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Gut microbiome is associated
with radiotherapy response
in lung cancer patients
with brain metastases
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Guangfeng Wang1, Jiangrui Zhu2, Chong Zhou3*

and Youyou Xia1,2*

1Department of Radiation Oncology, the First People's Hospital of Lianyungang/ Lianyungang Clinical
College of Nanjing Medical University, Lianyungang, Jiangsu, China, 2Department of Radiation
Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University/ The First People's
Hospital of Lianyungang, Lianyungang, Jiangsu, China, 3Department of Radiation Oncology, Xuzhou
Central Hospital, Xuzhou, Jiangsu, China
Purpose: To investigate the gut microbiome of lung cancer patients with brain

metastases undergoing radiotherapy, identify key microorganisms associated

with radiotherapy response, and evaluate their potential as biomarkers.

Methods and materials: This study enrolled 55 newly diagnosed lung cancer

patients with brainmetastases. Fecal samples were collected before radiotherapy

and analyzed by 16S rRNA sequencing to assess the gut microbiome’s

composition and function. Patients were categorized into response (n=28) and

non-response (n=27) groups based on treatment efficacy, and a-diversity, b-
diversity, and functional pathways were compared between them. Linear

Discriminant Analysis Effect Size was used to identify microbial features

associated with treatment efficacy. Logistic regression analyses were

performed to evaluate the predictive capacity of clinical and microbial factors

for treatment outcomes.

Results: No significant difference in a-diversity was observed between the

groups (P > 0.05), but b-diversity differed significantly (P = 0.036). Twelve

characteristic microorganisms were identified in the response group, including

g_ Oscillibacter and g_ Blautia, and nine in the non-response group, such as f_

Desulfovibrionaceae and g_ Megamonas. Metabolic pathways associated with

treatment response included ketone body metabolism and pathways related to

amyotrophic lateral sclerosis. Multivariate analysis identified g_Flavonifractor

(odds ratio [OR] = 6.680, P = 0.004), g_Negativibacillus (OR = 3.862, P =

0.014), C-reactive protein (OR = 1.054, P = 0.017), and systemic inflammation

response index (OR = 1.367, P = 0.043) as independent predictors of

radiotherapy response. The nomogram and microbiome models achieved area

under the curve (AUC) values of 0.935 and 0.866, respectively, demonstrating

excellent predictive performance. Decision curve analysis further confirmed

these models provided significant net benefits across risk thresholds.
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Conclusions: The composition and functional characteristics of the gut

microbiome in lung cancer patients with brain metastases prior to radiotherapy

are associated with therapeutic response and possess potential as predictive

biomarkers. Further studies are warranted to validate these findings.
KEYWORDS
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Introduction

Lung cancer (LC) remains the leading cause of cancer-related

mortality worldwide, with approximately 10-36% of patients

developing brain metastases (BM) during the disease course

(Barnholtz-Sloan et al., 2004; Bray et al., 2024). Patients with BM

generally face a poor prognosis, characterized by a median survival

of 4–10 months and a 5-year survival rate below 5% (Cagney et al.,

2017). Radiotherapy (RT) is the primary treatment modality for

brain metastases in lung cancer (LC-BM) patients, effectively

controlling known brain metastatic lesions and eradicating

undetected micrometastases (Weller et al., 2024). However, in

real-world clinical practice, some patients experience significant

tumor reduction and symptom improvement following RT, while

others show limited response or even develop radioresistance and

further tumor progression. Although previous studies have

identified various clinical and biological factors influencing RT

efficacy, including tumor hypoxia, metabolic alterations, immune

microenvironment, host immune responses, and overall health

status (Youssef et al., 2024), these factors are insufficient to fully

explain the heterogeneity in RT outcomes. Many potential factors

remain undiscovered and warrant further investigation.

The gut microbiome is a vital regulator of host health,

maintaining metabolic balance, immune modulation, and barrier

functions, and also directly or indirectly modulating tumor responses

to treatment by influencing drug metabolism, transport, enzymatic

degradation, and immune reactions (Chrysostomou et al., 2023). For

example, in chemotherapy, Gammaproteobacteria degrade

gemcitabine into its inactive form through cytidine deaminase,

thereby diminishing its efficacy (Geller et al., 2017). Fusobacterium

nucleatum mediates resistance to 5-fluorouracil and oxaliplatin in

colorectal cancer by regulating autophagy mechanisms and immune

responses (Yu et al., 2017). In contrast, Bacteroides fragilis and

Bacteroides thetaiotaomicron enhance the sensitivity of pancreatic

cancer to the FOLFIRINOX (a regimen consisting of fluorouracil,

leucovorin, irinotecan, and oxaliplatin) chemotherapy regimen

through similar mechanisms (Tintelnot et al., 2023). In

immunotherapy, Bifidobacterium, Akkermansia muciniphila, and

Lactobacillus rhamnosus GG promote T cell recruitment to tumor

sites by modulating antigen-presenting cell (APC) functions,

particularly dendritic cells (DCs). This modulation is primarily

mediated through the secretion of cytokines such as type I
02
interferon (IFN) and interleukin-12 (IL-12) (Sivan et al., 2015;

Routy et al., 2018; Si et al., 2021). For instance, oral administration

of live Lactobacillus rhamnosusGG induces IFN-b production in DCs
via the cGAS/STING pathway, which enhances CD8+ T cell cross-

priming. Similarly, Akkermansia muciniphila restores PD-1 blockade

efficacy by recruiting CCR9+CXCR3+CD4+ T lymphocytes into the

tumor microenvironment in an IL-12-dependent manner.

Collectively, these microbiota-driven cytokine modulations and

APC activation synergistically enhance the antitumor effects of PD-

1/PD-L1 inhibitors. While substantial evidence exists on the

interactions between the gut microbiome and chemotherapy or

immunotherapy (Li et al., 2024; Li et al., 2024), the influence of the

gut microbiome on radiotherapy efficacy remains exploratory and not

fully understood or confirmed (Lu et al., 2024). Preclinical studies

preliminarily suggest that the gut microbiome can enhance local RT

effects and mediate the abscopal effect (a phenomenon where

localized treatment induces distant tumor regression) of RT by

remodeling the tumor immune microenvironment (Uribe-Herranz

et al., 2020). Additionally, the overgrowth of commensal fungi may

significantly contribute to radioresistance (Shiao et al., 2021). Clinical

studies suggest that gut microbiome composition is closely linked to

RT outcomes in solid tumors and may act as potential biomarkers (Yi

et al., 2021). For instance, a study identified microbial signatures,

including the NK4A136 and UCG-003 groups as well as Eubacterium

hallii, in patients with non-small-cell lung cancer who were treated

with concurrent chemoradiotherapy. These features predicted

whether patients had progression-free survival beyond 11 months,

demonstrating the potential of gut microbiome composition as a

predictive biomarker of cancer RT outcomes (Qiu et al., 2023).

In summary, while radiotherapy is a critical treatment modality

for LC-BM, its efficacy exhibits considerable inter-individual

variability. Given the gut microbiome’s key regulatory role in

various antitumor therapies, we hypothesize that it may influence

the therapeutic outcomes of radiotherapy in LC-BM patients and

hold potential as a biomarker. To validate this hypothesis, we

systematically assessed the gut microbiome’s composition and

functionality in LC-BM patients, comparing those with RT

responses and those without. This study aims to identify

microbial factors that influence RT efficacy and discover

biomarkers that predict patient responses. Additionally, it seeks to

provide scientific evidence for interventions aimed at enhancing RT

outcomes through modulation of the gut microbiome. To provide
frontiersin.org
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readers with a comprehensive overview of our study design,

objectives, and key findings, we have included a schematic

diagram at the end of this section (Figure 1).
Materials and methods

Participant recruitment and selection

This prospective observational study received approval from the

Ethics Committee of the First People’s Hospital of Lianyungang

City (KY-20230505001-01), and all participants gave written

informed consent. Between May 2023 and August 2024, sixty-two

patients with newly diagnosed BM from lung cancer were enrolled,

all of whom received RT for BM. The inclusion criteria included: (1)

an initial LC-BM diagnosis confirmed by histopathology or typical

magnetic resonance imaging (MRI) findings; (2) a minimum of 3
Frontiers in Cellular and Infection Microbiology 03
weeks since the last systemic therapy; (3) capability to provide

complete fecal samples and consent to participate in follow-up

assessments. Participants were excluded if they had received

antibiotics, probiotics, or steroids within four weeks prior to RT;

had a history of gastrointestinal diseases or digestive tract surgery;

or had severe cardiovascular, metabolic, neurological diseases, or

other comorbidities making study participation unsuitable.
Radiotherapy protocol formulation and
clinical data collection

Radiotherapy plans for BM were formulated by the expert team

at our institution’s RT Center, based on patients’ medical histories,

imaging data, and multidisciplinary consultation results, then

implemented using the Varian RT system. All patients received

either whole-brain radiotherapy (WBRT) alone, WBRT combined
FIGURE 1

Study design, workflow, and key findings. The schematic diagram illustrates the recruitment of lung cancer patients with brain metastases, collection
of fecal samples, 16S rRNA gene sequencing, and subsequent bioinformatics workflows alongside partial statistical analysis results. The figure
highlights key microbial and clinical predictors of radiotherapy response, including g_Flavonifractor, g_Negativibacillus, C-RP, and SIRI, as well as
predictive models. Additionally, potential mechanisms by which the gut microbiome may influence radiotherapy response are proposed. CP group,
radiotherapy responders; SP group, radiotherapy non-responders; LEfSe, Linear discriminant analysis effect size; C-RP, c-reactive protein; SIRI,
systemic inflammation response index; ROC, receiver operating characteristic; DCA, decision curve analysis.
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with simultaneous integrated boost (SIB), or fractionated

stereotactic radiotherapy (FSRT), with RT doses following the

NCCN Clinical Practice Guidelines (Nabors et al., 2020).

All clinical and outcome data were collected through medical

record reviews and telephone follow-ups conducted by two

radiation oncologists. These data were subsequently confirmed by

a senior radiation oncology specialist. Before initiating RT, baseline

data were recorded, including age, sex, smoking history,

pathological type, number and distribution of BM, and presence

edema. Complete blood counts were performed to calculate

systemic inflammatory and immune-related indices based on

blood cell ratios, such as platelet-to-lymphocyte ratio (PLR),

neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte

ratio (MLR), systemic immune-inflammation index (SII), and

systemic inflammation response index (SIRI). The calculation

formulas are: PLR = platelet count/lymphocyte count; NLR =

neutrophil count/lymphocyte count; MLR = monocyte count/

lymphocyte count; SII = (neutrophil count × platelet count)/

lymphocyte count; SIRI = (neutrophil count × monocyte count)/

lymphocyte count.

All patients had their brain MRI reviewed two to three months

after radiotherapy and efficacy was assessed using the RANO-BM

criteria (Lin et al., 2015). Patients with complete or partial response

were classified as responsive (CP group), while those with stable or

progressive disease were categorized as non-responsive (SP group).
Collection of fecal samples and 16S rRNA
gene sequencing

Fecal samples were collected from the middle portion of

patients’ stools in sterile plastic containers during the morning

three days prior to the initiation of RT, and stored at -80°C within

one hour. The gut microbiome was analyzed through 16S rRNA

gene sequencing, with all procedures strictly following

relevant guidelines.

Microbial DNA was extracted with the QIAamp DNA Stool

Mini Kit (Qiagen, Hilden, Germany) and amplified via PCR on an

ABI 2720 thermal cycler (Thermo Fisher Scientific, USA). DNA

quantification was performed using a Multiskan™ GO

spectrophotometer (Thermo Fisher Scientific, USA), and the V3-

V4 regions of the 16S rRNA gene were amplified with Illumina

adapter primers: forward (5′-CCTACGGGNGGCWGCAG-3′) and
reverse (5′-GACTACHVGGGTATCTAATCC-3′). PCR products

were purified with Agencourt AMPure XP beads (Beckman Coulter,

USA), amplification was subsequently performed using

TopTaq DNA Polymerase (Transgen, China). DNA purity

and concentration were assessed using a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, USA). Sequencing

was conducted using paired-end (PE 250 bp) technology on the

Illumina HiSeq 2500 platform by Treatgut Biotechnology Co., Ltd.

(San Diego, CA, USA).

Paired-end reads were assembled with FLASH (Magoč and

Salzberg, 2011), and primers and low-quality reads were removed

using Cutadapt (Martin, 2011). Sequences were then clustered into
Frontiers in Cellular and Infection Microbiology 04
OTUs at 97% similarity using Usearch (v10.0.240) (Edgar, 2013).

Representative OTU sequences were classified using the RDP

classifier (Wang et al., 2007) against the SILVA132 database

(Quast et al., 2013), and aggregated at various taxonomic levels.
Bioinformatics analysis of the
gut microbiome

Dilution curve analysis (Supplementary Figure 1A) showed that

the sequencing data had reached a plateau, ensuring sufficient

sequencing depth to capture sample diversity. Additionally,

Good’s Coverage index (Supplementary Material) was calculated

to assess sequencing completeness, confirming that the majority of

the microbial diversity was captured. Alpha diversity analysis

evaluated species richness and evenness within samples using

metrics such as observed OTUs, Chao1, ACE, Shannon, Simpson,

and Pielou’s evenness index. Differences between the CP and SP

groups were analyzed using the Wilcoxon rank-sum test. Beta

diversity was assessed using Bray- Curtis distance-based principal

coordinates analysis (PCoA) to visualize variations in community

structure among groups. Inter-group differences were assessed

using analysis of similarity (ANOSIM) and permutational

multivariate analysis of variance (PERMANOVA) with 999

permutations. Linear discriminant analysis effect size (LEfSe) was

used to identify microbial taxa with significant abundance

differences between the CP and SP groups. A linear discriminant

analysis (LDA) threshold of 2.0 was applied to assess discriminative

ability (Paulson et al., 2013). Microbial functional prediction was

performed was performed using PICRUSt software (Langille et al.,

2013), and potential metabolic pathways and biological functions

were annotated by integrating the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database (Kanehisa et al., 2016) and the Gene

Ontology (GO) database (Ashburner et al., 2000).
Predictive factor selection and
model construction

We applied the least absolute shrinkage and selection operator

(LASSO) regression model for variable selection. Ten-fold cross-

validation was used to determine the optimal regularization

parameter l. Microbial features and clinical variables with non-

zero coefficients were then identified. The chosen variables were

analyzed to univariate logistic regression analysis to determine odds

ratios (OR) and 95% confidence intervals (CI), assessing their

relationship with RT response. Significant variables were included

in a multivariate logistic regression model to control for

confounders and identify independent predictors. We used linear

regression outcomes from multivariate logistic regression analysis

as microbial scores, integrating them with clinical factors to develop

a nomogram model for personalized prediction of patient efficacy.

The model’s predictive performance was evaluated with receiver

operating characteristic (ROC) curves, and its clinical utility was

shown using decision curve analysis (DCA).
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Statistical analysis

Normally distributed continuous variables were expressed as

means with standard deviations (Mean ± SD) and compared using

independent samples t-tests. Skewed continuous variables were

expressed as medians with interquartile ranges (Median [IQR])

and analyzed using the Wilcoxon rank-sum test. Categorical

variables were presented as frequencies and percentages (n, %)

and compared using Chi-squared tests or Chi-squared tests, with or

without Yates’ correction. Analyses were conducted using R

software version 4.3.1. The primary R packages used were:

tableone (v0.13.2) for baseline data statistical analysis, glmnet

(v4.1-8) for LASSO regression, pROC (v1.18.5) for ROC analysis,

rms (v6.4.0) for nomogram analysis, rmda (v1.6) for DCA,

microeco (v1.10.0) for gut microbiome alpha and beta diversity

and LEfSe analysis, and ggplot2 (v3.5.1) for data visualization. P-

values < 0.05 were considered statistically significant. For multiple

hypothesis testing, the Benjamin-Hochberg procedure was applied

to adjust the P-values.
TABLE 1 Clinical baseline characteristics of CP and SP groups.

Characteristics
CP group
(n=28)

SP group
(n=27)

P

Age, y 0.349

Mean ± SD 62.00 (9.65) 64.41 (9.24)

Sex, n (%) 0.281

Male 17 (60.7) 21 (77.8)

Female 11 (39.3) 6 (22.2)

Body mass index (kg/m2) 0.145

Mean ± SD 22.02 (4.39) 23.55 (3.17)

Smoking history, n (%) >0.999

Yes 11 (39.3) 11 (40.7)

NO 17 (60.7) 16 (59.3)

ECOG PS, n (%) 0.895

0-1 15 (53.6) 13 (48.1)

2-4 13 (46.4) 14 (51.9)

Pathology, n (%) 0.075

Adenocarcinoma 17 (60.7) 21 (77.8)

Squamous cell carcinoma 1 (3.6) 3 (11.1)

Small cell carcinoma 10 (35.7) 3 (11.1)

Number of brain metastases,
n (%)

0.162

<4 17 (60.7) 22 (81.5)

≥4 11 (39.3) 5 (18.5)

Frontal lobe metastasis, n (%) 0.700

(Continued)
F
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TABLE 1 Continued

Characteristics
CP group
(n=28)

SP group
(n=27)

P

Yes 18 (64.3) 15 (55.6)

NO 10 (35.7) 12 (44.4)

Parietal lobe metastasis, n (%) 0.869

Yes 12 (42.9) 10 (37.0)

NO 16 (57.1) 17 (63.0)

Temporal lobe metastasis,
n (%)

0.074

Yes 16 (57.1) 8 (29.6)

NO 12 (42.9) 19 (70.4)

Occipital lobe metastasis,
n (%)

>0.999

Yes 16 (57.1) 15 (55.6)

NO 12 (42.9) 12 (44.4)

Cerebellar hemisphere
metastasis, n (%)

>0.999

Yes 12 (42.9) 11 (40.7)

NO 16 (57.1) 16 (59.3)

Edema around metastatic
lesions, n (%)

>0.999

Yes 12 (42.9) 11 (40.7)

NO 16 (57.1) 16 (59.3)

Radiotherapy techniques,
n (%)

0.640

FSRT 10 (35.7) 13 (48.1)

WBRT 12 (42.9) 9 (33.3)

WBRT+SIB 6 (21.4) 5 (18.1)

BED (a/b=10) 0.394

Median (IQR)
48.00

(44.91, 56.00)
52.20

(45.94, 57.25)

White blood cell count
(109/L)

0.106

Median (IQR) 5.47 (4.46, 7.40)
5.92

(5.16, 10.01)

Absolute neutrophil count
(109/L)

0.165

Median (IQR) 4.02 (2.98, 5.39) 4.59 (3.30, 8.30)

Absolute monocyte count
(109/L)

0.141

Mean ± SD 0.44 (0.18) 0.52 (0.18)

Absolute lymphocyte count
(109/L)

0.973

Median (IQR) 1.01 (0.78,1.38) 1.07 (0.72,1.50)

(Continued)
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Results

Clinical baseline characteristics of patients

After applying the inclusion and exclusion criteria, 5 patients

were excluded due to missing efficacy evaluation data, and 2 were

excluded for not completing the RT plan, leaving 55 patients in the

final cohort. Table 1 presents clinical data statistics, showing a mean

patient age of 63.18 years (range: 44.0-84.0). The cohort comprised

of 38 males and 17 females, with 28 patients in the CP group and 27

in the SP group. The CP and SP groups exhibited no significant

differences in age, sex, smoking history, pathological type, number

and distribution of BM, or presence of edema (P> 0.05).C-reactive

protein (C-RP) levels differed significantly between the groups (P=

0.001), with the SP group exhibiting a median of 13.5 mg/L, notably

higher than the CP group’s median of 3.3 mg/L.
Alpha and beta diversity analysis

We assessed the alpha diversity of the gut microbiome in the CP

and SP groups using Observed, Chao1, ACE, Shannon, Simpson,

and Pielou’s evenness indices (Figure 2A). The findings revealed no

significant differences between the groups across these indices (all
Frontiers in Cellular and Infection Microbiology 06
P> 0.05), suggesting comparable richness, evenness, and diversity. A

Venn diagram (Figure 2B) illustrates the common and distinct

OTUs between the two groups. The CP group shared 877 OTUs and

had 212 unique OTUs, whereas the SP group had 121 unique OTUs.

In the beta diversity analysis, ANOSIM revealed a significant

difference in microbial community distribution between the CP

and SP groups (P= 0.0195) (Figure 2C). PCoA using the Bray-Curtis

distance matrix (Figure 2D) supported this finding, with PCoA1

and PCoA2 accounting for 13.8% and 10.3% of the variance,

respectively (PERMANOVA, F=1.49, P= 0.036).
LEfSe analysis and functional annotation

Through LEfSe analysis (Figure 3 for LDA scores,

Supplementary Table 1), we identified a total of 21 microbial taxa

with significant differences between the CP and SP groups. Among

others, twelve characteristic microbes were significantly enriched in

the CP group, including Verrucomicrobiales (P= 0.039) at the order

level, Prevotellaceae UCG-004 (P= 0.013) at the genus level, Blautia

(P= 0.035), Oscillibacter (P= 0.029), Flavonifractor (P= 0.002), and

Negativibacillus (P= 0.040). Conversely, nine characteristic

microbes were significantly enriched in the SP group, including

Desulfovibrionaceae (P= 0.038) at the family level, Prevotellaceae

(P= 0.023), Prevotella_9 at the genus level (P= 0.027), Megamonas

(P= 0.029), and the unclassified order Rhodospirillales (P= 0.035).

KEGG database annotation analysis (Supplementary Figure 2A)

revealed that, relative to the CP group, the SP group was significantly

enriched in metabolic pathways related to transcription-related

proteins, meiosis–yeast, cellular antigens, amyotrophic lateral

sclerosis, and synthesis and degradation of ketone bodies.

Additionally, GO database analysis (Supplementary Figure 2B)

identified 20 different pathways to elucidate potential interaction

patterns. Correlation analysis results (Supplementary Figures 2C, D)

indicated that the Desulfovibrionaceae family was strongly correlated

with multiple metabolic pathways and functional categories.
Construction of efficacy prediction model
based on microbial features

We selected the abundance of 10 microbes as candidate

features. These features were derived from the LEfSe analysis and

include significantly enriched microbial taxa at the family and genus

levels in both the CP and SP groups. In the 10-fold cross-validation

of the LASSO model, the optimal lambda parameter, yielding the

minimum mean squared error (MSE) of 0.0384, resulted in six

features with non-zero coefficients (Figures 4A–C). Univariate

logistic regression analysis revealed that the abundance of five

microbial features was significantly associated with treatment

response, including g_Flavonifractor (OR= 3.667, P= 0.001),

g_Negativibacillus (OR=2.131, P=0.015), f_ Prevotellaceae (OR=

0.486, P= 0.019), f_ Desulfovibrionaceae (OR= 0.471, P= 0.020),

and g_Prevotellaceae_UCG-004 (OR= 2.594, P= 0.039).

Further multivariate logistic regression analysis indicated that
TABLE 1 Continued

Characteristics
CP group
(n=28)

SP group
(n=27)

P

Platelet Count (109/L) 0.743

Mean ± SD 192.64 (58.98) 198.74 (77.15)

C-RP (mg/L) 0.001

Median (IQR) 3.30 (1.56, 7.12)
13.50

(8.36, 35.65)

NLR 0.143

Median (IQR) 4.00 (2.36, 5.46) 5.10 (2.91, 8.28)

MLR 0.136

Median (IQR) 0.38 (0.31, 0.48) 0.47 (0.37, 0.61)

PLR 0.775

Median (IQR)
156.67

(114.01, 267.83)
177.42

(139.07, 254.28)

SII 0.195

Median (IQR)
683.18
(426.88,
1028.34)

788.76
(585.96,
1782.86)

SIRI 0.074

Median (IQR) 1.62 (0.91, 2.64) 2.10 (1.31, 5.14)
CP group, radiotherapy responders; SP group, radiotherapy non-responders; ECOG PS,
Eastern Cooperative Oncology Group performance status; SRT, stereotactic radiation therapy;
WBRT, whole-brain radiotherapy; SIB, simultaneous integrated boost; BED, biologically
effective dose; C-RP, c-reactive protein; NLR, neutrophil to lymphocyte ratio; MLR, monocyte
to lymphocyte ratio; PLR, platelet to lymphocyte ratio; SII, systemic immune inflammation
index; SIRI, systemic inflammation response index.
Bolded values indicate P-values < 0.05.
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FIGURE 2

Alpha and beta diversity analysis. CP group, radiotherapy responders; SP group, radiotherapy non-responders. (A) Multiple indices showed no
significant difference in a-diversity between the CP and SP groups. (B) Venn diagram illustrates the shared and unique OTUs between the two
groups. (C) ANOSIM revealed a significant structural difference in microbial communities between the CP and SP groups (p = 0.0195). (D) PCoA plot
visualized the distribution of microbial community structure, PERMANOVA confirmed significant differences in microbial composition between the
CP and SP group (p = 0.036).
FIGURE 3

LDA scores of differential microbial taxa. LEfSe analysis identified 21 microbial taxa with significant differences between the CP and SP groups, all
with LDA scores greater than 2. Twelve taxa were enriched in the CP group, while nine taxa were enriched in the SP group. CP group, radiotherapy
responders; SP group, radiotherapy non-responders; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis.
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g_Flavonifractor (OR= 6.680, P= 0.004) and g_Negativibacillus

(OR= 3.862, P=0.014) were independent predictors of RT

response, both of which were significantly enriched in the CP

group. The same analytical approach was applied to clinical

factors. The LASSO model selected eight features with non-zero

coefficients from 20 clinical variables, with the optimal lambda

parameter at 0.0548 (Supplementary Figures 3A–C). By combining

univariate and multivariate logistic regression analyses, we

identified C-RP (OR=1.054, P=0.017) and SIRI (OR=1.367,

P=0.043) as independent clinical variables distinguishing the CP

and SP groups. These variables were closely associated with the SP

group’s treatment response. The comprehensive analysis results are

summarized in Table 2.

The ROC curves (Figure 5A) for the microbial model, clinical

model, and combined nomogram model demonstrated superior

predictive performance for both the nomogram and microbial

models, with area under the curve (AUC) values of 0.935 and

0.866, respectively, compared to the clinical model’s AUC of 0.787.

Further DCA (Figure 5B) revealed that, at various risk thresholds,

both the microbial and nomogram models provided net benefits for

patients, whereas the clinical model did not offer net benefits at
Frontiers in Cellular and Infection Microbiology 08
some thresholds. The nomogram model (Figure 5C) illustrates the

relationship between the microbial score and clinical factors in the

combined model. Specifically, the microbial score was calculated as:

-0.07872 + (-1.87004 × g_Flavonifractor) + (-1.49926 ×

g_Negativibacillus). Using this scoring system, a cutoff value of

0.72276 was established to differentiate patients who responded to

RT for BM (Score < 0.72276) from those who did not (Score ≥

0.72276). The mathematical formula for the nomogram model is:

-1.97072 + microbial score × 1.03512 + CRP × 0.07014 + SIRI ×

0.33582. Finally, in Figure 4D, we present pre- and post-treatment

brain MRI images of two representative patients, clearly

demonstrating the clinical applicability and effectiveness of the

nomogram model.
Discussion

Radiotherapeutic responses in LC-BM patients are highly

heterogeneous, and the underlying mechanisms remain unclear.

This study provides a preliminary analysis of the gut microbiome in

RT responders (CP group) and non-responders (SP group). The
FIGURE 4

Construction of the LASSO model (microbial factors) and brain MRI scans of representative clinical cases. (A) Coefficient path plot for the 10
microbial features included. (B) Results of 10-fold cross-validation. (C) Six key microbial features selected by the LASSO model. (D) Upper panel:
Patient 1 had a microbial score of 0.317, CRP of 10.75, and SIRI of 1.363. Using these values into the nomogram model formula, the linear predictor
was -0.4306, which corresponds to a risk probability of 0.394 for no response. Post-treatment MRI showed near-complete resolution of the
irradiated lesion, and the clinical outcome was consistent with the model’s prediction. Lower panel: Patient 2 had a microbial score of 1.339, CRP of
13.5, and SIRI of 5.005. Using the nomogram formula, the linear predictor was 2.0427, corresponding to a risk probability of 0.885 for no response.
Follow-up MRI after radiotherapy indicated disease progression, and the clinical outcome matched the model’s prediction.
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study found no significant differences in microbial richness,

evenness, or diversity between the two groups. However, distinct

differences were observed in microbial community composition.

The CP group was enriched with genera such as Blautia and

Oscillibacter, while the SP group showed significant enrichment of

genera like Megamonas. Metabolic pathways associated with

treatment response included ketone body metabolism and

pathways related to amyotrophic lateral sclerosis. Furthermore, a

predictive model incorporating gut microbial features

(g_Flavonifractor and g_Negativibacillus) and clinical variables

(C-RP and SIRI) demonstrated high predictive accuracy (AUC =

0.935). These findings suggest that the model could potentially serve

as a valuable tool for the early clinical identification of patients who

are likely to exhibit poor responses to RT.

As previously mentioned, the microbiome residing in the host’s

intestinal epithelium is essential for modulating the efficacy of

antitumor therapies. The gut microbiota significantly influences

the outcomes of chemotherapy, immunotherapy, and RT by

regulating the host immune system and producing metabolic

byproducts. In murine models treated with cyclophosphamide, a

chemotherapeutic agent, the ability to suppress tumor growth is

markedly reduced in germ-free or antibiotic-treated mice due to the

absence of key subsets of helper T lymphocytes (Th1 and Th17)

(Viaud et al., 2013). Supplementation with Enterococcus hirae and

Barnesiella intestinihominis induces the generation of Th1, Th17,

and tumor-specific CD4+ and CD8+ T cells, thereby restoring the

antitumor effects of cyclophosphamide (Daillère et al., 2016). In the

realm of immunotherapy, Vétizou et al. (2015) demonstrated that

oral administration of Mycobacterium fragilis in combination with

Bacteroides thetaiotaomicron or Burkholderia cepacia activates Th1
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responses in lymph nodes. This promotes the maturation of

dendritic cells within tumors, thereby enhancing the antitumor

efficacy of CTLA-4 blockade. Radiotherapy exerts its effects by

locally destroying the DNA molecules of cancer cells through high-

energy radiation, which leads to impaired cell division and

proliferation, and ultimately inducing cell death. Research on the

influence of the gut microbiota on RT is relatively limited and can

be categorized into effects on the digestive and non-digestive

systems. In the digestive system, Dong et al. (2024) reported that

butyrate derived from Roseburia intestinalis enhances the sensitivity

of colorectal cancer to RT by activating the OR51E1/RALB axis and

promoting autophagy. However, the specific mechanisms by which

the gut microbiota regulates the efficacy of RT in non-digestive

systems remain largely unknown, with existing studies providing

only preliminary insights. Uribe-Herranz et al. (2020)

demonstrated that Gram-positive gut bacteria can modulate

antigen presentation by dendritic cells, thereby enhancing the

local and distal effects of RT in cervical and lung cancers. Shiao

et al. (2021) found that interactions between symbiotic bacteria and

fungal communities within the gut microbiota jointly shape the

tumor microenvironment in breast cancer. In murine models,

depletion of gut symbiotic bacteria leads to fungal overgrowth,

suppressing immune responses by modulating macrophage and T

cell functions, thereby reducing the efficacy of RT.

Although direct evidence linking the gut microbiota to the RT

of LC-BM is currently lacking, the microbiota-gut-brain axis

(MGBA) may help explain our observed results (Mehrian-Shai

et al., 2019). The MGBA is established through the circulatory,

immune, and nervous systems, mediating bidirectional

communication between the gut microbiome and the brain (Loh
TABLE 2 Results of LASSO, univariate, and multivariate analyses of potential variables associated with radiotherapy response in lung cancer patients
with brain metastases.

Variable LASSO coefficient
Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P

g_ Flavonifractor 1.08851545 3.667 (1.657-8.119) 0.001 6.680 (3.320-13.528) 0.004

g_ Negativibacillus 0.7302148 2.131 (1.156-3.925) 0.015 3.862 (1.950-7.658) 0.014

f_ Prevotellaceae -0.2282743 0.486 (0.265-0.89) 0.019 0.723 (0.295-1.763) 0.529

f_ Desulfovibrionaceae -0.51178488 0.471 (0.250-0.89) 0.020 0.352 (0.126-0.976) 0.115

g_ Prevotellaceae_UCG-004 0.53343886 2.594 (1.051-6.399) 0.039 3.347 (1.459-7.695) 0.081

g_ un_ o_ Rhodospirillales -0.32158835 0.533 (0.277-1.024) 0.059

Pathology (Small cell carcinoma) 9.65E-01 2.429 (0.231-25.511) 0.460

Sex (Female) -6.96E-02 0.442 (0.135-1.441) 0.175

Absolute monocyte count -1.26E+00 0.1 (0.005-2.193) 0.144

CRP -2.73E-02 0.95 (0.91-0.992) 0.021 1.054 (1.009-1.100) 0.017

SIRI -4.99E-02 0.761 (0.58-0.999) 0.049 1.367 (1.009, 1.854) 0.043

PLR 8.19E-05 1 (0.995-1.006) 0.863

NLR -2.67E-02 0.847 (0.712-1.008) 0.062

Number of brain metastases (≥4) 8.25E-01 2.847 (0.83-9.761) 0.096
CI, confidence; OR, odds ratio; CRP, c-reactive protein; SIRI, systemic inflammation response index; PLR, platelet to lymphocyte ratio; NLR, neutrophil to lymphocyte ratio.
Bolded values indicate P-values < 0.05.
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et al., 2024). Short-chain fatty acids (SCFAs), primarily including

acetate, butyrate, and propionate, are the main metabolic products

generated by the fermentation of dietary fibers and resistant

starches by gut microbiota in anaerobic environments (Zhang

et al., 2023). SCFAs not only alleviate tissue inflammation and

maintain gut barrier function but also traverse the blood-brain

barrier via the MGBA, where they regulate the maturation and

function of resident immune cells in the brain (Mann et al., 2024).

For instance, oral supplementation of SCFAs can increase the

number of M1-type microglia in the tumor microenvironment by

activating glycolysis pathways (Zhou et al., 2024). Liu et al. (2024)

found that polarized M1-type microglia synergize with RT to

enhance the radiosensitivity of non-small cell lung cancer brain

metastases. In our study, the CP group was uniquely enriched with

bacterial families Ruminococcaceae and Lachnospiraceae, including
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genera such as Oscillibacter and Blautia, which have been identified

as major producers of SCFAs (Holmberg et al., 2024; Zhao et al.,

2024). In contrast, the SP group was uniquely enriched with the

family Desulfovibrionaceae and the genus Megamonas, both of

which have been reported to be associated with chronic intestinal

inflammation (Balmant et al., 2023). For example, bacteria of the

order Desulfovibrionales possess sulfate-reducing genes that

convert sulfate to H2S, disrupting the intestinal barrier and

producing endotoxins and inflammatory cytokines like IL-6 (Hu

et al., 2022). With the formation of intestinal wall inflammation and

increased permeability, cytokines such as IL-6 can enter the brain

via the MGBA, inducing neuroinflammation and neuronal death

(Kustrimovic et al., 2024). Studies have shown that cytokines like

IL-6 are associated with radioresistance, potentially leading to

reduced therapeutic efficacy in patients (Zhao et al., 2021).
FIGURE 5

Evaluation of predictive model performance. (A) Presents the ROC curves for the microbial model, clinical model, and combined nomogram model,
indicating their respective AUC values. (B) Provides a DCA comparing the net benefits of the microbial model, clinical model, and combined
nomogram model across various risk thresholds. (C) Depicts the nomogram integrating microbial scores and clinical factors, illustrating their
combined effect on risk prediction.
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Furthermore, metabolic pathway analysis of the SP group (e.g.,

pathways related to amyotrophic lateral sclerosis) also suggests a

high-inflammatory state within the brain of these patients (Zhang

et al., 2021b). For example, TDP-43 (TAR DNA-binding protein

43) facilitates the release of mitochondrial DNA through the

mitochondrial permeability transition pore, which activates the

cGAS-STING signaling pathway and subsequently promotes the

release of pro-inflammatory cytokines, such as IFN-b, IL-6, TNF,
and IL-1b (Yu et al., 2020). This mechanism may play a critical role

in radiotherapy resistance. Additionally, PPAR (peroxisome

proliferator-activated receptor) activation, through the regulation

of antioxidant, pro-proliferative, and anti-apoptotic pathways, may

also contribute to the development of radiotherapy resistance

(Zhang et al., 2024). Meanwhile, SOD1 (superoxide dismutase 1)’s

role in inhibiting ROS (reactive oxygen species) accumulation,

maintaining cellular antioxidant capacity, and regulating cell cycle

responses may enhance cellular resistance to radiation (Gao et al.,

2008). We believe these amyotrophic lateral sclerosis-related

pathways offer new perspectives for studying radiotherapy

resistance and merit further exploration. In the clinical data of SP

group patients, inflammatory markers such as C-RP were

significantly higher than those in the CP group, seemingly adding

further evidence. In summary, we speculate that the better

radiotherapeutic response in CP group patients may be linked to

SCFA-producing microbiota enhancing RT’s antitumor effects by

regulating microglia. In contrast, poorer efficacy in SP group

patients may result from gut microbiota-induced intestinal

inflammation, which allows inflammatory cytokines like IL-6 to

enter the brain.

This study also identified the gut microbiota as potential

biomarkers for predicting the radiotherapeutic response in LC-

BM. By constructing predictive models based on microbial features

and clinical variables, we found that the nomogram model and

microbiota model achieved AUC of 0.935 and 0.866, respectively,

outperforming the traditional clinical model (AUC = 0.787). DCA

further validated that both models provided significant net benefits

to patients across different risk thresholds, whereas the clinical

model did not. Additionally, we discovered that inflammatory and

immune-related indicators, C-RP and systemic SIRI, may serve as

potential factors for predicting RT response, offering new references

for the optimization of clinical treatment plans. Although previous

studies have explored the predictive roles of inflammatory and

immune-related indicators such as SII (Zhang et al., 2021a), PNI

(Li et al., 2021), and PLR (Li et al., 2020) in RT for LC-BM, C-RP

and SIRI demonstrated unique predictive potential in our study.

Indeed, there are several limitations in our study. The study’s

small sample size and single-center design have been influenced by

regional, ethnic, and dietary influences. Future studies should

validate the generalizability of these findings through multi-

center, large-scale cohort studies. Secondly, the study’s reliance

solely on 16S rRNA gene sequencing, without incorporating

metagenomics, metabolomics, or other multi-omics data, restricts

a comprehensive understanding of the gut microbiota’s role in RT
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response mechanisms. The study’s cross-sectional design failed

to capture dynamic changes in gut microbiota during RT.

Longitudinal studies will elucidate the temporal relationship

between microbiota changes and therapeutic outcomes. Finally,

although we identified differential microbiota associated with RT

response, we did not validate their causal relationships or specific

mechanisms using animal models. In conclusion, this study offers a

novel perspective on the gut microbiota’s role in the variability of

RT response, despite its limitations.
Conclusion

This study is the first to explore the variability in RT effectiveness

among LC-BM patients by examining gut microbiota. Prior to RT,

the composition and functionality of the gut microbiota were

associated with treatment outcomes, highlighting its potential as a

predictive biomarker for therapeutic efficacy. We suggest that the gut

microbiota could affect RT effectiveness by modulating the brain’s

immune microenvironment via the MGBA. Additionally, we

identified C-RP and SIRI, two inflammatory immune-related

indices, as potential predictors of RT response, a finding not

previously reported. Our findings provide new insights into RT

efficacy in LC-BM patients and pave the way for the clinical

implementation of personalized treatment strategies.
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