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Université Claude Bernard Lyon 1, France
Min Li,
Colgate Palmolive, United States

*CORRESPONDENCE

Kyudong Han

kyudong.han@gmail.com

Dong-Geol Lee

leedg@cosmax.com

Yong Ju Ahn

yongju.ahn@hunbiome.com

†These authors have contributed equally to
this work

RECEIVED 06 February 2025

ACCEPTED 16 June 2025
PUBLISHED 07 July 2025

CITATION

Mun S, Jo H, Heo YM, Baek C,
Kim H-B, Lee H, Yun K, Jeong J,
Lee W, Jeon D, Kang SM, Kang S,
Choi Y-B, Han S, Kim G, Ahn K, Lee DH,
Ahn YJ, Lee D-G and Han K (2025) Skin
microbiome-biophysical association:
a first integrative approach to classifying
Korean skin types and aging groups.
Front. Cell. Infect. Microbiol. 15:1561590.
doi: 10.3389/fcimb.2025.1561590

COPYRIGHT

© 2025 Mun, Jo, Heo, Baek, Kim, Lee, Yun,
Jeong, Lee, Jeon, Kang, Kang, Choi, Han, Kim,
Ahn, Lee, Ahn, Lee and Han. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 07 July 2025

DOI 10.3389/fcimb.2025.1561590
Skin microbiome-biophysical
association: a first integrative
approach to classifying Korean
skin types and aging groups
Seyoung Mun1,2,3†, HyungWoo Jo1,4†, Young Mok Heo4,
Chaeyun Baek4, Hye-Been Kim4, Haeun Lee4, Kyeongeui Yun1,5,
Jinuk Jeong6, Wooseok Lee2, Dasom Jeon7,8, So Min Kang7,8,
Seunghyun Kang4, Young-Bong Choi2,3, Sangjin Han5,
Gabriel Kim5, Kung Ahn5, Dong Hun Lee9, Yong Ju Ahn5*,
Dong-Geol Lee1,4* and Kyudong Han1,2,5,6*

1Department of Microbiology, College of Science & Technology, Dankook University,
Cheonan, Republic of Korea, 2Center for Bio-Medical Engineering Core Facility, Dankook University,
Cheonan, Republic of Korea, 3Department of Cosmedical Materials, College of Bio-convergence,
Dankook University, Cheonan, Republic of Korea, 4Research & Innovation (R&I) Center, COSMAX BTI,
Seongnam, Republic of Korea, 5HuNBiome Co., Ltd., Research and Development (R&D) Center,
Seoul, Republic of Korea, 6Department of Bioconvergence Engineering, Dankook University,
Yongin, Republic of Korea, 7Department of Clinical Research, Korea Biomedical Research Institute,
Seongnam, Republic of Korea, 8Center for Digital Health, Medical Science Research Institute, Kyung
Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea,
9Department of Dermatology, Seoul National University Hospital, Seoul National University College of
Medicine, Seoul, Republic of Korea
Introduction: The field of humanmicrobiome research is rapidly expanding beyond

the gut and into the facial skin care industry. However, there is still no established

criterion to define the objective relationship between the microbiome and clinical

trials for developing personalized skin solutions that consider individual diversity.

Objectives: In this study, we conducted an integrated analysis of skin

measurements, clinical Baumann skin type indicator (BSTI) surveys, and the skin

microbiome of 950 Korean subjects to examine the ideal skin microbiome-

biophysical associations.

Methods: By utilizing four skin biophysical parameters, we identified four distinct

Korean Skin Cutotypes (KSCs) and categorized the subjects into three aging groups:

the Young (under 34 years old), the Aging I group (35-50), and the Old group (over

51). To unravel the intricate connection between the skin’s microbiome and KSC

types, we conducted DivCom clustering analysis.

Results: This endeavor successfully classified 726 out of 740 female skin

microbiomes into three subclusters: DC1-sub1, DC1-sub2, and DC2 with 15 core

genera. To further amplify our findings, we harnessed the potent capabilities of the

CatBoost boosting algorithm and achieved a reliable framework for predicting skin

types based on microbial composition with an impressive average accuracy of 0.96

AUC value. Our study conclusively demonstrated that these 15 core genera could

serve as objective indicators, differentiating the microbial composition among the

aging groups.
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Abbreviations: KSCs, Korean skin cutotypes; TEWL, Tra

AI, Artificial intelligence; BSTI, Baumann skin type in

operating characteristic; mDNA, Microbial genomic DNA

sequencing; DADA2, Divisive amplicon denoising algori

sequence variants; DivCom, Divide and compare; PERMA

analysis of variance; LEfSe, Linear discriminant analysi

BC2, Analysis of compositions of microbiomes with bias

Synthetic minority oversampling technique; EGA, Euro

archive; ITA, Individual typology angle; ROC-AU

characteristic area under curve; CH, Calinski-Harabasz i
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Conclusion: In conclusion, this study sheds light on the complex relationship

between the skin microbiome and biophysical properties, and the findings

provide a promising approach to advance the field of skincare, cosmetics, and

broader microbial research.
KEYWORDS

dermatologic conditions, microbiome, Korean skin cutotypes, skin microbiome-
biophysical association, core genera
Introduction

Skin clinical research trials are conducted to study the effectiveness

and safety of a new product or formulation to measure the condition of

a subject’s skin. Rising consumer demand for personalized skincare

drives clinical research into the skin microbiome to develop tailored

solutions (Goyal et al., 2022; Gupta et al., 2022). Skin microbiome

studies explore its role in skin health, addressing diverse phenotypes

across age groups. These efforts aim to create effective, evidence-based

products for preventing skin aging (Elder et al., 2021; Souak et al., 2021;

Borja Guerrero et al., 2022; Dhandapani et al., 2023).

The Baumann Skin Type Indicator (BSTI) classifies skin

phenotypes based on oiliness, sensitivity, pigmentation, and elasticity,

serving as a key tool in dermatological research (Baumann, 2008).

However, its reliance on self-assessment often leads to inaccuracies,

particularly for Asians, where Korean studies show discrepancies in

pigmentation and sensitivity (Ahn et al., 2017; Lee et al., 2019).

Advanced clinical measurement devices, such as corneometers and

cutometers, provide precise, non-invasive assessments of skin

parameters like hydration, elasticity, and transepidermal water loss

(Tkaczyk, 2017; Seo et al., 2022). Skin clinical measurement devices are

tools used to evaluate and quantify various skin parameters, such as

hydration, elasticity, and pigmentation (Seo et al., 2022). Integrating

these objective metrics with refined BSTI questionnaires improves the

accuracy of skin phenotype determination for diverse populations.

Along with the growth and interest in dermatology, the

microbiome, which includes all the microorganisms that inhabit the

human body, has become an increasingly popular research topic in

recent years. The gut microbiome, in particular, has received a lot of

attention due to its potential influence on overall health and disease.
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However, skin microbiomes are also an important area of research, as

they play a vital role in skin health and function. Age-related changes

in the skin microbiome are highly variable and can be influenced by

both personal and external environmental factors. Therefore, the skin

microbiome, increasingly vital in cosmetics and dermatology, is

shaped by age, sex, genetics, and environment, driving personalized

healthcare innovations (Byrd et al., 2018). Its diverse microbial

communities protect against pathogens and maintain skin barrier

function, critical for skin health. Disruptions in this microbiome are

linked to disorders like acne, eczema, and psoriasis, spurring research

and commercialization (Dréno et al., 2016).

Increased Cutibacterium acnes (C. acnes) abundance is linked to

acne-prone skin, prompting targeted skincare interventions (Rozas

et al., 2021). Atopic dermatitis patients exhibit reduced skin

microbiome diversity and elevated Staphylococcus aureus (S. aureus),

exacerbating inflammation (Kong et al., 2012). Chronic wound patients

have less diverse microbiomes with more pathogenic bacteria, while

Staphylococcus epidermidis (S. epidermidis) promotes wound healing

(Wolcott et al., 2016). In diabetes, a less diverse microbiome with

increased Staphylococcus species increases the risk of skin infection

(Gardiner et al., 2017).

The clinical relevance of the skin microbiome has been well

documented, with many studies suggesting that the microbiome plays

an important role in skin health and disease, but there is a lack of

research on the association between skin type and the skin microbiome

in normal human subjects, limited by environmental and ethnic

variables. Only a few studies have shown an association with different

skin types, which are categorized by factors such as oiliness, dryness, and

sensitivity. Oily skin has been found to have a different skin microbiome

compared to dry skin. Specifically, there is a higher abundance of

Propionibacterium acnes (P. acnes) on oily skin. Dry skin has been

associated with a less diverse skin microbiome and a decrease in certain

beneficial bacteria, such as Staphylococcus epidermidis (Mukherjee et al.,

2016). Additionally, dry skinmay bemore susceptible to colonization by

pathogenic bacteria. Sensitive skin has a distinct microbiome with a

higher abundance of certain bacteria, exacerbating skin inflammation

(Tay et al., 2021). Combination skin has amore diversemicrobiome, but

microbial communities can still vary across different areas of the skin.

Systematic clinical and molecular genetic studies must be completed to

better understand the specific microbiome associated with different skin

types and to develop targeted interventions to improve skin health.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1561590
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Mun et al. 10.3389/fcimb.2025.1561590
0

20

40

60

20 30
score

co
un

t

Dry / Oily

0

10

20

30

40

50

20 30 40 50
score

co
un

t

Resistant / Sensitive

0

20

40

60

10 15 20 25 30 35
score

co
un

t

Non−Pigmented / Pigmented

0

20

40

60

80

30 40 50 60
score

co
un

t

Tight / Wrinkle−prone

DRNT
21%

DRNW
17%

DSNT
14%

OSNT
13%

DSNW
11%

ORNT
10%

OSNW
7%

Other
7%

Correlation &
average/region

ML experiment for
Cross-validation

Determination of Skin type using compact parameter

Tone / Elasticity (H or L / H or L) 
Moisture / Oil (H or L / H or L)

Participants

39 Skin parameters

6 Skin 

4 Skin 

H/H, H/L, L/H, L/L

HH yHL yLH yLL aHH aHL aLH aLL oHH oHL oLH oLL

Young Aging 1 Old

a b c
BSTI questionnaire 

Assocications between skin types and microbiome 

792 female

*focusing on 756 among 792 female

only 752 female

y

FIGURE 1

Screening Korean Skin Cutotypes (KSC): Research strategies and BSTI analysis unveiled. (a) This diagram represents the sequence of steps in
determining KSC type for a total of 756 female subjects. Based on 39 skin clinical measurement data parameters, four skin criteria were finally
selected and four KSC types were determined. (b) Distribution of female subjects based on sebum production, skin sensitivity, pigmentation, and
wrinkle severity categories. The x- and y-axis represent the calculated score in each category and the accumulated number of subjects, respectively.
The red dashed line is the median. (c) Determined proportions of 16 Bauman types in 752 female subjects. Detailed BSTI results for each subject are
presented in Supplementary Table 1.
a

1 −0.43

1

0.02

−0.73

1

0.56

−0.27

−0.06

1

−0.6

0.86

−0.49

−0.71

1

−0.76

0.41

−0.1

−0.39

0.5

1

−0.67

0.37

−0.09

−0.37

0.46

0.81

1

−0.78

0.43

−0.11

−0.4

0.51

0.91

0.91

1

−0.43

0.06

0.09

−0.3

0.2

0.26

0.25

0.25

1

−0.35

−0.02

0.12

−0.23

0.11

0.28

0.26

0.26

0.57

1

−0.44

−0.01

0.17

−0.31

0.16

0.32

0.3

0.31

0.68

0.59

1

−0.06

0.08

0.02

−0.08

0.09

0.12

0.12

0.1

0.24

0.1

0.1

1

−0.07

0.08

0.02

−0.08

0.1

0.13

0.12

0.1

0.24

0.1

0.1

1

1

−0.01

0.06

−0.01

−0.06

0.07

0.06

0.06

0.04

0.15

0.07

0.06

0.68

0.68

1

−0.02

0.04

0

−0.04

0.04

0.05

0.03

0.04

0.19

0.1

0.13

0.6

0.6

0.38

1

−0.01

0.03

0

−0.04

0.04

0.04

0.02

0.03

0.19

0.1

0.11

0.59

0.59

0.37

0.99

1

−0.01

0.01

0.01

−0.02

0.02

0.01

−0.03

−0.01

0.11

0.06

0.07

0.36

0.36

0.22

0.63

0.63

1

−0.17

−0.1

0.23

−0.16

0.01

0.08

0.09

0.06

0.13

0.15

0.21

−0.04

−0.04

−0.03

−0.09

−0.09

−0.07

1

−0.17

−0.1

0.23

−0.16

0.01

0.09

0.1

0.07

0.12

0.15

0.2

−0.04

−0.03

−0.02

−0.1

−0.1

−0.07

0.99

1

−0.17

−0.1

0.23

−0.16

0.01

0.08

0.08

0.06

0.12

0.15

0.2

−0.04

−0.04

−0.03

−0.09

−0.09

−0.06

0.98

0.99

1

−0.27

−0.06

0.2

−0.16

0.04

0.17

0.19

0.17

0.13

0.18

0.19

−0.05

−0.05

−0.02

−0.13

−0.14

−0.09

0.61

0.62

0.61

1

−0.26

−0.07

0.19

−0.15

0.02

0.15

0.19

0.16

0.13

0.18

0.18

−0.04

−0.04

−0.01

−0.13

−0.13

−0.09

0.59

0.6

0.6

0.96

1

−0.26

−0.07

0.19

−0.16

0.04

0.16

0.19

0.17

0.13

0.18

0.2

−0.05

−0.05

−0.02

−0.12

−0.13

−0.09

0.61

0.62

0.62

0.98

0.96

1

−0.36

0.32

−0.12

−0.16

0.31

0.33

0.33

0.4

−0.03

−0.03

0.03

0.07

0.07

0.03

0.06

0.05

0.04

−0.06

−0.05

−0.06

−0.02

−0.03

−0.02

1

0.47

−0.46

0.22

0.3

−0.48

−0.49

−0.42

−0.51

0.06

0.02

0.01

−0.05

−0.05

0.01

−0.09

−0.09

−0.04

0.02

0.02

0.01

−0.05

−0.04

−0.05

−0.35

1

0.48

−0.48

0.24

0.31

−0.51

−0.5

−0.44

−0.52

0.06

0.03

0.02

−0.05

−0.05

0

−0.07

−0.07

−0.03

0

0

0

−0.08

−0.08

−0.09

−0.37

0.96

1

0.8

−0.36

−0.02

0.42

−0.48

−0.59

−0.54

−0.61

−0.36

−0.28

−0.35

−0.1

−0.1

0.01

−0.04

−0.03

−0.04

−0.13

−0.13

−0.12

−0.14

−0.14

−0.14

−0.3

0.33

0.33

1

0.72

−0.29

−0.02

0.38

−0.41

−0.53

−0.48

−0.55

−0.33

−0.28

−0.31

−0.1

−0.1

0.01

−0.05

−0.05

−0.04

−0.13

−0.13

−0.12

−0.15

−0.15

−0.15

−0.26

0.31

0.31

0.84

1

0.72

−0.32

0.01

0.4

−0.44

−0.53

−0.48

−0.56

−0.33

−0.28

−0.3

−0.09

−0.09

0.02

−0.05

−0.05

−0.03

−0.12

−0.12

−0.12

−0.14

−0.14

−0.14

−0.27

0.31

0.32

0.79

0.94

1

0.6

−0.25

−0.03

0.32

−0.34

−0.43

−0.38

−0.44

−0.28

−0.18

−0.26

−0.07

−0.07

−0.01

−0.11

−0.1

−0.07

−0.09

−0.09

−0.08

−0.1

−0.09

−0.09

−0.23

0.22

0.22

0.6

0.53

0.49

1

0.3

−0.21

0.15

0.24

−0.28

−0.27

−0.27

−0.33

−0.09

−0.08

−0.05

−0.02

−0.02

−0.01

0

0

0.05

0.06

0.06

0.06

−0.14

−0.13

−0.13

−0.14

0.21

0.23

0.13

0.17

0.21

0.06

1

−0.12

−0.05

0.12

0.01

−0.05

0.1

0.06

0.07

0.04

0.1

0.08

−0.05

−0.04

−0.04

−0.06

−0.06

0.02

0.08

0.08

0.08

0.03

0.03

0.03

−0.02

−0.03

−0.01

−0.29

−0.21

−0.15

0.1

0.61

1

0.7

−0.32

−0.01

0.38

−0.42

−0.51

−0.49

−0.54

−0.3

−0.22

−0.3

−0.06

−0.06

0.03

−0.02

−0.02

−0.03

−0.08

−0.08

−0.07

−0.11

−0.11

−0.1

−0.27

0.31

0.32

0.89

0.73

0.68

0.56

0.2

−0.21

1

0.69

−0.29

−0.03

0.35

−0.39

−0.5

−0.44

−0.51

−0.29

−0.21

−0.3

−0.13

−0.13

−0.08

−0.02

−0.01

−0.02

−0.13

−0.13

−0.12

−0.13

−0.13

−0.12

−0.27

0.27

0.28

0.7

0.59

0.58

0.53

0.12

−0.14

0.62

1

0.65

−0.27

−0.03

0.33

−0.36

−0.47

−0.43

−0.48

−0.26

−0.19

−0.28

−0.1

−0.1

−0.07

0.02

0.03

0

−0.11

−0.12

−0.11

−0.11

−0.11

−0.11

−0.25

0.23

0.25

0.68

0.56

0.55

0.51

0.09

−0.15

0.6

0.95

1

0.62

−0.23

−0.06

0.31

−0.33

−0.44

−0.4

−0.45

−0.28

−0.19

−0.29

−0.11

−0.11

−0.07

0.01

0.02

0

−0.09

−0.1

−0.09

−0.1

−0.1

−0.1

−0.25

0.21

0.22

0.65

0.52

0.52

0.46

0.07

−0.17

0.57

0.9

0.89

1

0.65

−0.26

−0.04

0.32

−0.35

−0.46

−0.41

−0.47

−0.28

−0.2

−0.29

−0.12

−0.13

−0.07

−0.03

−0.02

−0.04

−0.12

−0.13

−0.12

−0.13

−0.13

−0.13

−0.25

0.26

0.27

0.69

0.57

0.55

0.52

0.06

−0.17

0.61

0.96

0.93

0.88

1

0.18

−0.01

−0.06

0.06

−0.03

−0.01

−0.03

−0.05

−0.1

−0.01

−0.07

−0.01

−0.01

0.01

−0.09

−0.09

−0.15

−0.01

0

−0.01

−0.01

−0.02

−0.01

−0.04

0.1

0.11

0.22

0.18

0.14

0.16

−0.18

−0.22

0.19

0.22

0.25

0.24

0.4

1

−0.04

0.03

−0.05

−0.01

0.02

−0.05

−0.08

−0.04

−0.07

−0.05

−0.05

−0.02

−0.02

0

−0.05

−0.05

−0.07

−0.03

−0.02

−0.03

0.01

0.01

0.01

0.02

0.06

0.04

−0.07

−0.06

−0.08

−0.08

0

0.04

−0.07

−0.18

−0.2

−0.14

−0.17

−0.05

1

0.68

−0.27

−0.04

0.35

−0.38

−0.5

−0.42

−0.49

−0.3

−0.23

−0.31

−0.13

−0.13

−0.08

−0.03

−0.03

−0.03

−0.12

−0.13

−0.12

−0.12

−0.12

−0.12

−0.26

0.3

0.3

0.67

0.58

0.56

0.51

0.12

−0.14

0.59

0.97

0.91

0.85

0.93

0.19

−0.17

1

* *

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

** ** **

**

**

**

**

**

**

**

**

**

** **

**

**

** **

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*** ***

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
ge

C
ol

or
.C

he
ek

.L
−

va
lu

e

C
ol

or
.C

he
ek

.a
−

va
lu

e

C
ol

or
.C

he
ek

.b
−

va
lu

e

C
ol

or
.C

he
ek

.I T
A

E
la

st
ic

ity
.C

he
ek

.R
2

E
la

st
ic

ity
.C

he
ek

.R
5

E
la

st
ic

ity
.C

he
ek

.R
7

O
il.

F
or

eh
ea

d

O
il.

N
os

e

O
il.

C
he

ek

H
yd

ra
tio

n.
F

or
eh

ea
d.

1s
t

H
yd

ra
tio

n.
F

or
eh

ea
d.

2n
d

H
yd

ra
tio

n.
F

or
eh

ea
d.

3r
d

H
yd

ra
tio

n.
C

he
ek

.1
st

H
yd

ra
tio

n.
C

he
ek

.2
nd

H
yd

ra
tio

n.
C

he
ek

.3
rd

T
E

W
L.

F
or

eh
ea

d.
1s

t

T
E

W
L.

F
or

eh
ea

d.
2n

d

T
E

W
L.

F
or

eh
ea

d.
3r

d

T
E

W
L.

C
he

ek
.1

st

T
E

W
L.

C
he

ek
.2

nd

T
E

W
L.

C
he

ek
.3

rd

D
en

si
ty

.C
he

ek

P
or

e.
C

he
ek

.L
ef

t

P
or

e.
C

he
ek

.R
ig

ht

W
rin

kl
e.

E
ye

.A
vg

_w
rin

kl
e_

de
pt

h

W
rin

kl
e.

E
ye

.M
ea

n_
de

pt
h_

bi
gg

es
t_

w
r in

kl
e

W
rin

kl
e.

E
ye

.M
ax

_d
ep

th
_b

ig
ge

st
_w

rin
kl

e

W
rin

kl
e.

E
ye

.W
rin

kl
e_

vo
lu

m
e

W
rin

kl
e.

E
ye

.W
rin

kl
e_

ar
ea

W
rin

kl
e.

E
y e

.L
en

gt
h_

of
_w

rin
kl

es

W
rin

kl
e.

E
ye

.R
a

W
rin

kl
e.

N
as

ol
ab

ia
l.A

vg
_w

rin
kl

e_
de

pt
h

W
rin

kl
e.

N
as

ol
ab

ia
l.M

ea
n_

de
pt

h_
bi

gg
es

t_
w

rin
kl

e

W
rin

kl
e.

N
as

ol
ab

ia
l.M

ax
_d

ep
th

_b
ig

ge
st

_w
rin

kl
e

W
rin

kl
e.

N
as

ol
ab

ia
l.W

rin
kl

e_
vo

lu
m

e

W
rin

kl
e.

N
as

ol
ab

ia
l.W

rin
kl

e_
ar

ea

W
rin

kl
e.

N
as

ol
ab

ia
l.L

en
gt

h_
of

_w
rin

kl
es

W
rin

kl
e.

N
as

ol
ab

ia
l.R

a

Age

Color.Cheek.L−value

Color.Cheek.a−value

Color.Cheek.b−value

Color.Cheek.ITA

Elasticity.Cheek.R2

Elasticity.Cheek.R5

Elasticity.Cheek.R7

Oil.Forehead

Oil.Nose

Oil.Cheek

Hydration.Forehead.1st

Hydration.Forehead.2nd

Hydration.Forehead.3rd

Hydration.Cheek.1st

Hydration.Cheek.2nd

Hydration.Cheek.3rd

TEWL.Forehead.1st

TEWL.Forehead.2nd

TEWL.Forehead.3rd

TEWL.Cheek.1st

TEWL.Cheek.2nd

TEWL.Cheek.3rd

Density.Cheek

Pore.Cheek.Left

Pore.Cheek.Right

Wrinkle.Eye.Avg_wrinkle_depth

Wrinkle.Eye.Mean_depth_biggest_wrinkle

Wrinkle.Eye.Max_depth_biggest_wrinkle

Wrinkle.Eye.Wrinkle_volume

Wrinkle.Eye.Wrinkle_area

Wrinkle.Eye.Length_of_wrinkles

Wrinkle.Eye.Ra

Wrinkle.Nasolabial.Avg_wrinkle_depth

Wrinkle.Nasolabial.Mean_depth_biggest_wrinkle

Wrinkle.Nasolabial.Max_depth_biggest_wrinkle

Wrinkle.Nasolabial.Wrinkle_volume

Wrinkle.Nasolabial.Wrinkle_area

Wrinkle.Nasolabial.Length_of_wrinkles

Wrinkle.Nasolabial.Ra

Correlation in age and 39 skin parameters

b

c

d

FIGURE 2

Assessment of key metrics selection and predictive performance using biophysical parameters. (a) Correlation analysis through the Pearson
coefficient method between each of the 39 biophysics parameters. As shown in the scale bar on the right, blue and red colors represent positive
and negative correlations, respectively, with higher correlations being darker. (b) Polygonal chart of age-related changes in six metrics representing
skin condition (elasticity, skin tone, oil, pore, wrinkle, moisture). (c) Mean receiver operating characteristic (ROC) curves for age estimation using 39
biophysical parameters and figure (d) the representative six metrics. ROC curves were used to compare the predictive power of the six metrics. The
Area Under the ROC Curve (AUC) scores for each age group are noted in the legend and represented by different colors. The green dashed line
indicates the expected AUC for a random chance classifier. Plots depict the tradeoff between true-positive and false-positive. The closer the curve
follows the left-hand border and the top border of the ROC space, the more accurate the test.
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Thus, this study aimed to address dermatological concerns by

building a comprehensive meta-database of Korean facial skin,

questionnaires (including Baumann), incorporating clinical

measures, and skin microbiome data from 950 participants of both

genders (756 female and 194 male) and all ages (0-88). Two aging

points with contrasting upper and lower group proportions in

pigmentation, elasticity, and oiliness values are demonstrated to

differentiate three aging groups: Young, Aging I, and Old, based on

six skin measurements. Accordingly, we defined four skin types based

on clinically measured metrics, such as hydration, oiliness,

pigmentation, elasticity, pores, and wrinkles, which could distinguish

skin phenotypes in each group. Using non-invasive techniques, we

analyzed the relationship between microorganisms and clinical

metrics, defining 15 core and representative genera for each of the

12 skin phenotypes via bioinformatic analysis and artificial intelligence

(AI) machine-learning experiments. Additionally, we identified the
Frontiers in Cellular and Infection Microbiology 04
significant microorganisms with potential skincare applications

through pathway enrichment analysis. These findings provide a

foundation for future skin microbiome studies to discover microbial

materials and functions relevant to skin health. Furthermore, our

study’s results may be valuable in developing an effective and tailored

cosmetic solutions using the skin microbiome database.
Materials and methods

Sample collection

The facial rinse sample collection in this study (skin microbiota

samples collection) was approved by the ethics committee of H&BIO

Corporation R&DCENTER (H&Bio, South Korea) Institutional Review

Board (IRB Protocol Number: HBABN01-210217-HR-0181-01).
a

c

Oil/
Moist

Tone/
Elasticity

Oil/
Moist

Tone/
Elasticity

b

FIGURE 3

Determination and compartmentalization of the skin type for 705 Korean female. (a) Scatter plots of tone/elasticity (top) and oil/moisture (bottom)
for the tertile of groups by each criterion. Each individual in the high, middle, and low values of the x- and y-axis criterion was plotted in green, blue,
and orange, respectively. (b) Principal component analysis based on tone/elasticity and oil/moisture criterion values. The integrated coordinates of
the skin criteria show a characteristic distribution across the four types based on the skin type determination strategy. Individuals in the middle range
were marked in gray. For example, high values for both tone/elasticity and oil/moisture were annotated as HH and low values as LL. The mountain
diagram indicates the distribution of number of the enriched individuals. (c) Age-dependent clockwise change in skin type. The green, orange, blue,
and red contours represent the types HH, HL, LH, and LL, respectively. The triangles represent the number of Korean female subjects in each age
group, demonstrating that the skin type determination criteria in this study are efficiently representative of skin clinical variation.
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All clinical processing applied in this study was conducted under the

guidelines and regulations of the Helsinki Declaration. A total of 950

samples were collected from the entire faces of healthy Koreans (756

females and 194 males) without chronic skin diseases, such as atopic

dermatitis and psoriasis. These subjects are Koreans living in the same

area, aged 0 to 88. They were asked not to wash or use any formulation

on their face for 12 h to 18 h before sampling. Applicants have stayed at

22 ± 2°C, 50 ± 5% of humidity for 20 min to normalize the skin

condition. The facial rinse samples for subjects were collected using 500

mL of sterilized distilled water for 2 min, and the collected samples were

immediately frozen at -20°C prior to DNA extraction or proceeded
Frontiers i 05
with microbial genomic DNA extraction. All subjects completed a

60-item dermatological clinical self-assessment questionnaire

(Supplementary Table 1).
Microbial genomic DNA extraction and

A 150 mL aliquot of the rinse solution was filtered through a

Corning® 150 mL Vacuum Filter/Storage Bottle System with a 0.22

µm polyethersulfone (PES) membrane (Corning, Cat. No. 431097)

using a vacuum pump after mixing gently. Microbial genomic DNA

was extracted from the 0.22 µm PES filter membranes using the

QIAamp PowerFecal Pro DNA Kit (Qiagen, Germany), following

the manufacturer’s instructions with modifications for filter-based

samples. The quality of all extracted bacterial gDNA was assessed

using the Qubit 4 (ThermoFisher Scientific, USA). The extracted

mDNA samples were then stored at 4°C until further processing.
Determination of Baumann skin type
indicator

The Baumann Skin Type Indicator (BSTI) is a self-administered

questionnaire that classifies skin into 16 types based on four

categories: dryness/oiliness, sensitivity/resistance, pigmentation/non-

pigmentation, and wrinkles/elasticity (Baumann, 2008; Ahn et al.,
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FIGURE 4

Turning points in skin condition and changes in skin type in aging groups. (a) The line chart represents the distribution of high and low skin type by
age for 4 skin type criteria. The green and orange lines denote the proportion of subjects with high (positive) and low (negative) values in the age
group. The red dotted lines indicate inflection points where tone, elasticity, and oiliness change. (b) Determination and the ratio of three Aging
groups in skin turning points, based on four skin criteria. (c) Polygon chart for four skin types and biophysical variations by the Aging group. The
green, orange, blue, and red polygons denote the types HH, HL, LH, and LL, respectively. The grey one is for the mean of each the Aging group.
TABLE 1 Number of subjects by gender and age.

Female

00s 15

Male

00s 14

10s 82 10s 21

20s 110 20s 27

30s 105 30s 22

40s 106 40s 21

50s 103 50s 19

60s 104 60s 26

70s 105 70s 24

80s 62(26) 80s 23
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2017; Lee et al., 2019). Participants answer 60 questions, scoring 1–4

points per question (2.5 points for unanswered questions). Scores are

tallied separately for each category to determine skin type. For dryness/

oiliness (11 questions), scores ≥27 indicate oily skin, and ≤26 indicate

dry skin. For sensitivity/resistance (18 questions), scores ≥30 (plus 4

points for specific skin conditions) indicate sensitive skin, and ≤29

indicate resistant skin. For pigmentation/non-pigmentation (10

questions), scores ≥31 (plus 5 points if sunlight aggravates moles)

indicate pigmented skin, and ≤30 indicate non-pigmented skin. For

wrinkles/elasticity (20 questions), scores ≥41 (plus 5 points if aged >65)

indicate wrinkly skin, and ≤40 indicate elastic skin. Combining scores

from all categories identifies the participant’s BSTI skin type. For

pediatric and adolescent subjects (aged 0–18 years), skin characteristic

assessments, including Baumann Skin Type Indicator (BSTI)

evaluations, were derived from clinical examinations by

dermatologists at the Center for Digital Health, Kyung Hee

University Medical Center, supplemented by proxy questionnaires

completed by the subjects’ parents.
Biophysical measurement for skin
conditions

To characterize the facial skin properties of participants, a series

of non-invasive measurements were conducted at baseline to assess
Frontiers in Cellular and Infection Microbiology 06
epidermal hydration, transepidermal water loss (TEWL), sebum

production, wrinkles, pores, skin color/tone, elasticity, and dermal

density. But, Wrinkle measurements (lateral canthal lines and

nasolabial folds) were not performed for pediatric subjects (aged

0–9 years) due to the absence of detectable wrinkles and technical

difficulties. All measurements were performed under controlled

conditions (temperature: 22 ± 2°C, relative humidity: 50 ± 5%)

following a 12-hour period without face washing or cosmetic

application to ensure consistency. Measurements were conducted

in triplicate (unless specified otherwise), and average values were

analyzed to account for variability. Detailed protocols for

dermatological assessments are described in Supplementary

Materials 1.
Integrating clinical skin measurements

In order to ensure accurate skin quantification in localized

areas, several measures were taken. Moisture content and water loss

were measured in triplicate, and the average values were used in the

analysis to minimize errors. Separate measurements were taken for

the forehead and cheeks to determine water content and water loss.

Their averages were used to represent an individual’s overall water

content and Transepidermal Water Loss (TEWL). Pores were also

measured on both cheeks, and their average value was used to
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FIGURE 5

The skin-aging trends for four skin criteria dimensions. (a) Aging associations of tone and elasticity and figure (b) personal skin condition variations
with oil and moisture. The binned graph shows the distribution of tone/elasticity or oil/moisture values and the number of samples per aging group.
The green and red dashed lines indicate the mean and median values, respectively. This figure describes that among the key skin criteria, Tone/
elasticity shows a sharp difference as getting old compared to oil/moisture. (c, d) Scatter plots representing relationships between tone/elasticity and
between oil/moisture. In the three determined aging groups, tone/elasticity is converging to sharply lower values, while oil/moisture indicates an
overall decrease in the oil criteria but similar values for the moisture criteria. Based on skin type with tone/elasticity and oil/moisture, the high group
is colored green, and the low group is colored blue. The mountain diagram indicates the distribution of number of the enriched individuals.
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represent the severity of an individual’s pores. The other

measurements for the amount of skin sebum, wrinkles, tone,

elasticity, and dermal density were performed by individual

devices. Using these measures can provide a more accurate

representation of an individual’s skin condition, which is crucial

in developing effective skincare routines and treatments. A detailed

calculation method and calculated formulas are described in

Supplementary Information (Supplementary Material 2).
A skin biophysical multiparameter-based
prediction model for the aging group
classification

To construct and evaluate our classification models, we used the

PyCaret library (version 2.3.6) in Python (version 3.8.12) (Ali, 2020).

Prior tomodel construction, our samples were split into an 80% training

set and a 20% test set, with ‘data_split_stratify=True’ (and

‘data_split_stratify=[target_variable]’) to ensure that the ratio of target

variables was maintained in both sets. Predictive models were

constructed using the CatBoost algorithm, which is a boosting

algorithm that has shown high performance in many recent
Frontiers in Cellular and Infection Microbiology 07
classification problems (Prokhorenkova et al., 2018). The

hyperparameters of our models were tuned using a random grid

search algorithm, based on the scikit-learn library (version 0.23.2),

through five-fold cross-validation (Pedregosa et al., 2011). To account

for imbalanced sample numbers for the target variable, we evaluated the

performance of our models through three types of Receiver Operating

Characteristic (ROC) curve: (1) an ROC curve for each class, (2) a

micro-average ROC curve for all classes, and (3) a macro-average ROC

curve for all classes (Pedregosa et al., 2011). The micro-average method

reflects each prediction equally, while the macro-average method treats

all classes equally when calculating the average.
Amplicon library construction for 16S V3-
V4 illumina sequencing

To prepare the 16S amplicon libraries for Next Generation

Sequencing (NGS) based metagenome sequencing, the official

Illumina 16S metagenome library construction protocol was

followed, targeting the V3-V4 hypervariable region of the

bacterial 16S rRNA gene (Illumina, USA) (Bukin et al., 2022).

PCR amplification for sequencing library construction was
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FIGURE 6

Comprehensive microbiome comparative analysis according to the decided Aging groups. (a) Box plot showing microbial alpha-diversity
comparisons between three different age groups (Young, Aging 1, and Old groups). Shannon and Simpson alpha-diversity indices were applied to
this alpha-diversity estimation, and it is a measure for confirming the microbial richness and evenness in each group (‘p’ means the p-value).
(b) Relative abundance bar plot showing the difference of relative bacterial frequency within each group for 10 different core-bacterial genera
(Cutibacterium, Streptococcus, Staphylococcus, Rothia, Corynebacterium, Neisseria, Actinocymes, Haemophilus, Fusobacterium, and Veillonella).
Color notation information for each genus is indicated in the footnote on the right side of the figure. (c) LEfSe (Linear discriminant analysis Effect
Size) analysis result confirming the distinct bacterial taxonomy showing statistically significant differences in relative frequency between each group.
The threshold on the logarithmic LDA (Linear Discriminant Analysis) score for discriminative features was set to 2.0 (indicating significant differential
abundance).
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performed using the 16S V3-V4 hypervariable region-specific

universal primer pair and 2X KAPA HiFi Hot Start Ready Mix

(Roche, Germany). The forward and reverse primer sequences were

16S 341F (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGAC

AGCCTACGGGNGGCWGCAG-3’) and 16S 806R (5’-GTC

T C G T G G G C T C G G A G A T G T G T A T A A G A G A

CAGGACTACHVGGGTATCTAATCC-3’), respectively. After

PCR amplification, all amplicon products were purified using

AMPure XP beads (Beckman Coulter, USA). An additional PCR

amplification was performed to add the Illumina adapter and

multiplex indices using the Nextera XD Index (Illumina, USA).

The final PCR products were purified once again using the AMPure

XP beads. Following library preparation, the 16S V3-V4

metagenome sequencing was carried out using the Illumina Miseq

(2 x 300) paired-end sequencing workflow (Illumina, USA).
Data analysis of skin microbiome

The skin microbiome sequence data obtained through MiSeq

was analyzed using the QIIME™ 2 pipeline plugin (2020.11). To

improve the accuracy of classification and annotation results, Figaro
Frontiers in Cellular and Infection Microbiology 08
(https://github.com/Zymo-Research/figaro) was used to remove

low-quality reads and adapters before implementing DADA2

(Divisive Amplicon Denoising Algorithm 2) in QIIME2 (Callahan

et al., 2016; Bolyen et al., 2019). This can be achieved by setting a

specific quality score, sliding a window of quality scores, or removing

reads shorter than a certain length. DADA2 is a powerful

bioinformatics tool that uses a denoising algorithm to correct

sequencing errors and cluster reads into Amplicon Sequence

Variants (ASVs) based on their sequences. The ASVs were then

subjected to bacterial classification using a Naïve Bayes classifier

based on V3-V4 hypervariable reads extracted from the SILVA 138v

99% rRNA database to improve accuracy. ASVs annotated with

Archaea, Eukaryotes, mitochondria, or chloroplasts were removed to

focus only on bacterial taxa. The ASVs were aligned using the

phylogeny align-to-tree-mafft-fasttree plugin and subjected to a-
diversity (observed features, Chao1 index, Shannon’s index,

Simpson’s index, Pielou’s evenness) and b-diversity (Bray-Curtis,

Unweighted unifrac, generalized UniFrac) analysis, which produced

1,391 rarefied depth reads. To further analyze the data, the samples

were divided into an appropriate number of clusters using the ASVs

abundance table and a generalized UniFrac distance matrix with the

DivCom (Divide and Compare) tool (Intze and Lagkouvardos, 2022).
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Finally, the metagenomic functional composition of the taxa

abundance was inferred using PICRUSt2 from ASVs sequence and

table (Douglas et al., 2020). Overall, the combination of these methods

and tools allowed for a comprehensive analysis of the skin microbiome

data, including accurate classification, diversity analysis, clustering, and

functional inference.
Statistical analysis & machine learning
experiments

Correlation between clinical metrics and between skin microbes

was confirmed by Spearman’s rank correlation coefficient in R, and

visualization was performed using the corrplot package (https://

github.com/taiyun/corrplot). Group comparison of a-diversity and
taxonomies was evaluated for statistical significance using Kruskal-

Wallis and Mann-Whitney (Wilcoxon-test rank sum test). To

confirm the similarity between groups in distance matrices from

b-diversity metrics, Principal Coordinate Analysis (PCoA) was

performed through the QIIME2 plugin (Bolyen et al., 2019).

Permutational analysis of variance (PERMANOVA) analysis was
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also conducted using the pairwise Adonis package in R, with 999

permutations (Martinez Arbizu, 2020). Linear Discriminant

Analysis Effect Size (LEfSe) was calculated with LDA score ≥ 2.0

to identify significant taxonomy within each group (Chang et al.,

2022). Additionally, Analysis of Compositions of Microbiomes with

Bias Correction 2 (ANCOM-BC2) was utilized to determine if a

specific genus was differentially abundant between KSCs (Lin and

Peddada, 2020). For 15 selected genera, heatmap plots of negative

log10-transformed p-values from all possible pairwise comparisons

were generated. To distinguish each type from the other three types

of the same aging group, a prediction model was constructed for

every single type using CatBoost, with 15 selected genera as features

(Prokhorenkova et al., 2018). The samples were divided into an 80%

training set to build the model and a 20% test set to validate the

model. Synthetic Minority Oversampling TEchnique (SMOTE) was

applied to the training set to overcome class-imbalance bias

(Chawla et al., 2002). The hyperparameters were optimized using

the Optuna framework (Akiba et al., 2019). Feature importance

values were used to identify the genera associated with the types.

The all detailed codes are opened at https://github.com/HuNBiome/

KSC-Microbiome-2023.
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FIGURE 8

Heatmap of the Heatmap of the pairwise comparison analysis for the core genera. (a–c) The 10 of 15 core genera, the heatmap plots of negative
log10-transformed p-values from all possible pairwise comparisons using ANCOM-BC2 were generated. Relative P-value differences between the
two groups are marked with + (red) and - (blue). They all have different composition patterns, and the scale was set by their significance. The figure
(a) shows a significant composition difference between the Young/Aging I group and the Old group, and the figure (b) shows that the LH and LL
types in the Aging I group have the same composition pattern as the Old group. The figure (c) shows the specificity of certain KSCs regardless of the
aging group, for example, HL in the younger group and LH in the older group with a higher composition than the other groups. (d) Predicting
decision performance of KSCs by aging group using 15 core genera. The scale represents the z-score transformed values of the AUC score obtained
from the CatBoost algorithm. The red and green colors indicate high and low feature importance, respectively.
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Availability of data and materials

The data supporting these findings have now been uploaded to

the European Genome-phenome Archive (EGA: https://ega-

archive.org/) for sharing by a number of researchers (EGA

number: EGAS00001007334). Code for the pairwise comparison

tests of 12 groups (3 age groups x 4 KSC types) for 15 genera and

building ML models to classify groups using 15 genera as features

are available at https://github.com/HuNBiome/KSC-Microbiome-

2023. It will be freely downloaded.
Results

Recruitment and BSTI administration for
skin typing

Our study enrolled 989 Koreans (792 females, 197 males) for

comprehensive assessments, including skin measurements, female-
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only questionnaires on lifestyle and cosmetic use, and microbiome

sampling via face wash. The resulting Korean facial skin database

comprised BSTI survey data, skin measurements, and microbiome

profiles (Table 1; Supplementary Table S1). Using clinical skin type

classifications, we analyzed microbiota distribution across types. This

prospective study investigated skin condition-microbiome relationships

in 756 female participants with a robust approach (Figure 1a).

Using the Baumann Skin Type Indicator (BSTI), we classified

the skin types of 752 Korean female participants into 16 categories

based on four dichotomous traits: dryness/oiliness, sensitivity/

resistance, pigmentation/non-pigmentation, and wrinkles/

tightness (Supplementary Table S1). The distribution showed 64%

with dry skin, 36% with oily skin; 53.5% with resistant skin, 46.7%

with sensitive skin; 97.7% with non-pigmented skin, 2.3% with

pigmented skin; and 58.4% with tight skin, 41.6% with wrinkled

skin (Figure 1b). The most common skin type was DRNT (20.6%,

n=155), followed by DRNW (17.3%, n=130), DSNT (14.1%,

n=106), OSNT (13.3%, n=100), DSNW (10.8%, n=81), ORNT

(9.7%, n=73), OSNW (7.4%, n=56), ORNW (4.7%, n=35), DRPW
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FIGURE 9

Relative abundances of the functional pathways predicted by PICRUSt2. The legend at the top provides the aging group of Korean women, their age,
KSC based on Tone/elasticity, oilness/moisture, and their scores gradually. Scope and description are in the left legend. The heatmap colors with +
(red) and - (blue) indicates the z-score normalized relative abundances. The young and aging groups showed contrasting functional enrichment
results with the old group, and even between the young and aging groups, the young group has a distinctive enrichment pattern in KSC HH and HL
types. The 59 major functional prediction of KEGG pathways are listed in detail in the Supplementary Table 8.
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(0.7%, n=5), OSPW (0.5%, n=4), and DSPT (0.3%, n=2). DRPT,

DSPW, ORPT, ORPW, and OSPT each had one participant

(0.1%) (Figure 1c).
Selection of representative biophysical
metrics for skin condition assessment

It is possible that the choice of factors or variables used in a skin

BSTI is arbitrary. It is also possible that the results will vary

depending on which of the various factors that assess skin health

are used. For this reason, a ganzheitliche (holistic) approach to

assessing and improving skin health is required, taking into account

a variety of factors. To robustly evaluate skin health, we conducted a

comprehensive assessment of 989 Koreans (792 females, 197

males), measuring 39 biophysical parameters across nine

categories: oiliness, hydration, water loss, skin tone, elasticity,

density, nasolabial folds, lateral canthal lines, and pores.

Three principles guided parameter selection: (1) averaging repeated,

site-specific measurements to enhance reliability; (2) combining

hydration and water loss into a single moisture metric; and (3)

selecting representative parameters based on statistical correlations.

This holistic approach ensures valid, reliable metrics for skin-

microbiome correlations (Figure 2a; Supplementary Table 2).

For skin tone, the ITA (Individual Typology Angle) metric,

which combines lightness (L*), greenness (a*), and yellowness (b*),

was selected as a representative metric. Among the skin elasticity

parameters, R7 showed a high correlation (Pearson Correlation

Coefficient, PCC) with other elasticity parameters, R2 and R5 (R7-

R5: 0.91, R7-R2: 0.92, R2-R5: 0.82). Thus, R7 was selected as a

quantitative parameter representing elasticity since it is widely used

in existing studies. Skin density (R: skin fold thickness) was

excluded as a key parameter since R7 sufficiently represented it

and showed moderate correlation (PCC) with other elasticity

parameters (R7: 0.44, R: 0.36, R2: 0.37) (Ryu et al., 2008;

Ohshima et al., 2013). The roughness of the skin surface (Ra

value) was selected as a wrinkle-related parameter, precisely one

nasolabial fold Ra. Additionally, since there was a high correlation

between nasolabial folds and lateral canthal lines (0.61), we selected

only one nasolabial fold Ra for the representative parameter (Yoo

et al., 2016). Through a process of correlation and normalization,

six indicators were selected as representative of an individual’s skin

condition: oiliness, hydration, skin tone (ITA), elasticity (R7),

average pore size (Pore), and nasolabial folds (Ra). This

comprehensive set of metrics provides a more accurate and

complete understanding of an individual’s skin condition.
Validation of the selected metrics through
machine learning-based age prediction

We employed a systematic evaluation process to determine the

extent to which the six selected metrics accurately reflected the

participants’ skin condition and how it changed with age. Our first
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step involved creating a polygonal chart that visually displayed the

trends of each metric against age (Figure 2b). Our analysis of this

chart revealed that skin elasticity and tone values were relatively

higher in all age groups, with an average score of above 5, which is

considered a relative average. Similarly, oiliness was also found to be

above five from the teenage years to the 40s. However, we found

that pores and wrinkles had an average value of more than 5 in the

40+ age group. In contrast, moisture levels exhibited a mean value

ranging between 4 and 6 for all age groups, except for the teenage

group, which had an average score of 3.48. Next, we compared the

performance of a machine learning model that uses a full set of 39

parameters to predict age with a model that uses only six metrics to

predict age. The Catboost algorithm, which has shown strong

performance in recent AI competitions, was implicated in this

evaluation (Zhang et al., 2020). When all 39 skin parameters were

used to predict age, each age group had a ROC-AUC (The Receiver

Operator Characteristic-Area Under Curve) score between 0.94 and

1, with a micro-average ROC-AUC score of 0.98 and a macro-

average ROC-AUC score of 0.97. (Figure 2c) The performance of

the model in predicting each participant’s age using only the six

metrics resulted in ROC-AUC scores between 0.85 and 0.94 for

each age group, with a micro-average ROC-AUC score of 0.91 and a

macro-average ROC-AUC score of 0.90 (Figure 2d).
Deriving four representative skin types
using biophysical criteria

In order to classify skin types, we re-selected the criteria of oil,

moisture, tone, elasticity, pore, and wrinkle based on six

representative metrics (oiliness, hydration, skin tone (ITA),

elasticity (R7), average pore size (Pore), and nasolabial folds (Ra))

from 39 biophysical parameters. To determine the best

representative criteria among the three metrics (elasticity, pores,

and wrinkles), we evaluated three metrics using Pearson correlation

coefficient (PCC) analysis, identifying elasticity as the primary

indicator for both pores and wrinkles (elasticity-pores: -0.54,

elasticity-wrinkles: -0.50, pores-wrinkles: 0.31). Due to strong

correlations, we merged skin tone with elasticity into a “tone/

elasticity” criterion and oiliness with hydration into an “oil/

moisture” criterion. When the entire sample was divided into

tertiles for tone/elasticity and oil/moisture, there were clear

fractionation differences (Figure 3a). Among the five complexes

based on the two criteria (tone/elasticity and oil/moisture), we

focused on four types, HH, HL, LH, and LL without the gray

zone, which were not in the medium (M) range in either tone/

elasticity or oil/moisture (Figure 3b). We defined each of the four

groups as HH (high in both tone/elasticity and oil/moisture), HL

(high in color/elasticity but low in oil/water), LL (low in both), and

LH (low in color/elasticity but high in oil/water). These four types

formed the basis for subsequent stratified analyses (Figure 3b). The

analysis of biological age-related changes in skin parameters

revealed a noticeable clockwise shift in the distribution of ages in

the integrated coordinates of the skin indicators.
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Age-related shifts in skin characteristics
and stratification of aging groups

Analysis of skin parameters across age groups showed younger

participants (10s–20s) predominantly in the HH zone (high tone/

elasticity, high oil/moisture), while older participants (60s–80s)

were in the LL zone (low tone/elasticity, low oil/moisture)

(Figure 3c). This trend is further supported by the skin condition

of participants across age groups, particularly in terms of skin tone,

which has been shown to generally darken with age (Yang et al.,

2022). The median skin tone values of participants by age group

were found to be 46.2 in 10s, 43.5 in the 20s, 40.6 in the 30s, 37.5 in

the 40s, 35.8 in the 50s, 35.1 in the 60s, 33.1 in the 70s, and 32.2 in

the 80s (Supplementary Figure 1a). Similarly, a gradual decline in

skin elasticity was observed across age groups. The median elasticity

values for each age group were as follows: 65.0 in 10s, 60.2 in the

20s, 51.5 in the 30s, 47.3 in the 40s, 43.8 in the 50s, 41.2 in the 60s,

39.0 in the 70s, and 38.0 in the 80s (Supplementary Figure 1b). Oil

levels peaked in the 20s–30s (median: 37.3 in 30s) then decreased

(5.7 in 80s) (Supplementary Figure 1c). While, moisture levels

showed no clear age-related trend (median: 2.6–3.6 across ages)

(Supplementary Figure 1d).

In order to conduct an integrated analysis of all subjects based

on the type classification of HH/HL/LH/LL, we rearranged the

groups in the gray zone (MH, MM, ML, HM, LM) to be classified

into the above four types (Figure 3b). In other words, participants

with above-average values of the Tone-Elasticity (X-axis) and Oil-

Moisture (Y-axis) value were classified as H, and those with below-

average values were classified as L. As skin aging varies widely by

individual and age, we grouped participants by age to investigate

changes in these criteria. The results revealed distinct shifts at ages

35 and 51, marking key transitions in skin characteristics

(Figure 4a). This age-based grouping clarified how skin types

evolve. We found a reversal of the upper and lower groups in the

Tone criteria at age 35. The proportion of the upper skin tone group

decreased from 80% at age 34 to 27.3% at age 35, while the lower

skin tone group surpassed the upper group, accounting for 54.5% at

age 35. For the Elasticity criteria, the H and L groups became equal

for the first time at age 36, both reaching 27.3%. In terms of the Oil

criteria, there were two points of intersection between the upper and

lower proportions at 14 and 51 years of age. We considered 51 years

of age significant due to the trend of increasing oil volume until the

age of 30 and then decreasing. At age 51, the proportion of the

upper group was 14.3% and the proportion of the lower group was

28.6%. As for the Moisture criteria, we observed fluctuating

proportions of the upper and lower groups from time to time. To

minimize age bias error and age stratification error, we organized

the aging groups based on the inflection points of the four skin

criteria (Figure 4a). We categorized 310 subjects aged 34 or younger

into the Young group, 172 subjects aged 35 to 50 into the Aging I

group, and 223 subjects aged 51 or older into the Old group. These

groups represented 31.6%, 22.4%, and 44% of all women,

respectively, as shown in Figure 4b. We applied our skin type

classification to each of these aging stages for further analysis.
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Skin type classification with the aging
groups

We divided the Aging group (Young, Aging I, and Old) into the

four skin types (HH/HL/LH/LL) and examined the differences

between a total of 12 types in a polygonal chart (Figure 4c). We

found significant differences in the mean values of the 6 metrics:

skin tone, elasticity, pores, wrinkles, moisture, and oiliness for

different skin types. Specifically, the yHH and yHL types had

mean values above 8.7 for skin tone and elasticity, while the oLH

and oLL types had mean values between 1.7 and 1.9. The mean

values for the other eight groups were distributed between 3.3 and

7.6. As for oiliness, the aLH type had the highest mean value of 8.4,

while the oHL and oLL types had the lowest mean value of 2.2. As

for moisture, the mean values for the young group were yHH/yLH/

yHL/yLL, and the same order was maintained in the Aging I and

Old groups: aHH/aLH/aHL/aLL, oHH/oLH/oHL/oLL. As for

wrinkles, the oLL type had the highest mean value of 7.9, but the

oHH type had a mean value of 7.4. Finally, as for pores, the oLH and

oLL types showed a similar trend to skin tone and elasticity, with a

mean value of over 7, while the yHH and HL types had a mean value

of under 2.1. Similar to the age-specific results, we also observed a

clear trend of decreased skin tone and elasticity, and increased pores

and wrinkles, as the aging groups progressed. The oiliness criterion

showed a similar mean value for the Young and Aging I groups, at

6.5 and 6.2, respectively. However, the Old group exhibited a

significant difference with a mean value of 3.2, indicating a

noticeable oiliness decrease with age. The moisture criterion

showed a mean relative value of 5 between the aging groups,

ranging from 4.6 to 5.5. This suggests that there is not a

significant difference in moisture levels across different age

groups. Overall, the yLL, aLH, and oHH types were closest to the

mean values of the respective aging groups, suggesting that these

Korean skin cutotypes (KSCs) are most representative of the skin

conditions in each aging group (Figure 4c). We observed changes of

criteria in tone/elasticity and oil/moisture according to aging

groups. As expected, tone and elasticity gradually decreased from

the Young group to the Old group, acting as an important factor in

distinguishing age groups. Additionally, tone and elasticity move

together in aging groups and KSC types. The H- type is more

reflected in the elasticity criteria, while the L- type is more

influenced by the tone. In contrast, the difference in oil and

moisture according to aging groups was not dramatic, but a

minor difference in oiliness was observed. The oil values of each

age group show a downward trend. Those means that oil/moisture

plays an important role in distinguishing individual phenotypic

differences and KSCs across the aging groups (Figure 5).
Dynamics of the Korean skin microbiome
by gender and age

In 950 Koreans (756 females, 194 males), skin microbiome

analysis revealed higher alpha-diversity in females, particularly
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those aged 50 or older. In females, the alpha-diversity gradually

decreased up to their 40s and then increased in their 50s (p<0.01 for

all indexes). In contrast, males (n=194) showed a decreasing trend in

diversity from their 30s to their 50s. The difference between males

and females was significant in their 20s and 30s (p<0.05)

(Supplementary Figures 2a, b) In terms of microbial composition,

there were significant differences (p < 0.001) in Cutibacterium,

Streptococcus, Staphylococcus, Rothia, and Neisseria genera between

females and males (Supplementary Figure 2c; Supplementary

Table 4). Significant diversity differences were observed in the top

10 genus compositions of females and males according to age groups

(Supplementary Figure 2d). These findings highlight dynamic age-

and sex-driven microbial shifts, validated by beta-diversity analysis

with PERMANOVA test (Supplementary Figure S3).

In 950 Koreans, skin microbiome analysis revealed significant

sex differences in Streptococcus, Cutibacterium, Staphylococcus,

Rothia, and Neisseria (Supplementary Table S4). In females, Rothia

and Neisseria increased with age, while Cutibacterium decreased;

in males, Parvimonas rose and Lactobacillales declined

(Supplementary Figures S4a, b). From the age of around 30, five

microbial genera showed a significant difference in the skin

microbiota between females and males, with varying levels of

increase and decrease. Moreover, the time point of changes in the

abundance of specific microorganisms was strongly correlated with

the inflection point of clinical changes in the skin above (Figure 4a).

Notably, Staphylococcus decreased in females but increased in

males with age (Supplementary Figure S4c). These dynamic shifts

highlight age- and sex-driven microbiome variations. The detailed

statistical summary of the skin microbiome is annotated in

Supplementary Table 4.
Microbial shifts across korean female aging
group

We also conducted an integrated analysis to identify vital

microbials that influence the aging group of females based on

skin clinical measurement criteria and to observe changes in the

microbiome by the four skin types. Using data from 750 female

subjects who were distinguished into the aging groups of Young,

Aging I, and Old by skin clinical measurement criteria, an alpha-

diversity comparison analysis was performed. The results showed

no statistically significant difference in diversity between Young and

Aging I groups, but both groups showed a significant difference

from the Old group (p<0.05, Kruskal-wallis) (Figure 6a). Among

the top 10 genera, there were statistically significant differences in

Cutibacterium, Streptococcus, Rothia, Neisseria, Actinomyces,

Haemophilus, Fusobacterium, and Veillonella (p<0.05, Kruskal-

wallis) between the aging groups (Figure 6b). Regarding the aging

group, a LEfSe (Linear discriminant analysis Effect Size) analysis

was conducted at the Genus level, and it was found that the feature

microorganisms for each aging group were Lawsonella (Young

group), Cutibacterium (Aging I group), and Streptococcus (Old

group) (Figure 6c). All statistical values are summarized in

Supplementary Table 5. The enterotype algorithm is a widely-
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used method in microbiome research that classifies the relative

abundance of gut microbial communities into different types based

on clustering analysis (Costea et al., 2018; Cheng and Ning, 2019).

This approach has been extensively utilized to investigate the

association between microbiome data and various phenotypes.

However, the relationship between the skin microbiome and

clinical outcomes remains an emerging field. Thus, we aimed to

apply the enterotype algorithm to identify skin types of Korean

women (cutotype), with the ultimate goal of deepening our

understanding of the complex interplay between the skin

microbiome and skin conditions.
Strategic identification of 15 core genera
via microbiome clustering and clinical
correlation

As a first step, to determine the optimal number of clusters for the

Korean female skin microbiome, we implemented the Optimal

Clustering method based on the Calinski-Harabasz index (CH), the

Silhouette Coefficient algorithm, the within-cluster sum of squares,

and the Prediction Strength. Our analysis revealed that the

appropriate number of clusters was two in which divided into

Streptococcus- and Cutibacterium-dominant groups in all

(Figure 7a). Based on the top 10 genera (Supplementary Figure 5a;

Supplementary Table 6), the Streptococcus-dominant cluster (DC1)

was dominated by Streptococcus, Rothia, Corynebacterium, Neisseria,

Actinomyces, and Haemophilus, while the Cutibacterium-dominant

cluster (DC2) showed a remarkably high abundance of

Cutibacterium. In addition, within the old group, Streptococcus was

found to dominate the skin microbiome of women with all four

clinical skin types, with an average relative abundance of 82.3%. In

contrast, the Aging I and Young groups showed a relatively lower

proportion, with 51.2% and 60.7%, respectively. This suggests that the

abundance of Streptococcus in the skinmicrobiomemay increase with

age (Supplementary Figure 5b).

In order to further classify our samples into subgroups within

two larger groups, we utilized the DivCom algorithm which identify

subpopulations of microorganisms and to infer the ecological and

functional roles of different taxa within the microbiome (Intze and

Lagkouvardos, 2022). As a result, we were able to further divide the

DC1 into two subgroups, whereas no subgroups were observed

within the DC2. Among the 740 individuals satisfying the criteria

for the DivCom clustering method, 726 were successfully classified

into three subclusters (DC1-sub1, DC1-sub2, and DC2) using this

algorithm (Figure 7b). Specifically, 247 individuals (DC1-sub1)

within this cohort showed a high relative abundance of

Staphylococcus, Neisseria, Fusobacterium, Gemella, Prevotella,

Granulicatella , Porphyromonas , and Leptotrichia , with

Streptococcus. In contrast, 268 individuals (DC1-sub2) exhibited a

high relative abundance of Rothia, Corynebacterium, Actinomyces,

Lactobacillus, and Lautropia, with Streptococcus. In total, 17 genera

were identified as comprising 50% of the detected microbiota across

all three subclusters. Comparative analysis of the relative

composition of these genera across the three subclusters revealed
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statistically significant differences (Kruskal-Wallis p<0.05) in the

relative abundance of 15 core genera. These 15 core genera were

subsequently selected for downstream analysis to highlight

potential associations with skin condition (Figure 7c). Next, we

explored associations between the three groups obtained by

DivCom analysis and the skin clinical measurements and

compared the clinical measurements of the two groups used in

the cutotype analysis (Streptococcus vs Cutibacterium) and the

corresponding three groups (DC1-sub1, DC1-sub2, and DC2).

The clinical metrics including age, elasticity, and oil showed

differences between DC1 and DC2 groups (Figure 7d). Further,

we also observed similar results when comparing DC1-sub1 and

DC2. Interestingly, differences in skin tone between DC1-sub2 and

DC2, and in moisture between DC1-sub1 and DC1-sub2 were

observed (Figure 7e). We identified three microbial subclusters of

skin based on 15 core genera and observed their associations with

age, elasticity, sebum, skin color, and moisture.
Associations of 12 KSC types within the
aging group and 15 core genera

In the present study, a correlation analysis was performed to

explore the association between the clinical outcomes of 15 core

genera and the four KSC types within the aging group using a

stepwise approach. To begin with KSC type-dependent microbiome

significance within the Aging groups, yHL type in the Young group

and oHL type in the Old group showed a statistically significant

difference in the relative abundance of Cutibacterium and

Streptococcus compared to the other three types. Lautropica

showed a significant difference in the aLH type of the Aging I

group, and Neisseria showed a significant difference in the oHH &

oHL and oLH&oLL types of the Old group, with a clear correlation

with skin tone and elasticity between the H and L type

(Supplementary Figure 6; Supplementary Table 7).

The subsequent comparative analysis aimed to investigate the

relative correlation of the 15 core genera for each of the 12 KSC

types across all age groups. Using this analytical approach, we were

able to confirmmosaic changes in microbial composition within the

aging groups and the influence of core genera on each KSC type. We

filtered genera with log10(-) transformed p-values exceeding ±1

based on abundance significance. Through our analysis, we

observed three distinct changes in the mosaic pattern of the 15

core genera. Overall, the composition of the 15 core genera showed

similar patterns between the Young and Aging I groups, but

significant differences were observed between these groups and

the Old group, indicating the mosaic changes (Cutibacterium,

Staphylococcus, Lactobacillus, Rothia, Corynebacterium, Neisseria)

(Figure 8a). Additionally, Actinomyces, Porphymonas, and

Prevotella also showed high correlation between the Young and

Aging I groups, but aHH&aHL types were similar to the Young

group while aLH&aLL types were similar to the Old group

(Figure 8b). These genera in the Aging I group are likely

associated with skin tone based on the skin clinical measurement

data. Furthermore, Streptococcus showed differences in all aging
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groups with the yHL and yLH type (Figure 8c). The rest of genera

are also investigated the relative correlation across the 12 KSC type

(Supplementary Figure 7).

We analyzed the microbial relative compositions that can

represent each KSC type within the aging group using 15 core

species, and constructed a predictive model using CatBoost

boosting algorithm to distinguish the accurate KSC types within

the same aging group (Prokhorenkova et al., 2018). As the microbial

relative compositions differs according to the aging group, we

divided the model into 80% training set and 20% test set for each

group. We ran an algorithm to differentiate the microbial balance

between one type and the other three types in each group. The

overall validation AUC value ranges from about 0.8 to 0.98. The

accuracy was about 0.96 on average in the Young and Aging I

groups, but only about 0.87 on average in the Old group

(Supplementary Table 7). The reason for the lower accuracy in

the Old group is that there are minor differences that can

differentiate the microbial balance in each of the four KSC types,

especially in the oLL type (AUC 0.8). In the Young group,

Cutibacterium showed a significant difference compared to the

other groups and was identified as a representative species that

can determine the Young group. Lactobacillus and Corynebacterium

species were also relatively distinguishable in the yHH and yLH

types. The Aging I group showed representative microbial balance

in all four types, and interestingly, Prevotella in aLH type and

Streptococcus and Gemella in aLL type were able to distinguish from

other types. The aHL type showed a microbiological composition

with a balance of Streptococcus and Staphylococcus. However, the

Old group did not have enough abundance of genus composition to

determine each type with a low AUC score. Simply, we observed the

relative distribution of Cutibacterium and Lautropia in the oHH

type, Porphyromonas and Streptococcus in the oHL type, Nesseria

and Granulicatella in the oHL, and Fusobacterium and

Staphylococcus in the oLL (Figure 8d). Based on the main 15 core

microbial genera of Korean women, we identified microbial

composition alterations specific to the Young and Aging I groups

within three aging groups, and skin type-dependent microbiome

changes in tone/elasticity and oil/moisture. The changes in core

genera by aging group and skin type were demonstrated using the

CatBoost boosting algorithm.
Functional prediction of differentially
enriched skin microbe by KSCs

We performed PICRUSt2 analysis using the KEGG pathways

(n=172) related to the KEGG orthology (n=4,837) of the 15 core

genera and the feature KEGG pathways of the aging group selected

through LEfSe analysis (Douglas et al., 2020). We filtered out

duplicate items and pathways with an average of less than 0.5%

and focused on investigating 60 pathways in detail (Supplementary

Table 8). In the Young group, several pathways were highly

expressed, including “ko00052: Galactose metabolism”, “ko00500:

Starch and sucrose metabolism”, “ko02010: ABC transporters”,

“ko00520: Amino sugar and nucleotide sugar metabolism”, and
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“ko00910: Nitrogen metabolism”. Additionally, in the Young group,

the L- type showed a relatively higher pattern in the Tone/elasticity

criteria compared to the H- type. Specifically, the H- type in the Oil/

Moisture criteria showed a higher pattern in the -L type, which was

highlighted in the yLH group with a high expression of pathways. In

the Aging I group, 21 pathways showed high enrichment compared

to other groups. Interestingly, the functional pathways in Aging I

group showed a similarity to the L- type in tone/elasticity criteria of

the young group. However, the L- type showed a higher abundance

than the H- type in tone/elasticity criteria in Aging I group. The -H

type and -L type samples in oil/moisture criteria showed a relatively

low abundacne in these KEGG pathways, which mainly belonged to

carbohydrate metabolism, amino acid metabolism, and metabolism

of cofactors and vitamin categories. Finally, in the Old group,

interestingly, pathways related to genetic information processing

showed high abundance, such as “ko03430:Mismatch repair”,

“ko03440:Homologous recombination”, “ko03410:Base excision

repair”, “ko03020:RNA polymerase”, “ko03420:Nucleotide

excision repair”, and “ko03018:RNA degradation”. In addition,

the KEGG pathway enrichment results specific to the Old group

were very different from those of the Young and Aging I groups,

with a very predominant pattern. This indicates that the predicted

functional pathway patterns of the Young and Aging I groups are

more similar to each other than to the Old group (Figure 9).
Discussion

In the dermatology and cosmetics field, the Baumann Skin Type

Indicator (BSTI) has been widely used to classify facial skin types

based on a questionnaire (Baumann, 2008; Lee et al., 2017, 2019). In

Korean women, OSNT, DSNT, DRNT, and OSNW have been

reported as the most common skin types (Ahn et al., 2017). In this

study, we first selected 60 questions from the existing 77 Baumann

questionnaire types and the microbiome questionnaire through

correlation analysis with biophysical clinical indicators of the skin

(Supplementary Table 1). We then determined the Baumann skin

types for a total of 792 women using the Baumann questionnaire

items. The top four groups accounted for 66% of the participants,

with the order being DRNT, DRNW, DSNT, and OSNT. However,

the results were different from those of previous studies. In the case of

Korean women, most tend to choose dry skin type rather than oily

skin type, and the majority of women tend to choose non-pigmented

options. The conventional method of defining skin types based on

questionnaires is quite subjective and may not provide objective

results. Thus, our study reaffirms the importance of defining skin

types using more objective indicators.

To compensate for this and derive objective indicators, various

biophysical skin clinical measurement devices are used to measure

skin conditions (Stettler et al., 2021; John et al., 2023). However,

measurement parameters may have bias due to the environment at

the time of measurement and deviations in the parameters.

Through the process of minimizing the number of variables, we

systematically selected parameters that can represent multivariate

parameters. To eliminate the bias of the 39 skin measurement data,
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we minimized the correlation between the measurement results and

the deviation of the skin measurement sites, resulting in the

determination of six skin clinical metrics. Interestingly, when

predicting age groups using all 39 clinical parameters through

machine learning, the performance (micro-average ROC-AUC

score) was 98%, six clinical metrics also accomplished around

90% accuracy (highest = 0.94) (Figure 2). Although there was a

difference in performance compared to the prediction using 39

clinical indicators, the compact six clinical indicators are suitable

factors for distinguishing age groups and suggest that skin condition

can be well represented by objective factors such as oiliness,

moisture, tone, elasticity, wrinkles, and pores. Among the six

clinical metrics, wrinkle and pore metrics had a high correlation

with color and elasticity, so we were able to define the aging group-

specific skin types of Koreans participating in this study using only

four criteria. The four skin indicators derived through this study can

be categorized into color/elasticity and oil/moisture, with the values

being High (H) or Low (L) depending on the level of each indicator.

The combinations of these indicators can be evaluated as HH, H/L,

L/H, and L/L groups. The prefix H or L represents high or low color

and elasticity of the skin, while the suffix H or L represents the low

state of oil and moisture. Additionally, we confirmed that the Yong

group (10–34 years old) was differentiated by facial color tone and

skin elasticity criteria (Young), the Aging 1 group (35–50 years old),

and the Old group (51 years old and above) were differentiated by

oil criteria. In another study involving 100 Korean women, it was

reported that even with 10 skin clinical indicators, the clinical

parameters of wrinkle, pigmentation, and elasticity were more

decisive factors for aging than the oil and moisture (Cho et al.,

2019). This finding is consistent with our observations, suggesting

that even with numerous skin clinical indicator parameters, the

clinical indicators that can determine skin aging can converge to a

smaller set of critical factors. Through this study, it is evident that

skin tone and elasticity are the most important indicators for

distinguishing between aging groups. As we move from the

Young to the Old group, the Tone and Elasticity gradually

decreases. In conclusion, skin tone and elasticity showed distinct

correlated changes with skin aging as age increased, while oil and

moisture levels were determined more by individual differences

than by age (Figure 5). This finding highlights the importance of

considering both the common age-related factors (tone and

elasticity) and the individual factors (oil and moisture levels)

when addressing skin aging concerns and developing personalized

skincare strategies. By taking into account these different aspects,

more effective and tailored solutions can be provided to individuals

with varying skin types.

Various host factors, including gender, age, and ethnicity,

influence the composition of skin microbial communities, which

also varies across different regional factors such as temperature,

humidity, and exposure status. These both factors play a crucial role

in the growth and maintenance of the resident microbial population

on the skin (Fierer et al., 2008; Ying et al., 2015). Indeed, the

interactions between microbes and these variabilities, as well as with

other microbes in the same region, are potentially site-specific in

faces. In our study, the analysis of the facial skin microbiome
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involved 950 clinical participants (756 females and 194 males),

using facial wash water that could represent the entire face, thereby

eliminating region-specific differences such as the forehead, cheeks,

or nose (Lee et al., 2021).

To focus on the differences in the distribution of skin microbes

between female and male, the alpha diversity of the microbiome was

found to be higher in females than in males, with a particularly

significant difference observed in individuals aged 50 and above. In

both genders, statistically significant distinctions were observed in five

microbial genera (Cutibacterium, Streptococcus, Staphylococcus,

Rothia, and Neisseria). Especially, Staphylococcus levels decreased

with age in females, while they increased with age in males. Our

study is the first large-scale comparison of the skin microbiome

between female and male Korean participants. Considering the

limited research comparing genders across different ethnicities, our

findings suggest that there is a need for further comprehensive,

gender-specific research in this area (Leung et al., 2015). In recent

studies targeting Chinese participants aged 25–35 as younger type and

those aged 56–63 as aging type, as well as Korean participants aged

19–28 as younger type group and those aged 60–63 as aging type,

there was a somewhat biased tendency in the diversity of the age

spectrum by excluding phenotypes based on objective skin clinical

indicators (Kim et al., 2022). Additionally, there was a clear limitation

in the number of recruited participants. In our study, we conducted

the first-ever association analysis between the skin microbiome and

three aging groups and four skin types per group, determined based

on sample homogeneity, uniformity of age spectrum, and various

objective skin clinical measurement indicators.

Using the enterotype algorithm, we examined the skin types of

Korean women and found that their types were predominantly

characterized by Streptococcus and Cutibacterium. Considering the

Chinese study that Moraxella and Cutibacterium were representative

skin types or cutotypes, we confirmed the existence of unique

cutotypes due to racial or geographical differences, suggesting the

need for tailored care according to skin types (Li et al., 2021).

Furturemore, a stark difference in skin microbiome between Central

Africans and East Asians can be observed, with Cameroonians being

dominated by the Micrococcus type and Japanese individuals being

dominated by the Cutibacterium type (Ogai et al., 2022).

Cutibacterium species (C. avidum, C. acnes, and C. granulosum)

colonize the skin of healthy individuals and acne patients, possibly

due to their affinity for sebum-rich areas of the skin. The abundance of

Cutibacterium in Koreans, Chinese, and Japanese individuals suggests

that the presence of more sebum in East Asians provides many

benefits for the growth of Cutibacterium on the skin surface or

sebaceous glands (Nordstrom and Noble, 1984; Vashi et al., 2016).

We went beyond the existing enterotype algorithm and utilized

the DivCom algorithm to define a total of 3 groups, including

subgroups (DC1-sub1, DC1-sub2, DC2). In these 3 groups, 15

genera with a detection rate of 50% among the total sample count

(Kruskal-Wallis p <0.05) were selected as core microbe (Figure 7).

The skin clinical measurement data and microbial clustering

analysis revealed significant differences in age, elasticity, and

sebum levels between the DC1 and DC2 groups. Additionally, the

clustering of DC1-sub1 and DC1-sub2 was closely related to the
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level of moisture. This result for DC2 is consistent with a previous

study showing an increasing trend in sebum-related clinical skin

measurements in the cutotype dominated by Cutibacterium (Li

et al., 2021). Cutibacterium spp., such as C. acnes, typically

hydrolyze triglycerides in sebum to release free fatty acids, which

contribute to sebaceous gland clustering, and their accumulation

influences the acidic pH (~5) of the skin surface (Marples et al.,

1971; Gribbon et al., 1993). Considering that the cutotype clusters of

DC1 and DC2 have distinct strategies, many common pathogenic

microbes, such as Streptococcus spp. (e.g. S. pyogenes) and

Staphylococcus spp. (S. aureus), are also known to be inhibited by

the acidic pH strategy (Bomar et al., 2016). Therefore, it is estimated

that in women with low sebum levels and reduced lipid

accumulation, the distribution of Cutibacterium spp. decreases,

resulting in the increased detection of pathogenic bacteria such as

S. pyogenes and S. aureus. Neisseria, Fusobacterium, Gemella,

Prevotella, Granulicatella, Porphyromonas, and Leptotrichia

showed significant abundance in the DC1-Sub1 cluster, while

Rothia, Corynebacterium, Actinomyces, Lactobacillus, and

Lautropia showed significant abundance in the DC1-Sub2 cluster.

A higher moisture level in the skin might create a more favorable

environment for certain bacteria, such as those found in the DC1-

Sub1 cluster, while drier conditions might favor the growth of

bacteria in the DC1-Sub2 cluster. As the interactions and

mechanisms of symbiosis between coexisting microorganisms in

the skin environment are still poorly understood, it is necessary to

study the skin microbiota of different ethnicities or diseases to better

understand the causes and pathogenesis of skin diseases and to

develop strategies for prevention and treatment of skin diseases

(Lemoine et al., 2020; Loomis et al., 2021).

Further, based on the four KSC types of aging groups, a survey

was conducted on the normal distribution of 15 core skin

microorganisms. As a result, among the 15 core genera,

Cutibacterium, Staphylococcus, Lactobacillus, Corynebacterium,

Rothia, and Neisseria showed distinct microbial cluster differences

between young and aging I groups vs the old group, confirming the

differential composition of specific-skin types. These results show

that skin microbiome patterns vary slightly from person to person

based on region and nationality - Egyptians have more bacteria

from the phylum Pseudomonadota, Cameroonians (Staphylococcus

and Micrococcus), South Asians (Corynebacterium and

Streptococcus), and Japanese (Cutibacterium) - but even Korean

skin has a characteristic distribution of the same categories of

microbes across age groups (Ramadan et al., 2016; Chaudhari

et al., 2020; Cho and Eom, 2021; Ogai et al., 2022). Especially in

our skin type, Cutibacterium and Staphylococcus are shown little

less composition in yHL and oHL skin types while Streptococcus is

higher in yHL type. These results indicate that Cutibacterium, a

lipopolyic bacterium preferentially present on sebaceous skin sites,

is closely involved in the Young and Old groups, in contrast to the

notion that the ratio of Cutibacterium to Staphylococcus and

Streptococcus varies depending on the oil/moisture skin

environment, or vice versa (Conwill et al., 2022). In addition, the

young group includes puberty, which brings significant changes to

the skin microbiome, such as I) hair growth and hair pattern are
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promoted by androgens, II) sebaceous gland development and

increased sebum production, III) apocrine gland development,

IV) skin development through estrogen and progesterone

(Gribbon et al., 1993; Beier et al., 2005; Wilkinson and Hardman,

2017; Gratton et al., 2022). According to the intrinsic physiological

regulation of hormones by the sexual maturation process, the

prominent changes in skin microbiota from Cutibacterium to

Staphylococcus and Streptococcus, as well as Lactobacillus (higher

in yLH), Actinomyces (higher in yHL), Porphyromonas (lower in

yHL), and Prevotella (lower in yLL), were predictable. Even after the

turbulent period of skin development such as puberty,

Cutibacterium, Staphylococcus and Streptococcus were found to

have skin type-specific microbial composition, with Actinomyce

and Porphyromonassms showing opposite microbial composition

patterns within aHH/aHL and aLH/aLL. These results suggest that

the alteration in the abundance of these two microorganisms in the

aging I group is an important factor in determining skin tone/

elasticity. As per the Old group, most microbiota except Neisseria

showed insufficient association to determine skin type specificity

within the Old group. This suggests that the decrease in elasticity

due to changes in the thickness of the skin layer (dermis and

epidermis) and the decrease in the activity of sebaceous glands and

sweat glands, which can occur with aging, potentially affect the

growth and survival of various types of bacteria in the skin, causing

changes in the skin microbiota balance (Ratanapokasatit et al.,

2022). However, Neisseria showed a significant increase in

composition in oLH and oLL skin types, which is consistent with

the results of prioritization of Neisseria in dry skin group in Chinese

women (Zheng et al., 2021).

CatBoost is a machine learning algorithm designed to process

categorical data, which is data organized into categories or labels, and

is a suitable technique for typing analysis to process high-dimensional

data with many categorical features, such as skin microbiome data, to

identify and classify skin microbes by clinical skin type

(Prokhorenkova et al., 2018; Han et al., 2022). Therefore, we used

CatBoost to analyze 15 core genera to represent each KSC type in

each aging group and constructed a prediction model to distinguish

them from the other three types within the same aging group. Overall,

the validation AUC value ranged from about 0.8 to 0.98. The Young

& Aging I group showed a high accuracy prediction process with an

average of about 0.96, but the Old group showed a relatively low

prediction rate with an average of about 0.87. The reason for the

lower accuracy in the Old group was the lack of significantly

classifiable microbiota in the four KSC types, which resulted in a

low prediction rate due to similar abundance across the board. In the

Old group, there is a general reduction in microbial diversity and

increased dominance of Streptococcus across all skin types (Figures 7,

8). We assumed that this convergence leads to less distinguishable

microbial features between KSC types, reducing the discriminative

power of the model.

Through typing analysis utilizing the CatBoost algorithm, we

determined that Cutibacterium was the preferred indicator in the

Young group compared to the rest of the groups and coexisted with

Corynebacterium and Lactobacillus in the yHH and yLH types with
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high oil/moisture indicators. On the other hand, Cutibacterium was

predicted as the main feature in yHL and yLL types. This result

suggests that Cutibacterium, Corynebacterium, and Lactobacillus

microbiota are important factors in determining skin condition in

the younger group due to continuous changes in the skin

environment and growths. In the Aging I group, we found a

balanced microbial distribution of Cutibacterium, Streptococcus,

Staphylococcus, Corynebacterim, and Nesseria, which are

representative of the normal skin microbiota in the aHH group.

Maintaining a balanced skin microbiome is crucial for skin health.

An imbalanced skin microbiome, with an overgrowth of certain

types of bacteria or a decrease in beneficial bacteria, can potentially

contribute to the development of various skin conditions and

diseases. This is because the skin microbiome plays a vital role in

maintaining skin health by protecting the skin from harmful

pathogens, regulating the immune system, and contributing to the

maintenance of skin hydration and pH (Byrd et al., 2018; Carmona-

Cruz et al., 2022). In addition, the aHL type was specifically

enriched with Streptococcus, Staphylococcus, and Corynebacterim,

the aLH (Prevotella), and the aLL (Streptococcus and Gemella). The

Old group did not have the abundance of strains to determine each

type with a low AUC score, but interestingly, the oHH and oHL

types, the KSC types that maintain high elasticity despite aging, still

showed a dominance of Cutibacterium and Corynebacterim, while

the oLH and oLL types lost the balance of normal skin microbiota.

Streptococcus, Staphylococcus, Corynebacterium, Roseomonas, and

Micrococcus, among others, are known to influence gene expression

and mechanisms that determine the condition of the skin, such as

differentiation and proliferation of skin cells, and barrier formation

(Vashi et al., 2016). Therefore, analyzing the correlation between

skin microbiome and the physical indicators of skin condition can

provide important foundational data for the development of

personalized cosmetics, as well as potentially serving as a novel

tool and target in the fields of medicine, pharmacy, and cosmetics.

The 15 core genera and KSC-based stratification framework may

serve as actionable biomarkers for non-invasive diagnostics and

tailored dermocosmetic interventions targeting age- and

phenotype-specific skin conditions. These insights provide a

foundation for precision skincare and predictive skin health

monitoring. In order to address unresolved issues such as race,

environmental factors, hormonal status, and geographical

differences, efforts are needed to advance standardized skin

clinical measurement and skin microbiome analysis methods for

the realization of “The Skin Microbiome Atlas”. Training a model

that accurately classifies individuals based on their skin microbiome

and skin measurement data, using CatBoost machine learning

based on race, country, and gender, has the potential to be a tool

that can be applied in the field of forensics to identify the race and

geographical location of perpetrators or victims of crimes or

disasters, as well as for the treatment of skin diseases mediated by

microorganisms, the development of cosmetics, and the

advancement of preventive medicine in the field of skin health

(Farberg et al., 2020; Boxberger et al., 2021; Cho and Eom, 2021;

Habeebuddin et al., 2022; Carvalho et al., 2023).
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Our study aimed to examine the ideal microbiome-biophysical

association of the skin and identify skin types based on skin

measurement parameters and microbiome association. The

researchers established quantitative data of multiple parameters,

including skin tests, clinical surveys, and skin microbiome of 950

Korean subjects (756 female and 194 male). Based on statistical

analysis and cross-validation of machine learning - xgboost with 39

skin parameters, six parameters were integrated, differentiating four

representative criteria (tone/elasticity and oil/moisture). We created

four KSCs using four parameters: tone, elasticity, oil, and moisture.

Furthermore, based on the distribution of all age groups according to

the four-skin biophysical parameters, we identified three aging

groups (Young (under 34 years old), the Aging I group (35-50),

and the Old group (over 51)). Tone/elasticity plays an important role

in dividing the aging groups, while oiliness/moisture plays an

important role in distinguishing individual differences within the

aging groups. To analyze the correlation between skin microbiome

and KSC types, microbiome clusters and dominant bacterial genus

according to each skin phenotype and aging group were ferreted out.

Through DivCom clustering analysis, 726 female skin microbiomes

out of 740 were successfully divided into three subclusters (DC1-

sub1, DC1-sub2, and DC2), and 15 core genera, including

Streptococcus and Cutibacterium as the bimodal center of the

clusters, were identified as the key microbiota that determine the

skin condition and skin microbial environment. The utilization of the

CatBoost boosting algorithm helped to identify skin microbiota with

distinguishing power based on the KSC type within each aging group.

The study demonstrated that 15 core genera can be used as objective

indicators to differentiate the microbial composition between the

Young, Aging I, and Old groups. The validation AUC value showed a

high average accuracy of 0.96, sufficient for predicting skin types

based on microbial composition in the Young and Aging I groups.

Our microbiome-biophysical association study is expected to have

significant practical applications in various fields, including

prevention and treatment of skin diseases, development of

cosmetics, microbial and skin immune cascade, and biomaterials

derived frommicroorganisms, in the analysis of the skin microbiome.
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