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Polymicrobial urine cultures:
reconciling contamination with
the urobiome while recognizing
the pathogens
Robert B. Moreland1, Linda Brubaker2 and Alan J. Wolfe1*

1Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United
States, 2Department of Obstetrics, Gynecology and Reproductive Sciences, University of California,
San Diego, La Jolla, CA, United States
Polymicrobial or mixed urine cultures of more than one predominant microbe

confound clinical urinary tract infection diagnosis. The current College of

American Pathologists clinical laboratory standard states that a urine sample

cultured with more than two isolates with >10,000 colony forming units/ml is to

be considered contaminated. However, the presence of urinary sample bacteria

in individuals without urinary symptoms (referred to as asymptomatic bacteriuria)

is common especially in older people and in pregnant individuals. Furthermore,

the discovery of an indigenous urinary microbiome (urobiome) in healthy

humans throughout life from shortly after birth to death conflicts with the

long-standing notion that urine derived from sterile filtered blood should be

sterile above the urethral sphincter. Polymicrobial infections are not consistent

with Koch’s postulates that a single pathogen is causal for disease. In this review,

we will discuss current standards of contamination, how to reconcile the sterility

of urine with the existence of the urobiome, a history of polymicrobial infections,

and why re-examining current practices is essential for the practice of medicine,

improving quality of life, and potentially saving lives.
KEYWORDS

contamination, mixed culture, polymicrobial, urine culture, urinary tract infection,
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1 Introduction

The College of American Pathologists guidance states “a contaminated urine culture

was defined as the presence of more than 2 isolates at greater than or equal to 10–000 CFU/

mL” (Valenstein and Meier, 1998; Bekeris et al., 2008). This includes commensal microbes

thought to be of skin origin or, in adult females, vulvo-vaginal contaminants (Brubaker

et al., 2021a). Standard practice is to resample although often the same result is obtained.

Then, the predominant microbe is reported (often E. coli), while the other detected

microbes are often ignored (Sfeir and Hooton, 2018). Examples include reports of

“contamination” or “mixed flora” in asymptomatic bacteriuria of pregnant individuals
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(46.7%) (O'Leary et al., 2020), in general practice (54.9%) (Hansen

et al., 2022), and in outpatient clinics (46.2%) (Whelan et al., 2022).

This is comparable to results obtained with a multiplex polymerase

chain reaction (M-PCR) panel, where 56.1% of an older cohort (≥65

years old) with diagnosed urinary tract infection (UTI) had

polymicrobial (more than one microbe) results (Vollstedt

et al., 2020).

While the method of urine collection can sample different

aspects of the urinary tract (e.g., suprapubic aspirate and

transurethral catheter: bladder and upper urinary tract;

midstream void: entire urinary tract including urethra and peri-

urethral skin plus urogenital regions), there are subtle differences in

microbes detected depending on sampling technique (Chen et al.,

2020; Pohl et al., 2020; Brubaker et al., 2021a; Wang et al., 2023; Du

et al., 2024; Shafik et al., 2005; McFadyen and Eykyn, 1968; Wolfe

et al., 2012) Table 1. Nevertheless, midstream void or the so-called

“clean catch” is most often used in clinical practice (LaRocco et al.,

2015; Moreland et al., 2024). A recent meta-analysis of urine

collection methods and contamination concluded that methods to

decrease contamination (e.g. cleansing, boric acid preservative, and

refrigerating urine sample to prevent nonspecific growth) were of

limited value (LaRocco et al., 2015). The possibility remains that

many microbes reported as contamination or mixed flora could

represent potential polymicrobial infection that, in some cases, may

breach the renal urine blood barrier and progress to urosepsis

(Siegman-Igra, 1994; Siegman-IgraY, 1994; Peach et al., 2016;

Akhtar et al., 2021; Collaborators, GBD 2021 Antimicrobial

Resistance, 2024). Distinguishing contamination from the

presence of clinically relevant microbes is essential to test

interpretation and reporting. It is helpful to understand the

history of urine culture contamination.
2 Origins of urine sample
contamination

The belief that urine is sterile above the urethral sphincter is

attributed to Pasteur and his studies proposing germ theory in the

1860s (Asscher et al., 1966; Roll-Hansen, 1979; Brubaker et al., 2023).
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The seminal fact omitted in many contemporary accounts is that

Pasteur boiled the urine, vacuum sealed the flasks and observed no

growth. Indeed, Pasteur considered urine alone to be an excellent

bacterial growth media (Asscher et al., 1966). The point of his famous

experiment was to demonstrate that the growth he observed in urine

open to the environment resulted frommicrobes and not spontaneous

generation from miasma (Roll-Hansen, 1979). Later publications by

Roberts reported no detectable microbes in fresh urine of healthy

subjects using the techniques of the day (e.g., microscopy) (Roberts,

1881). However, all samples left open to the air and at room

temperature developed cloudiness and an ammonia odor in two to

three days. This was attributed to microbes that could metabolize urea

(Roberts, 1881) and later shown to be due to urease expressing

facultative anaerobes such as Proteus (Armbruster et al., 2017).

The success of Koch’s postulates in identifying single microbes

as causes of mortal diseases led to a quantum advance in the

diagnosis of infectious disease in the late nineteenth century

(Blevins and Bronze, 2010). As culture methods evolved for the

detection of UTI-associated pathogens, protocols that detected the

most common pathogen, Bacterium coli commune (later Escherichia

coli), became standard clinical laboratory practice (Friedmann,

2014). Although multiple publications during the twentieth

century reported microbes in the “sterile” urine of healthy

individuals without symptoms (Hort, 1914; Marple, 1941; Philpot,

1956; McFadyen and Eykyn, 1968; Maskell, 1986; Maskell, 1988),

special methods were necessary to culture these presumably

“uncultivatable” microbes (Maskell, 1988; Khasriya et al., 2013;

Hilt et al., 2014; Price et al., 2016; Legaria et al., 2022), and the

dogma remained that urine was sterile in the absence of clinical

conditions, such as UTI. Thus, contamination as it is currently

defined is thought to arise from extravesicular (outside the bladder)

sources and be unrelated to the cause of symptoms or infection;

contamination is an artifact of urine sample collection (Valenstein

and Meier, 1998; Bekeris et al., 2008; LaRocco et al., 2015). The

prevailing view is that urine specimens can easily become

contaminated with periurethral, epidermal, perianal, and vaginal

flora (LaRocco et al., 2015). One report defined contamination as

“bacteria that are found in normal vaginal or skin flora and do not

cause UTI” (Blake and Doherty, 2006).
TABLE 1 Methods of urine collection for clinical laboratory analysis.

Method Regions sampled Advantages Disadvantages References

Midstream
Void
Clean Catch

Kidney, Ureter, Bladder, Urethra
(Prostate), Urethral Meatus,
Urogenital Regions

Least invasive Includes urethral and
urogenital flora, risk
of “contamination”

(Brubaker et al., 2021b; Pohl et al.,
2020; Wang et al., 2023)

Transurethal
Catheterization

Kidney, Ureter, Bladder Bladder and upper urinary tract
only. Excludes urethral and
urogenital flora

Invasive. Catheterization (Pohl et al., 2020; Wang et al.,
2023; Du et al., 2024; Wolfe
et al., 2012)

Suprapubic
Aspirate

Kidney, Ureter, Bladder Bladder and upper urinary tract
only. Excludes urethral and
urogenital flora

Invasive (Suprapubic needle
into the bladder)

(McFadyen and Eykyn, 1968;
Wolfe et al., 2012)

Ureteroscopy Kidney, Ureter Renal and ureteral flora only Invasive, rarely used except
under certain circumstances

(Shafik et al., 2005)
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Urine culture contaminants attributed to dermal origin (skin) are

usually identified as Gram-positive diphtheroids (Corynebacteria,

club-like), Gram-positive clustered cocci (Staphylococcus), and

Gram-positive cocci (Streptococcus, Micrococcus). A survey of the

human skin microbiome identifying the ten most abundant taxa in

four different regions of skin (dry, moist, sebaceous, and feet) found 22

different microbes. Of these, 21 are Gram-positive aerobes,

microaerophiles or facultative anaerobes (Byrd et al., 2018)

(Supplementary Table 1). Three are within the Viridians group

streptococci (VGS) (Doern and Burnham, 2010). Only one is

Gram-negative; the anaerobic coccus Veillonella parvula (found only

in the dry region sample). Thus, skin contamination would be

consistent with Gram-positive commensals.

The vaginal microbiome changes with age and reproductive

status (menarche, reproductive age and post-menopausal) (Ravel

et al., 2011; Nunn and Forney, 2016; Saraf et al., 2021; Park et al.,

2023). Consequently, vaginal microbiota can vary with the patient.

In general, the healthy vaginal microbiome is predominated by

Lactobacilli, although other taxa have been observed (Ravel et al.,

2011; Nunn and Forney, 2016; Saraf et al., 2021) (Supplementary

Table 2). Vaginal contaminants are usually identified as Gram-

positive bacilli and are attributed to commensal flora. These include

L. iners, L. crispatus, L. gasseri and L. jensenii but can also include

Gardnerella vaginalis (Gram-variable) and Gram-positive anaerobe

Atopobium vaginae (now known as Fannyhessea vaginae) (Nouioui

et al., 2018).

The vulvar microbiome has recently been investigated and

includes representative taxa from both skin and vagina, including

the genera Corynebacterium, Lactobacillus, Staphylococcus, Prevotella,

Propionibacterium (Cutibacterium) and Finegoldia (Pagan et al.,

2021). These microbes are Gram-positive diphtheroids, rods, and

cocci except for the Gram-negative anaerobe Prevotella. Assessing

gastrointestinal contamination including perianal and perineal

regions becomes problematic as these microbes are facultative

anaerobes that have also been identified as uropathogens. These

include the genera Escherichia, Pseudomonas, Klebsiella, Proteus, and

Gram positive Enterococcus commonly reported in UTI and are the

microbes most often detected using current diagnostic techniques

(urine dipstick and SUC) (Flores-Mireles et al., 2015; Moreland et al.,

2023) Tables 2 and 3. Consequently, they are diagnosed as

uropathogens rather than perineal contaminants.

Guidelines for common microbial contaminants in blood

culture are available (Palavecino et al., 2024) and the Centers for

Disease Control maintains a list of microbes that have been detected

as commensals in UTI and blood infections (CDC, 2022). However,

a list of urinary tract microbial contaminants is much more

nebulous beyond listing niches (periurethral, epidermal, perianal,

and vaginal), or assuming that microbes that are commensals in one

niche are commensals in another (Blake and Doherty, 2006;

LaRocco et al., 2015) (Supplementary Tables 1, 2).

Thus, in current clinical diagnostic practice, if a sample contains

mixed flora, it is the number of different microbes (≥ 2 or more at

104 CFU/ml) that determines contamination and not the actual

microbe unless it is a commonly recognized urinary pathogen
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(Bekeris et al., 2008; LaRocco et al., 2015; Sfeir and Hooton, 2018;

Mancuso et al., 2023).
3 Limitations of diagnostic standard
urine culture

Today, diagnosis of UTIs typically relies on patient symptoms

and urinalysis. The latter uses urine dipstick testing and, in some

cases, the standard urine culture (SUC) method (Chambliss and

Van, 2022; Moreland et al., 2024; Werneburg et al., 2023) Table 2.

Urine dipstick testing, frequently used to determine further testing,

such as urine cultures is reviewed elsewhere (Moreland et al., 2024;

Chambliss and Van, 2022). The limitations of SUC have been

identified and are starting to impact current diagnostics (Price

et al., 2017; Dixon et al., 2020; Wojno et al., 2020; Brubaker et al.,

2023; Gleicher et al., 2024; Werneburg and Hsieh, 2024).

It is now well recognized that SUC under aerobic conditions

(Gillespie et al., 1960), or even under 5% CO2, detects a limited

number of microbes, almost all facultative anaerobes (Price et al.,

2016, 2017; Wojno et al., 2020; Brubaker et al., 2023; Festa et al.,

2023). As a result, reports based on SUC, including almost all

literature to date, repeatedly document a constellation of the same

microbes from the genera Escherichia, Pseudomonas, Klebsiella,

Proteus, Staphylococcus, and Enterococcus, with Escherichia coli by

far considered the predominant cause of UTI (Table 3) (Flores-

Mireles et al., 2015; Kline and Lewis, 2016; Mancuso et al., 2023;

Moreland et al., 2023; Werneburg et al., 2023; Timm et al., 2025).

However, these results have been obtained because SUC was

designed to detect fast growing, non-fastidious, facultative

anaerobes, and thus fails to detect many other microbes. For

example, a recent study directly compared SUC results to those of

a multiplex polymerase chain reaction (M-PCR) panel for a cohort

of 1,132 diagnosed UTI patients. M-PCR detected microbes in 823

of these patients, who also exhibited elevated infection-associated

urine biomarkers (Haley et al., 2024). Of the 10 microbes most

detected by M-PCR, only 4 were detected by SUC with 2 of those

often not detected (Haley et al., 2024). Most striking was the failure

of SUC to detect 3 of the 5 microbes most detected by M-PCR.

These were the genera Aerococcus and Actinotignum and the

Viridians group Streptococcus (including S. anginosus, S. oralis,

and S. gallolyticus subsp. pasteurianus (formerly known as

Streptococcus pasteurianus) (Doern and Burnham, 2010). Thus,

except for E. coli, all known uropathogens (“the usual suspects”)

represented only 13% or less of UTIs diagnosed with symptoms

(Haley et al., 2024) (Table 3).

One outstanding issue with SUC has been the diagnosis of

sterile pyuria, defined as positive for white blood cells but negative

urine cultures in patients that report UTI symptoms (Wise and

Schlegel, 2015; Horton et al., 2018; Cohen et al., 2019; Xu et al.,

2024). Yet, a recent report suggests that Actinotignum (which SUC

cannot detect but M-PCR diagnostics finds to be quite common)

may be an underlying cause of sterile pyuria (Horton et al., 2018).

Until recently, however, few had questioned the standard diagnostic
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method as flawed. As this standard method supports the established

dogma that UTIs are caused by microbes arising from the

gastrointestinal tract and, in females, vulvo-vagina reservoirs, it

has, for the most part, gone unchallenged (Timm et al., 2025).
4 The urobiome “complication”

With the advent of DNA-based techniques (metagenomics) and

enhanced culture methods (metaculturomics), the existence of

female urethral and bladder microbiota has been confirmed with

subtle differences existing between the two (Chen et al., 2020; Wang

et al., 2023). Thus, we now know that the typical human urinary

tract above the urinary sphincter is not sterile; instead, it contains an

indigenous urinary microbiome (also known as the urobiome)

(Price et al., 2020; Brubaker et al., 2021b; Du et al., 2024). We

also know that the urobiome can have multiple healthy states

(Pearce et al., 2014; Price et al., 2020; Jayalath and Magana-

Arachchi, 2022; Joos et al., 2024). Moreover, many adult males

and most adult females have a detectable urobiome without
Frontiers in Cellular and Infection Microbiology 04
experiencing relevant urinary symptoms. Clearly, this does not

mean we all have a UTI (Finucane, 2017). Consistent with clinical

diagnosis of UTI, in the absence of relevant urinary symptoms,

there is no “infection.” Diagnosis of a UTI requires that the patient

exhibits at host response, and typically experiences symptoms

(including urgency, frequency, urinary incontinence, and/or pain)

(Anger et al., 2019).

Within any microbiome, microbes can be classified into 6

categories: non-pathogen (i.e., those that do not cause disease),

pathogen (i.e., those that cause disease), commensal (i.e., those

resident within the tissue and benefiting the host), symbiont (i.e.,

those resident within the tissue and benefiting both the host and the

microbe), colonizer (i.e. resident within the tissue and may or may

not cause disease), and pathobiont (i.e., resident within the tissue

and generally beneficial but disease-causing under certain

conditions) (Dey and Ray Chaudhuri, 2022). The urobiome has

the full range of the 6 categories described above, including

pathogens and pathobionts (Thomas-White et al., 2018; Du et al.,

2024). Yet, most human beings do not have a clinical infection (i.e.,

UTI) even though pathogens or pathobionts are “citizens” of their
TABLE 2 Assays for urinary tract infection diagnosis.

Method Basis Detection Advantages Disadvantages References

Urine Dipstick Detects nitrite (bacteria),
leukocyte esterase (infection,
WBC) and pH

Colorimetric, Time to
result, minutes.

Quick, accessible, Rapid
diagnosis as a first read
of UTI

False negatives, false
positives, half of known
and emerging uropathogens
do not make nitrite.

(Kavuru et al., 2020;
Mundt and Shanahan,
2010; Moreland
et al., 2024)

Standard
Urine
Culture (SUC)

Plating urine on MacConkey
and sheep blood agar plates,
incubate aerobically 30-37C.

Bacterial plates, 12-36h, Current clinical
Gold standard.

Aerobic culture misses up
to 70% of known and
emerging uropathogens,
negative cultures,
Favors the rapid growth of
facultative anaerobes

(Gillespie et al., 1960;
Brubaker et al., 2023;
Price et al., 2017;
Moreland et al., 2024)

Expanded
Quantitative
Urine
Culture
(EQUC)

Variety of plates and
atmospheric conditions

Bacterial plates, 24-48h Detects 70% of normal
urinary bladder flora,
distinguishes live from
dead microbes

Time to result, great
research tool

(Price et al., 2016;
Deen et al., 2023; Du
et al., 2024)

16S rRNA/18S
rDNA Gene
amplification/
sequencing

PCR amplification of
bacterial (16S) and fungi
(18S) DNA in sample

Extraction of DNA followed by
PCR using universal 16S and
18S primers.
Hours

Detects bacterial and
fungal DNA.

List of microbes without
context. Cannot distinguish
live or dead. Relative
abundance in each sample.

(Hilt and
Ferrieri, 2022)

M-PCR PCR, specific primers
identify a panel of microbes

Amplified DNA, Hours
to result.

Rapid, sensitive List of microbes without
context of infection, Only
detects microbes specific to
primer sets.

(Wojno et al., 2020;
Hilt and
Ferrieri, 2022)

M-PCR with
Immune
Markers
of Infection

PCR, specific primers
identify a panel of microbes
coupled with immunoassays
of markers of infection

MPCR panel coupled with
immunoassays for
immune markers.

Rapid, sensitive, links
results to immune
response, distinguishes
urobiome
from uropathogens

Only detects microbes
specific to primer sets

(Akhlaghpour et al.,
2024; Haley
et al., 2024)

Shotgun Next
Generation
Metagenomic
Sequencing

Extracts and sequences all
DNA in clinical sample.
Requires host DNA
depletion to amplify signal.

DNA extraction from clinical
sample, host depletion of DNA
followed by shotgun
metagenomic DNA sequencing

Detects all DNA: viruses,
bacteriophages,
eukaryotic microbes,
bacteria, and human.
Targeted metagenomics
uses specific
sequencing primers.

Expensive, time limited.
Recent targeted approaches
may revolutionize
this approach

(Chang et al., 2025;
Hilt and Ferrieri, 2022;
Neugent et al., 2022)
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urobiome community. An informative study enrolled heathy

volunteers ≥ 65 years old without urinary symptoms as a

comparison group for patients diagnosed with UTIs

(Akhlaghpour et al., 2024). In that study, an M-PCR panel

consistently detected the known uropathogens E. coli and

Enterococcus faecalis, as well as the emerging uropathogens

Aerococcus urinae, Actinotignum schaalli, and members of the

Viridians group Streptococcus in healthy volunteers without

urinary tract symptoms. In addition, few of these volunteers

experienced an increase in infection-related immune markers, a

hallmark of infection (Akhlaghpour et al., 2024). Furthermore,

many adult females do not get UTIs. Finally, it is well known that

UTIs can resolve spontaneously (Hoffmann et al., 2020; Barnes

et al., 2021; Midby and Miesner, 2024). This implies that the

indigenous urobiome together with both innate and adaptive

immune responses can often restore urinary health and

resolve infection.

Biomass influences microbial communities. The gastrointestinal

tract is the best-known example of a high biomass microbial niche.

In contrast, the urobiome has relatively low microbial biomass and

thus, in some cases, urine samples yield culture-negative and DNA-

based-negative test results (Hilt et al., 2014; Pearce et al., 2015;

Neugent et al., 2020). An analogy would be a city block in the Bronx

with 35,000 inhabitants versus a high plains plateau in Wyoming

with sparse settlements. Within both types of communities,

however, interactions occur among the residents. The same is

true for ecological microcosms within the human microbiome.

If most contamination arises from periurethral, epidermal,

perianal, and vaginal flora as suggested (LaRocco et al., 2015), it

would be helpful to compare the bladder urobiome to these other

niches. A comparison of gastrointestinal, vaginal and bladder

microbiomes revealed that while all three niches were distinct

from each other, there were similarities between the vagina and

bladder microbiomes (Thomas-White et al., 2018; Du et al., 2024)

(Figure 1). Furthermore, a recent survey of the skin microbiome

lists the top ten taxa from four different niches (Byrd et al., 2018). Of

the 22 different microbes identified among the ten most abundant

taxa in four different regions of skin (dry, moist, sebaceous, and

feet), 18 (82%) are also found in urine obtained directly from the

bladder by transurethral catheterization (Thomas-White et al.,

2018; Du et al., 2024) (Supplementary Table 1). Therefore, mere

taxonomic identity (via Gram stain, oxygen tolerance, metabolic

panel, and/or MALDI-TOF MS) cannot distinguish bladder

residents from skin periurethral, perianal, and vaginal residents.

To make such a distinction requires genome sequencing and

complex bioinformatic analysis that determines whether two

isolates are of the same lineage or not.
5 Polymicrobial infections

The history of polymicrobial infections dates to the late

nineteenth century and W.D. Miller, a microbiologist and dentist

who had worked in Robert Koch’s lab (Murray et al., 2014; Sedgley,

2004). By microscopy and characterization of pus from oral
Frontiers in Cellular and Infection Microbiology 05
abscesses, he reported that the application of Koch’s postulates

was not consistent with cultured microbes isolated from murine

models. In fact, Miller obtained a more virulent response from the

abscess pus than he did the cultured, recovered microbes. Armed

with only culture conditions, a microscope and staining, Miller

concluded that uncultivatable microbes worsened the infection

(Murray et al., 2014). It was not until the availability of DNA

sequence-based methods in the late twentieth and early twenty-first

century that microbial ecology and polymicrobial infections were

confirmed and appreciated in some human niches.

Thus, the concept of polymicrobial UTIs is not new but their

existence has been confirmed with many examples reported in the

late twentieth century (Siegman-Igra, 1994; Siegman-Igra et al.,

1988, 1993; Siegman-IgraY, 1994). Yet, it may be useful to divide the

studies on mixed cultures/polymicrobial infections into two groups:

before and after the advent of DNA molecular techniques. The

former was limited to urine sediment, urine culture, microscopy,

Gram staining, and metabolic panels. Urine culture limited to SUC

(most often aerobic) identified mostly facultative anaerobes

(Tables 3, 4). Consequently, this literature identified mostly

Gram-negative rods as pathogens and excluded most Gram-

positive rods and cocci as contaminants (with a few exceptions

such as Enterococcus and coagulase negative Staphylococcus

(CoNS), especially S. saprophyticus. Early studies on urosepsis and

mixed (polymicrobial) cultures from patients revealed that

matching cultures from urine and blood of the same microbe

suggested that upper urinary tract infection had transitioned into

the bloodstream. In one study, 716 bacteremic episodes were

observed in 692 patients out of 52,012 admissions over 5 years

(Siegman-Igra, 1994). Of these, 307 episodes in 303 patients were

due to UTI. In this group, 198 had at least one microbe that was

detected in both blood and urine culture (Table 4). These 198

urosepsis cases represented 194 patients (96 male, 98 female) with a

mean age of 68 years. The most common microbe in

monomicrobial infections was Escherichia coli; however, in

polymicrobial infections, Pseudomonas aeruginosa was most

predominant. P. aeruginosa also was among the microbes

associated with fatal outcomes. In an earlier study of

polymicrobial bacteremia, of 67 cases across multiple organ

systems and causes, 46 percent were diagnosed with UTI

(Siegman-Igra et al., 1988). Of the 67 cases, 28 died, with 42

percent diagnosed with UTI. While urosepsis is considered rare

among the population, in neonates and patients 65 and older, it is a

significant morbidity (Peach et al., 2016; Akhtar et al., 2021;

Collaborators, GBD 2021 Antimicrobial Resistance, 2024).

While traditional urinary pathogens are predominantly Gram-

negative facultative anaerobes, Gram-positive microbes are also

detected in patients diagnosed with UTI, particularly in

polymicrobial infections (Kline and Lewis, 2016). While usually

regarded as commensals, Gram-positive microbes’ pathogenic

potential have been questioned (Clarke et al., 2010; Kline and

Lewis, 2016; Leal et al., 2016). Yet, Gram-positive CoNS and

Enterococcus, as well as emerging urinary pathogens such as

Aerococcus, Actinotignum, Gardnerella, and Corynebacteria are

found prevalently and abundantly in patients with UTI symptoms
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TABLE 3 Incidence of known uropathogens using standard diagnostics and M-PCR.

Microbe Gram
stain

Oxygen tolerance Uncomplicated UTI (%
of cases)

Complicated UTI (%
of cases)

M-PCR (%
of cases)

Escherichia coli Negative Facultative Anaerobe 75 a

70 b

75 c

72.5 d

65 a

65 b

65 c

55.4 d

41e

Klebsiella pneumoniae Negative Aerobe 11 a

9.8 (Klebsiella spp)b

6 (Klebsiella spp) c

5.1 d

16 a

9.7 (Klebsiella spp)b

8 (Klebsiella spp) c

8.9 d

13 e

Enterococcus spp Positive Facultative
Anaerobe, Microaerophile

5.5 a

5.8 b

5.0 c

5.1 d

10.5 a

4.7 b

11.0 c

8.9 d

22 e

Staphylococcus
saprophyticus

Positive Facultative
Anaerobe, Microaerophile

5.5 a

5.5 (Staphylococcus spp) b

6.0 c

3.8 (CoNS) d

NR a

7.3 (Staphylococcus spp) b

NR c

2.5 (CoNS) d

6 (CoNS) e

Proteus mirabilis Negative Facultative Anaerobe 4.0 a

2.1 b

2.0 c

3.0 d

4.0 a

2.2 b

2.0 c

4.4 d

4 e

Pseudomonas
aeruginosa

Negative Obligate Aerobe 2.5 a

1.0 b

1.0 c

2.9 d

4.0 a

0.8 b

2.0 c

6.5 d

4 e

Streptococcus spp
including GBS

Positive Facultative Anaerobe NR a

1.9 b

3.0 c

4.7 d

NR a

3.9 b

2.0 c

4.2 d

3 e

Candida spp (Yeasts) NA Facultative Anaerobe NR a

1.3 b

1.0 c

1.6 d

NR a

2.9 b

3.0 c

2.8 d

5 e

Staphylococcus aureus Positive Facultative Anaerobe NR a

5.5 (Staphylococcus spp) b

1.0 c

1.6 d

NR a

7.3 (Staphylococcus spp) b

3.0 c

2.3 d

1 e

Citrobacter spp Negative Facultative Anaerobe NR a

1.1 b

NR c

1.6 d

NR a

1.5 b

NR c

2.8 d

1.4 e

Enterobacter spp Negative Facultative Anaerobe NR a

1.0 b

NR c

1.6 d

NR a

1.4 b

NR c

3.7 d

3 e

Pseudomonas
aeruginosa

Negative Obligate Aerobe 1.0 a

1.0 b

1.0 c

2.9 d

2.9 a

0.8 b

2.0 c

6.5 d

4 e
F
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aAdapted from Figure 2 (Mancuso et al., 2023).
bAdapted from Figure 1 (Werneburg et al., 2023).
cAdapted from Figure 1 (Flores-Mireles et al., 2015).
dAdapted from Figure 1 (Gaston et al., 2021).
eAdapted from Figure 1 (Haley et al., 2024).
NR, Not reported.
CoNS, Collectively known as coagulase negative staphylococcus (CoNS) and comprising S. epidermidis, S. haemolyticus, S. lugdunensis, S. saprophyticus (Moreland et al., 2023).
GBS, Group B Streptococcus (Streptococcus agalactiae) (Kline and Lewis, 2016).
NA, Not applicable.
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(Kline and Lewis, 2016; Moreland et al., 2023). Microaerophiles and

anaerobes also have been observed (Legaria et al., 2022; Maskell,

1986) and cultures to rule out these microbes was suggested as part

of diagnosis seventy years ago (Jawetz, 1953).

With the advent of metaculturomic methods (approaches

designed to permit growth of typically uncultivated microbes) and

metagenomic approaches (DNA-dependent methods that do not

require growth), attempts (e.g., the human microbiome project)

have sought to define the microbiota of various human niches,

notably skin, respiratory tract, and the gastrointestinal tract, as well

as the urogenital and reproductive tracts (Lloyd-Price et al., 2016;

Joos et al., 2024). Lessons learned from the last two decades of

research have taught us that there are multiple healthy states within

niches that vary with sex, age and reproductive status (Lloyd-Price

et al., 2016; Joos et al., 2024). Also, disease states are more

complicated than originally anticipated by Koch and his

postulated approach (Blevins and Bronze, 2010; Murray et al.,

2014). A recent opinion paper questioned whether the urobiome

has any impact on UTI, in part because Koch’s postulates have not

been performed to determine whether any of the members of the

newly identified urobiome cause disease symptoms (Werneburg
Frontiers in Cellular and Infection Microbiology 07
and Southgate, 2024). Yet, Koch’s postulates (one organism, one

infection, one cause of disease) cannot be applied to polymicrobial

infections including UTIs (Ronald et al., 2008; Murray et al., 2014;

Short et al., 2014). The request to use Koch’s postulates to validate

the role of the urobiome (Werneburg and Southgate, 2024) is

further complicated by the currently accepted tools that may no

longer apply: a detection system (urine dipsticks, SUC) that misses

many uropathogens (Moreland et al., 2024) and standards that

define polymicrobial infections as contamination (Siegman-Igra

et al., 1993; Siegman-IgraY, 1994; Bekeris et al., 2008).

One DNA-dependent method, multiplex PCR (M-PCR), allows

quantitative, real-time detection of microbial DNA as long as a

primer set is present to detect them (Moreland et al., 2024). Using

M-PCR, a surprisingly high rate of polymicrobial specimens have

been detected in older patients (≥ 65) with diagnosed UTI

symptoms, ranging from 45 to 65 percent depending on simple

or complex UTI, sex, and comorbidities (Vollstedt et al., 2020;

Wojno et al., 2020; Korman et al., 2023; Wang et al., 2023;

Akhlaghpour et al., 2024; Haley et al., 2024; Kardjadj et al., 2025).

For example, in one study examining the differences of microbes

based on catheterized (bladder) urine versus midstream void (entire
FIGURE 1

Comparison of bladder, vaginal and gut isolate functions. Discriminant analysis of principal components analysis of the functions of bacterial species
isolated from asymptomatic individuals shared among 3 different niches: bladder (blue; n=68), vagina (red; n=74) and gut (yellow; n=175). The dots
represent individual functions. The lines show the extent of those functions. Thus, a line that begins in the bladder centroid and ends in the vaginal
centroid represents a function that is expressed by species that inhabit both the bladder and the vagina. Note the extensive overlap of functions in
the bladder and vagina in contrast to the limited overlap between functions characteristic of the bladder or vagina and those of the gut. Adapted
from (Du et al., 2024) (published under a Creative Commons license).
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1562687
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Moreland et al. 10.3389/fcimb.2025.1562687
urinary tract including urogenital areas), more polymicrobial

infections were detected in midstream voided compared to

catheter-collected samples (64.4% vs 45.7%, p < 0.0001) in

females but the opposite in males (35.6% vs 47.0%, p = 0.002

(Wang et al., 2023). While M-PCR detected microbes that are not

detected by SUC, the use of inflammatory markers of infection

allowed the distinction of volunteers without relevant clinical

symptoms from symptom-diagnosed UTI patients and stratifying

those microbes into tiers based on abundance of occurrence

(Akhlaghpour et al., 2024; Haley et al., 2024).

In the laboratory, specific microbes are studied in isolation

using a reductionist approach. In the real world, communities of

microbes make up an ecosystem that changes based on the

predominating species and interactions between them (Murray

et al., 2014; Short et al., 2014; Jayalath and Magana-Arachchi,

2022). These communities interact in synergy with residents by

providing nutrients, soluble signaling factors, cell contact through

adhesins, or in some cases facilitating antibiotic resistance (Ryan

and Dow, 2008; Short et al., 2014; Murray et al., 2014; Gaston et al.,

2021). Likewise, some microbes secrete molecules that eliminate

their competition such as Pseudomonas (Gaston et al., 2021) or kill

uropathogens such as commensal Lactobacillus (Abdul-Rahim

et al., 2021; Johnson et al., 2022; Szczerbiec et al., 2022).

While polymicrobial results in the studies described above were

reported as a group, the individual microbes within the subsets of

polymicrobial infections were not identified. Instead, individual

microbes were reported by taxon (Vollstedt et al., 2020; Wojno

et al., 2020; Korman et al., 2023; Wang et al., 2023; Akhlaghpour

et al., 2024; Haley et al., 2024). A reanalysis of the data from these

studies could reveal associations of specific microbes that as a group

or community are more pathogenic than as single isolates. In an

effort to understand microbial ecology of polymicrobial isolates, one

study examined 72 bacteria isolates collected from 23 patients

diagnosed with polymicrobial UTI (de Vos et al., 2017). An

ecological network analysis was developed, finding that most
Frontiers in Cellular and Infection Microbiology 08
interactions clustered based on evolutionary relatedness. Eight

complete communities of four different microbes were found, four

of which were predicted to be stable and four not stable (de Vos

et al., 2017). The isolates used for this study were originally collected

using standard culture techniques (Croxall et al., 2011), which may

explain the predominance of classical uropathogens. Expanding and

extending this concept, another study examined pathogens and

bladder commensal isolates grown under urine-like conditions and

the effects different microbes had on the community (Zandbergen

et al., 2021). Artificial urine media conditioned by commensals had

effects on growth of uropathogens and vice versa. This early attempt

at gaining insights into the complexities of urobiome ecology shows

that while a microbe in isolation may have certain growth

characteristics, the community - through direct physical

interaction, direct interaction with the host, or secretion/excretion

of signaling molecules or metabolites, - may exhibit a different

response than a single microbe in monoculture (Heidrich et al.,

2022; Short et al., 2014; Murray et al., 2014).
6 Future directions: a call to action

To advance diagnosis, we suggest the following:
1. Reexamine standards for urine collection/culture

contamination to ensure accurate sampling, taking into

consideration the new knowledge concerning the

urobiome. A recent scoping review highlights the issues,

especially the lack of consensus among guidelines

concerning urine culture thresholds for UTI and the

reliance upon dated and sparse evidence for current

standards (Hilt et al., 2023). To achieve accuracy, we

should recognize that urine samples must be processed

immediately or be stored under conditions that do not

permit microbial growth (LaRocco et al., 2015).
TABLE 4 Characteristics of microbes from UTI with matching blood infectionsa .

Microbe Blood Cultureb Urine Culturec

Monomicrobial
n (%)

Polymicrobial
n (%)

Total
n (%)

Monomicrobial
n (%)

Polymicrobial
n (%)

Total
n (%)

Escherichia coli 77 (59) 32 (33) 109 (48) 77 (59) 43 (28) 120 (43)

Klebsiella sppd 21 (16) 19 (20) 40 (18) 21 (16) 29 (19) 50 (18)

Proteus sppe 15 (12) 18 (19) 33 (15) 15 (12) 30 (20) 45 (16)

Pseudomonas
spp

8 (6) 16 (16) 24 (11) 8 (6) 25 (17) 33 (12)

Enterococcus 4 (3) 7 (7) 11 (5) 4 (3) 14 (9) 18 (6)

Other 5 (4) 5 (5) 10 (4) 5 (4) 11 (7) 16 (5)

Total 130 (100) 97 (100) 227 (100) 130 (100) 152 (100) 282 (100)
aAdapted from Table IV (Siegman-Igra, 1994) Used by permission.
bBlood culture: Bottles with tryptic soy broth, 5% CO2, 37C. Checked daily for growth, subcultured, stained after 24-48h.
cUrine culture: 5% sheep blood and MacConkey agar plates (loops with 0.01-0.001ml). Incubated 18-24h (aerobic).
dIncluding Enterobacter spp.
eIncluding Morganella spp and Providencia spp.
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2. Recognize the shortcomings of SUC. There is now

sufficient data in the literature to adjudicate the accuracy

of this method. It should be examined, weighing its

strengths and acknowledging its weaknesses (Price et al.,

2017; Wojno et al., 2020; Xu et al., 2021; Festa et al., 2023;

Brubaker et al., 2023; Gleicher et al., 2024). Besides its

ability to detect only a limited group of facultative

anaerobes, time is also a consideration as re-sampling

and re-culturing requires time that may allow an

infection to progress.

3. Recognize the presence and importance of polymicrobial

UTI. The literature provides evidence that these infections

are more prevalent than previously believed and

misdiagnosis as contamination should be considered and

re-evaluated. Ultimately, clinical diagnostic pathways

might be modified to diagnose these infections before

they can progress to upper tract UTI and potentially

urosepsis (Siegman-Igra, 1994; Peach et al., 2016; Akhtar

et al., 2021).

4. Recognize the importance of redefining contamination,

acknowledging the existence of polymicrobial infection.

Critical for antibiotic stewardship is the development of

accurate and rapid diagnostics that not only detect

microbes but also determine if they are involved in a host

immune response. The increase in antibiotic resistance and

future predictions are sobering (Collaborators, GBD 2021

Antimicrobial Resistance, 2024). Proper and appropriate

use of antibiotics to treat UTI not only affects the health of

patients but preserves critical antibiotics for those who need

them (Simoni et al., 2024).

5. Take a lesson from other organ systems and diseases

(Murray et al., 2014; Short et al., 2014), and ask how

diagnostic tools can be improved and new tools

developed or implemented to characterize microbial

communities in polymicrobial infections/mixed cultures.

One way to accomplish this would be to reanalyze data

from polymicrobial samples to identify interaction

networks and determine if any groups of microbes are

more commonly associated with symptoms or the lack

thereof (Vollstedt et al., 2020; Wang et al., 2023;

Akhlaghpour et al., 2024; Haley et al., 2024).

6. Finally, the concept of contamination must be reevaluated in

the context of the new knowledge that the urobiome exists.

Urine is not sterile above the urethral sphincter and the

existence of communities containing both commensal, non-

pathogenic microbes and potential uropathogens should be

acknowledged. While dysbiosis is generally a concept foreign

to the UTI literature, it needs to be recognized, and

diagnostics updated to reflect the current science (Price

et al., 2017; Jayalath and Magana-Arachchi, 2022; Simoni

et al., 2024). Koch’s postulates are invalid in polymicrobial

systems (Murray et al., 2014; Short et al., 2014) but

unfortunately continue to persist as a consequence of the

dogma that single microbes are causative of disease (Blevins

and Bronze, 2010; Werneburg and Southgate, 2024).
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The danger of dismissing species considered to be routine

contaminants, such as members of the genus Corynebacterium, can

lead to dismissing pathogens likeC. urealyticium, which is both nitrate

negative by urine dipstick and grows slowly under SUC conditions.

Yet, while PCR testing is much more rapid than culture (Dixon et al.,

2020; Gleicher et al., 2024; Zering and Stohs, 2024), without some

reference to host immune response (indicative of infection), the

practicing clinician is left with 10–20 names on a page with little

clue what to do next (Zering and Stohs, 2024; Xu et al., 2021).

Fortunately, one test correlates an M-PCR panel of 30 microbes

with biomarkers of inflammation (Akhlaghpour et al., 2024; Haley

et al., 2024). While this is but one study with older patients, it opens

the opportunity for researchers to examine other groups (e.g., different

age groups, males versus females, or pregnant versus non-pregnant

individuals.It is likely the differences encountered will require tailored

treatments depending on the type of patient.

So, what should we do with this additional information? We

foresee both scientific and clinical paths. As scientists broaden the

view from “identify the pathogen and kill it” to “understand the

ecology,” new insights into therapies should arise that parallel those

of the oncological research and clinical community that has spent

decades working to better understand, diagnose, and treat cancers.

Their recognition that the old diagnostics and treatment algorithms

were insufficient has led to precision diagnostics, targeted

treatments, and better outcomes for patients. We should do the

same for our patients. Teams of scientists and clinicians have begun

this process; others should join the effort.

Where does this leave clinical microbiologists and clinicians who

deal daily with the quandary of accurate diagnosis balanced by

microbial stewardship? Even though the human microbiome

project began two decades ago, the translation of that research into

clinical practice is just beginning (Gilbert et al., 2025). In other niches,

where the research is more advanced, there have been three stages of

translations into the clinic. The first stage involves identification of

microbiota and normal (healthy) microbial ecology. This process

leads to understanding the mechanisms underlying dysbiosis and

symptoms/disease. The second stage develops metrics associating

taxa, host response, and disease characteristics that lead to

biomarkers and new diagnostics. Finally, armed with this

information, strategies are developed to modify the microbiota to

restore a normal, healthy state (Gilbert et al., 2025).

Our community is still in the earlier stages of this process, having

shown that the urobiome exists and obtained evidence that it is

associated with health and disease. Progress on the second stage has

begun but there is much to do. To be consistent with developing

science, clinical microbiologists must challenge current standards

concerning urine culture contamination (Bekeris et al., 2008). Also,

the incidence of polymicrobial infection must be established across

diverse populations (e.g. age, sex, nosocomial versus outpatient status).

For their part, clinicians should be aware of the older diagnostics flaws

and help progress new diagnostic developments with the goal of a

rapid, accurate test that identifies bothmicrobes and host response. For

diagnosis of UTI, the host response could be monitored by

inflammatory biomarkers (Akhlaghpour et al., 2024). In the

meantime, clinicians can be open to emerging new knowledge and
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new diagnostics. Their intellectual preparation to use that knowledge

to make their best clinical decision will be critical for improved patient

care. Finally, all should recognize that better diagnostics and better

understanding of their results are key to antibiotic stewardship as the

convenience of empirical treatment, or the use of flawed culture

methods ultimately will deprive those who need antibiotics to

survive in an increasingly antibiotic-resistant clinical environment

(Collaborators, GBD 2021 Antimicrobial Resistance, 2024; Simoni

et al., 2024).
7 Conclusions

In this review, we have presented the current diagnostic state of

urine contamination and discussed the limitations of current

diagnostic techniques, such as SUC. We have reviewed the

evidence for polymicrobial UTI, raising doubt concerning the

appropriateness of applying Koch’s postulates and recognizing the

consequences of potential missed diagnosis. The challenges for

clinical microbiologists, clinicians and research scientists are to

question the current dogmas, address polymicrobial infections, and

work to define the microbial ecology of the urinary tract. The future

is bright as multidisciplinary collaboration offers cross-pollinating

efforts to improve patient care and quality of life.
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SUPPLEMENTARY TABLE 1

Most abundant skin microbes by region/nichea and incidence in urobiomeb. a

From the top ten most abundant microbes in four different skin regions (Byrd

et al., 2018). Note that some microbes are abundant in multiple regions (for
ex., Corynebacterium tuberculostearicum and Staphylococcus epidermidis).

Across four regions with ten microbes each, there are 22 unique taxa. b

Microbes in bold type were found in the human female urobiome (Du et al.,

2024) as determined by sequencing of genomes from isolates from
catheterized urinary bladder urine. c Skin regions/niches are defined as

follows: Dry: Hypothenar palm and volar forearm. Moist: Nare, antecubital

fossa, inguinal crease, interdigital web, and popliteal fossa. Sebaceous: Alar
crease, cheek, glabella, external auditory canal, manubrium, retroauricular

crease, occiput, back. Feet:|Toe web space, toenail, andplantar heel. d

Bacterial Diversity Database. See (Schober et al., 2025). e Also known as

Cutibacterium acnes.

SUPPLEMENTARY TABLE 2

Most abundant vaginal microbesa and incidence in urobiomeb. a Ravel et al.,

2011 evaluated vaginal microflora and vaginal pH in 396 asymptomatic

sexually active women representing four ethnic groups (white, black,
Hispanic, and Asian) by pyrosequencing of 16S rRNA genes. Lactobacillus

species dominated four groups, but one group accounting for 27% of women
(termed as group IV community state type) lacked significant lactobacilli and

was heterogeneous with higher proportion of strictly anaerobic bacteria
including genera Gardnerella, Prevotella, Atopobium, as well as Dialister,

Megasphaera, Peptoniphilus, Sneathia, Eggerthella, Aerococcus, Finegoldia,

andMobiluncus. This latter groupwas over-represented in black and Hispanic
women (Ravel et al., 2011). b Microbes in bold type were found in the human

female urobiome (Du et al., 2024) as determined by sequencing of genomes
from isolates from catheterized urinary bladder urine. c For bacterial

vaginosis, see (Saraf et al., 2021) d Bacterial Diversity Database. See
(Schober et al., 2025). e Atopobium vaginae is now known as Fannyhessea

vaginae (Nouioui et al., 2018).
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Nouioui, I., Carro, L., Garcıá-López, M., Meier-Kolthoff, J. P., Woyke, T., Kyrpides,
N. C., et al. (2018). Genome-based taxonomic classification of the phylum
actinobacteria. Front. Microbiol. 9, 2007. doi: 10.3389/fmicb.2018.02007
Frontiers in Cellular and Infection Microbiology 12
Nunn, K. L., and Forney, L. J. (2016). Unraveling the dynamics of the human vaginal
microbiome'. Yale J. Biol. Med. 89, 331–337.

O'Leary, B. D., Armstrong, F. M., Byrne, S., Talento, A. F., and O'Coigligh, S. (2020).
The prevalence of positive urine dipstick testing and urine culture in the asymptomatic
pregnant woman: A cross-sectional study. Eur. J. Obstet. Gynecol. Reprod. Biol. 253,
103–107. doi: 10.1016/j.ejogrb.2020.08.004

Pagan, L., Ederveen, R. A. M., Huisman, B. W., Schoones, J. W., Zwittink, R. D.,
Schuren, F. H. J., et al. (2021). The human vulvar microbiome: A systematic review.
Microorganisms. 9 (12), 2568. doi: 10.3390/microorganisms91225

Palavecino, E. L., Campodónico, V. L., and She, R. C. (2024). Laboratory approaches
to determining blood culture contamination rates: an ASM laboratory practices
subcommittee report. J. Clin. Microbiol. 262 (2), e0102823. doi: 10.1128/jcm.01028-23

Park, M. G., Cho, S., and Oh, M. M. (2023). Menopausal changes in the microbiome-
A review focused on the genitourinary microbiome. Diagn. (Basel). 13, 1193.
doi: 10.3390/diagnostics13061193

Peach, B. C., Garvan, G. J., Garvan, C. S., and Cimiotti, J. P. (2016). Risk factors for
urosepsis in older adults: A systematic review. Gerontol. Geriatr. Med. 2,
2333721416638980. doi: 10.1177/2333721416638980

Pearce, M. M., Hilt, E. E., Rosenfeld, A. B., Zilliox, M. J., Thomas-White, K., Fok, C.,
et al. (2014). The female urinary microbiome: a comparison of women with and
without urgency urinary incontinence. mBio 5, e01283–e01214. doi: 10.1128/
mBio.01283-14

Pearce, M. M., Zilliox, M. J., Rosenfeld, A. B., Thomas-White, K. J., Richter, H. E.,
Nager, C. W., et al. (2015). The female urinary microbiome in urgency urinary
incontinence. Am. J. Obstet. Gynecol. 213, 347 e1–347 11. doi: 10.1016/
j.ajog.2015.07.009

Philpot, V. B. (1956). The bacterial flora of urine specimens from normal adults. J.
Urol. 75, 562–568. doi: 10.1016/S0022-5347(17)66848-4
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