technologies, particularly Machine Learning(ML) and Deep

Learning(DL), have introduced novel auxiliary diagnostic tools for AST. These

technologies can extract in-depth information from imaging and laboratory data,

enabling the swift prediction of pathogen antibiotic resistance and providing

reliable evidence for the judicious selection of antibiotics. This article provides a

comprehensive overview of the advancements in research concerning pathogen

AST and resistance detection methodologies, emphasizing the prospective

application of artificial intelligence and machine learning in predicting drug

sensitivity tests and pathogen resistance. Furthermore, we anticipate future

directions in AST prediction aimed at reducing antibiotic misuse, enhancing

treatment outcomes for infected patients, and contributing to the resolution of

the global AMR crisis.
KEYWORDS

antimicrobial resistance, antimicrobial susceptibility testing, artificial intelligence,
machine learning, whole genome sequencing
1 Background

AMR represents a significant global public health challenge that poses a severe threat to

human health. The World Health Organization (WHO) has issued a warning that by 2050,

AMR could become the leading cause of mortality, potentially resulting in over 10 million

deaths annually (Stanton et al., 2022). Bacteria that were once treatable with multiple
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antibiotics have developed extensive resistance. According to a

report by the U.S. Centers for Disease Control and Prevention

(CDC), 2.8 million Americans are infected with resistant bacteria

each year, leading to 35,000 deaths (Eurosurveillance editorial team,

2013). These findings underscore the escalating severity of AMR,

which poses significant challenges to patient treatment options and

safety. In clinical practice, physicians typically make preliminary

diagnoses based on the patient’s symptoms, physical examination

results, and laboratory infection indicators. However, the

identification of pathogens and their drug susceptibility profiles

remains dependent on the culturing of biological samples, a process

that generally requires 1 to 3 days. During this period, healthcare

professionals frequently depend on empirical antibiotic therapy,

which may result in the overuse of antibiotics and consequently

intensify antibiotic resistance. Research indicates that enhancing the

efficiency of pathogen diagnosis is essential for the prompt

treatment of infections, minimizing antibiotic misuse, and

mitigating the proliferation of antibiotic resistance (Banerjee and

Humphries, 2021). The rapid advancements in AI and medical

imaging technologies offer promising prospects for AMR

management. DL and ML techniques can predict the drug

sensitivity and resistance of pathogens by analyzing clinical

imaging and laboratory data, thereby providing precise guidance

for antibiotic selection. These technologies hold significant potential

in infection monitoring, risk prediction, and the optimization of

antibacterial drug usage (Blechman and Wright, 2024).

This article provides a comprehensive overview of various

methodologies for the detection of pathogenic bacteria and AST,

with a particular focus on the potential applications of AI and ML

technologies. The integration of AI technology offers the potential

to deliver rapid and accurate decision support for clinicians, thereby

enhancing patient outcomes, minimizing the misuse of antibiotics,

and addressing the critical issue of antibiotic resistance. Looking

ahead, the continued advancement of AI technology is anticipated

to yield practical solutions to the challenge of AMR.
2 The causes of AMR and its
resistance mechanisms

AMR is defined as the capacity of pathogenic microorganisms,

including bacteria, viruses, fungi, and parasites, to withstand the

effects of therapeutic agents that were previously effective. This

phenomenon represents a significant threat to the management of

infections and surgical procedures and has been identified as one of

the top ten global health threats by the WHO (Zhou et al., 2022).

According to the most recent report from the US CDC, drug-

resistant infections result in over 35,000 fatalities annually in the

United States, with the global mortality figure projected to reach 1.2

million (Eurosurveillance editorial team, 2013; Antimicrobial

Resistance Collaborators, 2022).

The unwarranted prescription of antibiotics and their misuse in

treating viral infections and other non-bacterial conditions

significantly contribute to the accelerated emergence of antibiotic
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resistance. According to the European Antimicrobial Resistance

Surveillance Network (EARS-Net), approximately 25% of antibiotic

prescriptions are issued without a legitimate medical justification

(European antimicrobial resistance surveillance network (EARS-

net), 2017). Furthermore, the advancement of antibacterial drug

development has substantially slowed in recent years due to

economic and technical challenges. Over the past two decades,

fewer than 15 new antibacterial drugs have been approved, a

number inadequate to effectively combat the growing problem of

resistance (Luepke et al., 2017). Additionally, the lack of rapid and

accurate diagnostic tools has led to the widespread empirical use of

antibiotics, thereby increasing the selective pressure on resistant

bacterial strains (Morrison and Zembower, 2020; Akram

et al., 2023).

A comprehensive understanding of antibiotic resistance

mechanisms is crucial for effectively addressing this global public

health challenge. The historical development of antibiotic resistance

mechanisms profoundly illustrates the adaptive strategies employed

by microorganisms to withstand environmental stressors. These

mechanisms can be categorized into two primary types: intrinsic

resistance and acquired resistance. Intrinsic resistance is dictated by

the inherent genetic characteristics of bacteria and is prevalent in

specific strains. Following the widespread introduction of penicillin

in the 1940s, researchers identified that bacterial beta-lactamases

could hydrolyze the beta-lactam ring of penicillin, marking a

significant milestone in early resistance research (Davies and

Davies, 2010). These enzymes inactivate antibiotics by altering

their chemical structure, with extended-spectrum beta-lactamases

(ESBLs) being particularly prevalent in Escherichia coli and

Klebsiella pneumoniae, thus representing a major source of

hospital-acquired infections (Morales-León et al., 2020). During

the 1960s, an outbreak of methicillin-resistant Staphylococcus

aureus (MRSA) elucidated the mechanism of drug-resistant target

modification. The penicillin-binding protein (PBP2a), encoded by

the mecA gene, diminishes the binding efficacy of beta-lactam

antibiotics (Davies and Davies, 2010; Ambade et al . ,

2023).Comprehensive investigations into Gram-negative bacteria

have further demonstrated that their outer membrane structure

impedes the penetration of antimicrobial agents by down-regulating

porin expression. For instance, the intrinsic resistance of

Pseudomonas aeruginosa to carbapenems is closely associated

with the loss of specific outer membrane proteins (I and S, 2018).

In the 1980s, the MexAB-OprM efflux pump system, initially

identified in Pseudomonas aeruginosa, was found to confer

resistance through the active expulsion of beta-lactams and

fluoroquinolones (Davies and Davies, 2010). The efflux pump

mechanism is prevalent, as exemplified by Salmonella, which

exhibits considerable resistance to polymyxins and aminoglycosides

via this mechanism (Shirshikova et al., 2021).

Acquired resistance arises through gene mutation or horizontal

gene transfer (HGT), and research in this area has advanced in

tandem with developments in molecular biology. The plasmid-

mediated horizontal transfer of drug resistance genes was first

documented in the 1950s (Davies and Davies, 2010). For instance,
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the global dissemination of the CTX-M ESBL gene has facilitated

the spread of multidrug-resistant bacteria (McNulty et al., 2018;

Chis et al., 2022). The clinical outbreak of methicillin-resistant

Staphylococcus aureus (MRSA) in 1961 underscored the

significance of genetic mutations, particularly the mecA gene,

which encodes the PBP2a protein, rendering beta-lactam

antibiotics ineffective (Davies and Davies, 2010). A comparable

mechanism is observed in Acinetobacter baumannii, where gene

mutations result in the modification of targets for b-lactams,

macrolides, and fluoroquinolones, leading to the failure of these

antimicrobial agents (Martinez-Trejo et al., 2022).In the 21st

century, plasmids harboring blaNDM-5 genes, such as IncFII and

IncX3, have proliferated extensively within E. coli populations.

These plasmids frequently co-occur with blaCTX-M, mcr, and

other multidrug resistance genes within highly transmissible

clones, such as ST167, thereby exacerbating the carbapenem

resistance crisis (Blanquart, 2019). Recently, the issue of drug

resistance has extended beyond traditional bacterial pathogens.

Candida auris, for instance, acquires heat-resistant genes through

ERG11 gene mutations, ABC transporter pump efflux mechanisms,

such as CDR1, and horizontal gene transfer, leading to cross-

resistance against three classes of antifungal drugs and resulting

in high mortality rates in hospital-acquired infections (Sabino et al.,

2020). Furthermore, carbapenem-resistant Acinetobacter

baumannii (CRAB) has developed resistance mechanisms that

include efflux pumps, porin deletion, and the integration of

blaNDM-1/blaOXA-23 double resistance genes, necessitating the

use of colistin as a last-resort treatment (Ijaz et al., 2024). These

developments underscore the evolution of antibiotic resistance into

a global health security crisis.

AMR represents a substantial threat to global public health

by markedly diminishing the efficacy of available treatment

options for infections. Furthermore, infections caused by drug-

resistant pathogens lead to considerable increases in healthcare

expenditures and prolonged hospitalizations. A comprehensive

understanding of the mechanisms underlying the development

and transmission of AMR is crucial for the formulation of more

effective public health policies and the development of innovative

antimicrobial strategies (Chis et al., 2022).
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3 Antibiotic susceptibility testing

AST serves as a critical instrument for evaluating the efficacy of

antibiotics against specific bacterial pathogens and is integral to

informing anti-infective treatment strategies and optimizing

antibiotic utilization. In light of the global health threat posed by

AMR, the significance of AST is increasingly pronounced. By

precisely determining the drug sensitivity of pathogens, AST aids

healthcare professionals in optimizing therapeutic regimens,

thereby mitigating antibiotic overuse and curbing the propagation

of resistance.The main AST methods, as detailed in Table 1.

Traditional diagnostic methods generally require 24–48 hours to

yield results. However, recent advancements in technologies such as

real-time microscopy, microfluidic technology, and single-cell analysis

have enabled detection within a matter of hours (Behera et al., 2019).

These innovative techniques have demonstrated substantial clinical

value in studies conducted in Europe and the United States. For

example, a study conducted in the United States demonstrated that

drug sensitivity could be precisely assessed within a two-hour

timeframe using comprehensive electrical monitoring of a

microfluidic device (Yang et al., 2020). A comparative flowchart of

AI-assisted AST and traditional AST processes is provided in Figure 1,

highlighting key differences in workflow efficiency and data

integration. To advance AST methodologies, Inglis et al. integrated

flow cytometer antimicrobial susceptibility testing (FAST) with

supervised machine learning techniques. This amalgamation of AI

methods facilitates the production of reliable results within a

timeframe of less than 3 hours (Inglis et al., 2020). Concurrently,

Lechowicz et al. pioneered a novel approach employing an infrared

(IR) spectrometer, which synergizes IR spectroscopy with artificial

neural networks, thereby reducing the AST duration from 24 hours to

a mere 30 minutes (Lechowicz et al., 2013).The innovation of the AST

approach not only enhances the precision of antibiotic administration

but also provides significant support for the global management of

antimicrobial resistance. Looking ahead, the integration of artificial

intelligence, genomics, and rapid detection technologies is anticipated

to further augment the speed and accuracy of testing. These

advancements are expected to optimize clinical treatment strategies

andmitigate antibiotic overuse, thereby addressing the resistance crisis.
TABLE 1 Main methods of AST.

Methods Kirby-Bauer
Disk Diffusion

Broth Dilution E-test (Gradi-
ent Diffusion)

Automated
AST Systems

Molecular Methods

Principle/
Application

Measures zone of inhibition
to determine susceptibility

Determines MIC by testing
bacterial growth in
antibiotic serial dilutions

Uses antibiotic gradient
strips to measure
MIC directly

Detects bacterial growth via
optical/fluorescence signals
to calculate MIC

Identifies resistance genes
or mutations

Advantages Simple operation, low cost,
suitable for large-
scale screening

Provides precise MIC data
for personalized therapy

Combines simplicity and
precision; ideal for
fastidious pathogens

High-throughput, rapid
results (4–8 hr), detects
complex resistance

Rapid (2–4 hr), predicts
resistance in unculturable
pathogens or rare mechanisms

limitations Cannot determine MIC;
results influenced by
standardization of protocols

Labor-intensive, requires
specialized equipment

High reagent costs;
limited accessibility in
resource-poor regions

Expensive instrumentation
and maintenance; requires
skilled technicians

Does not assess phenotypic
effects; limited to known
targets; high costs
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FIGURE 1

AI-assisted Antimicrobial Susceptibility Trials (AST) enhance clinical decision-making by integrating and analyzing multimodal data. After pretreating
clinical samples, phenotypic and genotypic data, along with patient information, are collected. The AI model processes this data to predict drug
resistance and suggest personalized treatment plans. If results are contradictory, the model updates using transfer learning. Traditional AST,
however, takes 16–24 hours, relying on sample culture, drug sensitivity tests, and manual result interpretation.
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4 Application of AI in AST and
resistance prediction

AI and ML technologies are significantly advancing the domain

of AST and resistance detection. The integration of AI enables

researchers to efficiently analyze extensive biological datasets,

thereby predicting bacterial antibiotic sensitivity and resistance

with enhanced speed and accuracy, which in turn supports

antimicrobial selection and infectious disease management

(Boolchandani et al., 2019). Recent years have witnessed

substantial advancements in the application of AI and ML within

the AST field. Through the analysis of intricate AST datasets and

large-scale genomic information, AI methodologies have not only

elucidated novel resistance mechanisms but have also introduced

innovative strategies for optimizing antibiotic utilization (Liu et al.,

2021). Furthermore, AI models possess the capability to forecast
Frontiers in Cellular and Infection Microbiology 04
trends in drug resistance, offering a proactive approach to global

antibiotic management (Chowdhury et al., 2020).
4.1 Construction and optimization of ML
prediction model

4.1.1 Drug resistance prediction based on whole
genome sequencing

The prediction of drug resistance through WGS has been

advanced by employing machine learning algorithms, including

random forests, support vector machines, and deep learning models

such as convolutional neural networks (CNNs). Researchers have

effectively developed a model for predicting bacterial resistance

utilizing WGS data (Ji et al., 2021).By examining resistance genes,

gene mutations, and other pertinent genomic features, these models
frontiersin.org
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can rapidly and accurately determine the bacterial resistance

spectrum. This capability significantly enhances detection

efficiency and provides a crucial foundation for optimizing

clinical treatment strategies (Wiatrak et al., 2024).Recent research

has demonstrated the high accuracy of machine learning models

utilizing WGS data for predicting antibiotic resistance across

various bacterial species (Van Camp et al., 2020).Despite the

constraints posed by the limited availability of WGS data for

aligning with AST outcomes, researchers have pursued innovative

methodologies to address this issue.Lueftinger et al. developed a

composite model integrating cross-validation and stacked

generalization of genomic distance perception, which significantly

enhanced the average sensitivity and specificity compared to

individual models (Lueftinger et al., 2021).Furthermore, to tackle

the intricate variations in genome sequences, researchers have

investigated machine learning models for genome sequence

characterization using nucleotide k-mers. By extracting k-mer

features and integrating three machine learning algorithms, Wang

et al. successfully predicted the minimum inhibitory concentration

(MIC) of Staphylococcus aureus for 10 antimicrobial agents and

accurately identified methicillin-resistant Staphylococcus aureus

(MRSA) (Wang et al., 2022b). Similarly, Gao et al. employed a

machine-learning algorithm to predict the MIC of Acinetobacter

baumannii against 13 antibacterial agents based on k-mer features,

demonstrating robust generalization capabilities (Gao et al., 2024).

With the reduction in WGS costs and the increasing availability

of large genomic databases, the development of nonlinear sequence

analysis models has emerged as a central focus in machine learning

applications. Humphries et al. evaluated a machine learning model

developed by Next Gen Diagnostics, which successfully predicted

the phenotypic susceptibility of Escherichia coli to cefepime

(Humphries et al., 2023). Building on this work, Liu et al.

employed rapid feature selection (FFS) and codon mutation

detection (CMD) techniques to identify genetic signatures

associated with resistance in Klebsiella pneumoniae from

genome-wide single nucleotide polymorphism (SNP) data,

achieving an area under the curve (AUC) of 0.95 (Liu et al.,

2021).Furthermore, Van Camp et al. utilized the XGBoost

algorithm to accurately predict the resistance of various gram-

negative bacteria to common antibiotics, achieving an AUC of 0.97

(Van Camp et al., 2020).

In summary, machine learning models utilizing WGS data

demonstrate exceptional efficacy in predicting bacterial resistance.

These models not only accurately identify resistance but also

provide a robust scientific foundation for personalized treatment

strategies. Looking ahead, the ongoing optimization of algorithms

and the expansion of data resources are anticipated to foster a

deeper integration of precision medicine with public health

prevention and control measures.

4.1.2 AI-assisted rapid AST methods
Microfluidic chips and functional nanomaterials are

increasingly employed to extract bacterial cells directly from raw

samples, thereby reducing or eliminating the need for traditional

bacterial culture processes (Qin et al., 2021; Hong et al., 2023).
Frontiers in Cellular and Infection Microbiology 05
Additionally, matrix-assisted laser desorption/ionization (MALDI)

time-of-flight (TOF) mass spectrometry (MS) has become a

prevalent technique for bacterial identification in clinical

laboratories (Rodrı ́guez-Sánchez et al., 2016; To et al.,

2019).Utilizing mass spectrometry to acquire detailed molecular

information about bacterial cells, researchers have integrated

machine learning and deep learning techniques for data mining

to develop sophisticated analytical strategies. The incorporation of

AI with microfluidic technology facilitates the detection of

antibiotic sensitivity within a matter of hours. These

methodologies enable the rapid and precise assessment of

sensitivity by analyzing bacterial growth patterns and metabolic

characteristics at varying antibiotic concentrations in real-time. For

instance, Riti’s research integrated deep learning with microfluidic

technology, enabling the detection of colistin sensitivity in merely 2

hours, thereby streamlining the testing process and enhancing

efficiency (Riti et al., 2024).

4.1.3 Detection of drug resistance based on
metabolomics

The integration of metabolomics and AI represents a novel

approach for predicting bacterial resistance. Metabolomics offers

extensive phenotypic data pertinent to resistance studies by

capturing alterations in the metabolic profiles of bacteria

subjected to antibiotic stress (Kok et al., 2022). Concurrently, AI

methodologies leverage this data for modeling and predictive

purposes. Recent studies have indicated that this synergistic

approach has achieved considerable advancements in the rapid

prediction of drug resistance. For instance, Larsen et al. introduced

a machine learning methodology employing support vector

machines (SVM) by integrating metabolomic and transportomic

modeling, which effectively discerned molecular signatures of both

pathogenic and non-pathogenic Pseudomonas (Larsen et al., 2014).

This approach also identified potential therapeutic targets for

antibiotic-resistant Pseudomonas, thereby establishing a novel

scientific framework for precision treatment. This development is

particularly crucial in addressing the clinical challenges posed by

Pseudomonas infections. Subsequent research has demonstrated

that artificial intelligence models incorporating multiple omics data

—such as genomics, transcriptomics, metabolomics, and

proteomics—offer a more comprehensive perspective on

resistance predictions (Fortuin and Soares, 2022).For instance,

Zhao et al. conducted a comprehensive multi-omics investigation,

integrating genomics, proteomics, and metabolomics, to explore

capreomycin (CAP) resistance in Mycobacterium tuberculosis

(M.tb) strains. Utilizing MetaboAnalyst in conjunction with

liquid chromatography-mass spectrometry (LC-MS)-based

metabolomics and labeled proteomics techniques, they identified

a novel mechanism of CAP resistance linked to tlyA-deficient and

mutated M.tb strains (Zhao et al., 2019a). Their research elucidates

the complex interactions between genetic modifications and

metabolic profiles that contribute to drug resistance in M.tb

strains. Furthermore, it facilitates the identification of novel

resistance mechanisms, thereby establishing a foundation for the

development of more effective antibiotic management strategies.
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In conclusion, the integration of metabolomics with artificial

intelligence technology markedly enhances the efficiency and

precision of predicting bacterial resistance. Furthermore, the

incorporation of multi-omics data broadens the applicability of

AI models. These advancements in research offer a robust tool for

tackling the challenge of resistance and pave the way for novel

approaches in antibiotic management and precision therapy.
4.2 Application of deep learning in image
recognition

The inception of deep learning algorithms can be traced back to

1986, with their conceptual framework inspired by the functions of

the biological brain and neurons, while also integrating the

theoretical underpinnings of statistics and mathematics (Zhao

et al., 2019b). Within the rapidly advancing domain of artificial

intelligence, deep learning, particularly through the application of

convolutional neural networks (CNNs), has exhibited substantial

potential and extensive applicability in the realms of AST and drug

resistance analysis. As a leading deep learning algorithm, CNN has

achieved noteworthy success in image analysis related to AST. For

example, Gullu et al. employed CNN technology to automatically

measure the diameter of antibacterial zones and classify

antibacterial spectra, thereby effectively assessing bacterial

sensitivity and resistance (Gullu et al., 2024).

In recent years, various automated systems leveraging deep

learning have been developed. For example, Gerada (Gerada et al.,

2024) employed Antilogic software to facilitate the agar dilution

method for determining the minimum inhibitory concentration,

achieving a basic consistency rate of 98.9% with manual

annotations. Hallstrom integrated smartphone image analysis

with agar-based tests, such as CombiANT, thereby creating a

robust tool for antibiotic resistance analysis (Hallström et al.,

2024). Additionally, Brown (Brown et al., 2020) devised an

automated and cost-effective optical system capable of delivering

early AST results within 4 to 7 hours, significantly reducing

incubation time and eliminating human error, while maintaining

compatibility with standard phenotypic detection processes.

Furthermore, Bollapragada (Bollapragada et al., 2024)

developed a cost-efficient automated AST intelligent system that

incorporates IoT, image processing, and deep learning algorithms

to enhance the disk diffusion method, thereby reducing the testing

duration to 4–6 hours. Karayiğit et al. (2024) introduced a YOLO

hybrid model grounded in convolutional neural networks for

regional diameter measurement, target detection, and text

recognition, which significantly enhances the accuracy and

efficiency of the analysis. Yu (Yu et al., 2025) devised an

innovative automatic imaging and reporting system that

integrates a text recognition model with tone contrast technology

to autonomously perform AST interpretation and result reporting

via a LINE chatbot, thereby substantially improving convenience

and stability.

An increasing number of technologies are being developed to

enhance the speed and accuracy of AST. For example, Duong et al
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(Duong et al., 2023)utilized transfer learning and fine-tuning

techniques to attain an F1 score of 0.91 in fluorescence image

instance segmentation, offering a novel approach for the precise

analysis of antibiotic resistance in Escherichia coli. Similarly, Pyayt

introduced an innovative method that integrates machine learning

with microscopy techniques, facilitating the rapid capture of

bacterial cells and the assessment of antibiotic susceptibility

without the necessity for bacterial culture (Pyayt et al.,

2020).Additional groundbreaking applications of deep learning

have yielded significant outcomes. For example, Xiong’s Parallel

Dual-Branch Network (PAS-Net) demonstrates the capability to

accurately predict antibiotic susceptibility by analyzing fluorescence

image s o f P s eudomonas a e rug inosa (X iong e t a l . ,

2023).Furthermore, the integration of matrix-assisted laser

desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS) with deep learning techniques facilitates the rapid

identification of bacterial morphological characteristics and the

detection of morphological alterations, such as thickened or

deformed cell walls associated with drug resistance. This

approach offers a novel methodology for analyzing drug resistance.

Despite the substantial advancements achieved by deep learning

in the realms of antimicrobial susceptibility testing and resistance

analysis, several challenges persist. Notably, the heterogeneity and

scale limitations of datasets impede the generalization capabilities of

models, while the interpretability and clinical applicability of these

models require further investigation. Looking ahead, the continued

optimization of deep learning techniques and the integration of

multimodal data are anticipated to significantly enhance the

contribution of this field to precision medicine and the

management of antimicrobial resistance.
4.3 AI-driven AST: scalable and cost-
effective pathways to clinical impact

AI-Driven AST enhances the clinical translation process

through technological innovation and resource optimization.

Technically, the rapid detection of drug resistance phenotypes

utilizing a plasma nanosensor array combined with machine

learning enables the identification of antibiotic resistance in 12

ESKAPE pathogens within 20 minutes via bacterial fingerprint

analysis, achieving an accuracy rate of 89.74%. This provides an

efficient tool for precise clinical anti-infection treatment (Yu et al.,

2023). Furthermore, by integrating mass spectrometry data with

machine learning algorithms such as gradient boosting trees,

random forests, or support vector machines (SVM), high-

precision detection of carbapenem-resistant Klebsiella

pneumoniae (AUC > 0.85) can be accomplished within a few

hours, significantly reducing diagnostic time compared to

traditional methods (Wang et al., 2022a).Natural language

processing (NLP) technology is capable of analyzing

microbiological reports and correlating them with patient clinical

history data to enhance treatment decisions. Certain systems have

the ability to reduce the traditional culture-dependent processing

time from several days to just a few hours (Hattab et al., 2024). The
frontiersin.org
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dynamic holographic laser speckle imaging (DhLSI) system, as

proposed by Yang et al (Yang et al., 2025), when integrated with

machine learning algorithms, can assess bacterial sensitivity to

antibiotic treatment within 2–3 hours, demonstrating significant

time efficiency. These technological advancements not only

substantially improve detection efficiency but also confirm their

predictive performance and diagnostic accuracy. A meta-analysis of

80 studies indicated that machine learning models surpassed

traditional metrics in antimicrobial management (AMS)

scenarios, including the area under the curve (AUC) value [ES:

72.28 (70.42–74.14)], accuracy[ES: 74.97 (73.35–76.58)], sensitivity

[ES=76.89(71.90–81.89)], and specificity [ES: 73.77; (67.87–79.67)]

(Pennisi et al., 2025a).

In the context of resource optimization, the integration of

lightweight models with cost-effective equipment significantly

reduces the technical barriers. The AI-assisted mobile medical

system developed by Ding et al. (2024) employs paper-based b-
lactamase fluorescence probe analysis equipment in conjunction with

a smartphone AI cloud platform. This approach substantially

decreases the cost per detection and reduces reliance on specialized

equipment by utilizing a 20-second rapid response fluorescence

probe (B1) and cloud-based intelligent calibration. Similarly,

Cunningham et al. (2021) integrated the SHERLOCK detection

system with smartphone fluorescence imaging, leveraging CRISPR-

Cas13a technology to target and identify pathogen genes. This was

followed by the rapid analysis of malaria resistance genes using a

lightweight classification algorithm, which demonstrated high

sensitivity and specificity in resource-constrained settings.The

offline artificial intelligence application developed by Pascucci et al.

(2021) employs a machine learning model to automatically analyze

the bacterial inhibition zone diameters obtained through the Kirby-

Bauer disk diffusion method. This application demonstrates a

consistency rate of 90% to 98% with the standard method, thereby

effectively minimizing inter-operator variability and offering a

portable detection solution suitable for resource-limited settings. In

clinical practice, the integration of multidimensional data sources,

including electronic health records (EHRs), laboratory data,

environmental monitoring information, and genomic data, allows

AI to optimize antibiotic management processes. This integration

enhances diagnostic speed and personalized treatment, curtails the

misuse of broad-spectrum antibiotics, and mitigates the emergence of

drug resistance (Pennisi et al., 2025b).In conclusion, AI-Driven AST

is redefining the diagnostic and therapeutic framework for infectious

diseases by leveraging its advantages of rapid processing, cost-

effectiveness, and high precision.
5 Challenges and future directions

While AI-AST demonstrates significant potential, its clinical

implementation is hindered by several challenges, including data

bias, limited generalizability, the complexity of integrating multi-

omics data, and regulatory and ethical concerns (Ali et al., 2023).

Variability in detection methods across laboratories, such as

inconsistent MIC breakpoints, introduces data noise that may
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compromise model reliability (Mouton et al., 2018; Hicks et al.,

2019). Additionally, the model’s inconsistent performance with

cross-regional data and its low sensitivity to rare drug resistance

phenotypes—substantially lower than that for common variants—

underscore its limited generalizability (Argimón et al., 2020; Anahtar

et al., 2021). Although multi-omics integrated AI models can elucidate

the dynamic regulatory networks underlying drug resistance

mechanisms (Selevsek et al., 2020), they face issues such as

difficulties in aligning heterogeneous data,computational complexity,

and the lack of interpretability in deep learning models (e.g., CNNs).

These challenges complicate the identification of the responsible factors

in cases of misdiagnosis (Ali et al., 2023).Moreover, there is an urgent

need to address the risk of medical data privacy breaches and the

uneven geographical distribution. The federated learning framework

uses collaborative training models to predict individual drug sensitivity,

ensuring precise drug guidance while maintaining privacy (Shahsavari

et al., 2024; Artificial Intelligence Techniques Based on Federated

Learning in Smar).

To effectively address the dynamic evolution of antibiotic resistance

(AMR), it is imperative to establish a multi-dimensional data

integration capability alongside a robust privacy security framework.

Dang et al. (Anh Tuan et al., 2024) successfully integrated quorum

sensing (QS) with machine learning to develop an adaptive system

capable of predicting the risk of transmission of unknown drug

resistance genes, thereby providing early warnings and facilitating a

shift in drug resistance management towards proactive prevention and

control. Future research and development should prioritize enhancing

the generalization capabilities of models, optimizing strategies for

multi-omics integration, and constructing an AI framework that

balances efficiency with privacy security. Ultimately, the goal is to

achieve the comprehensive application of AI-assisted antimicrobial

susceptibility testing in clinical practice through ongoing technological

innovation and interdisciplinary collaboration.
6 Summarize

AI technology is at the forefront of innovation in AST and

resistance research, infusing the field of medical microbiology with

unprecedented dynamism. By integrating multi-omics data analyses,

including genomics, metabolomics, and proteomics, alongside

advanced technologies such as deep learning, AI has markedly

enhanced the speed and precision of detection processes. This

advancement enables not only the rapid prediction of bacterial

resistance spectra but also the precise identification of drug-

resistant genes and mutation sites. The capability for multi-

dimensional data integration offers a robust tool for investigating

the mechanisms underlying bacterial drug resistance and paves the

way for novel antimicrobial drug development. Recent studies

increasingly affirm the potential of AI in this domain. For instance,

predictive models leveraging machine learning algorithms can swiftly

evaluate bacterial resistance by analyzing gene sequences, while deep

learning-driven image analysis techniques can discern potential drug-

resistant phenotypes from microscopic images (Chhibbar and Joshi,

2019; Hussain et al., 2020).
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Furthermore, AI demonstrates considerable potential in the

identification and development of novel antibiotics. Recent studies

have employed generative adversarial networks (GANs) to design

new molecular structures, thereby significantly reducing the

development timeline for drug candidates (Cesaro et al., 2023).

Looking ahead, the ongoing refinement of AI algorithms and the

continuous growth of biological data repositories suggest an

expanded scope for AI applications in predicting antibiotic

sensitivity and facilitating personalized treatment strategies. AI is

anticipated to enable comprehensive analyses of individual patients’

microbiomes and infection environments, offering tailored treatment

options that enhance clinical outcomes and mitigate antibiotic

misuse. Additionally, the integration of AI with automated

experimental platforms may advance the standardization and

quantification of drug resistance research, offering innovative

solutions for precision medicine and public health.
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