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Gastric cancer, a prevalent malignancy globally, is influenced by various factors.

The imbalance in the gut microbiome and the existence of particular

intratumoural microbiota could have a strong connection with the onset and

progression of gastric cancer. High-throughput sequencing technology and

bioinformatics analysis have revealed a close correlation between abnormal

abundance of specific microbial communities and the risk of gastric cancer.

These microbial communities contribute to gastric cancer progression through

mechanisms including increasing cellular genomic damage, inhibiting DNA

repair, activating abnormal signaling pathways, exacerbating tumor hypoxia,

and shaping a tumor immune-suppressive microenvironment. This significantly

impacts the efficacy of gastric cancer treatments, including chemotherapy and

immunotherapy. Probiotic, prebiotic, antibiotic, carrier-based, dietary

interventions, fecal microbiota transplantation, and traditional Chinese

medicine show potential applications in gastric cancer treatment. However,

the molecular mechanisms regarding dysbiosis of microbiota, including gut

microbiota, and intra-tumoral microbiota during the progression of gastric

cancer, as well as the therapeutic efficacy of microbiota-related applications,

still require extensive exploration through experiments.
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GRAPHICAL ABSTRACT

This article presented the role of microbiota in gastric cancer from multiple aspects, including from molecular mechanisms to therapeutic interventions,
in order to provide some suggestions for future research on tumor mechanism and clinical treatment.
1 Introduction

The association between microorganisms and tumor genesis can

be traced back to the 13th century (Pack, 1967). In the late 19th

century, William Coley pioneered the use of a vaccine named

“Coley’s toxins,” composed of two killed bacteria, Streptococcus

pyogenes and Serratia marcescens, to treat various malignant

tumors, resulting in promising therapeutic outcomes (Starnes,

1992). In the mid to late 20th century, some oncogenic viruses

such as human herpesvirus 4 (HHV-4) and hepatitis B virus

(HBV) were discovered (Epstein et al., 1964; Dane et al., 1970).

Subsequently, the connection between microbiomics and tumor

occurrence and development has aroused widespread interest

among scholars. In particular, the advent of the first-generation

sequencing method, the chain-termination approach, opened the

door to deciphering the genetic code of life (Sanger et al., 1977). With

advancements in sequencing technologies, such as next-generation
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sequencing, also known as high-throughput sequencing, and single-

molecule, long-read sequencing, direct sequencing is possible. This

has addressed issues of information loss and base mispairing,

allowing us to better understand the structural composition of

microbial communities (Radelof et al., 1998; Eid et al., 2009;

Metzker, 2010). The microbial community, as an emerging field of

research, has been found to exist in various types of tumors, including

breast cancer, lung cancer, ovarian cancer, pancreatic cancer, and

melanoma (Nejman et al., 2020). However, research on the microbial

community in gastric cancer (GC) has only received widespread

attention in the past decade. Dysbiosis of the microbial community

may participate in the occurrence and development of GC through

pathways such as activating inflammatory responses, influencing host

immune systems, and interfering with cell signaling. Moreover, the

structure of the microbial community is closely related to the efficacy

of treatments such as chemotherapy and radiotherapy, as certain

microbes may affect drug metabolism, absorption, and resistance.
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Therefore, some studies are attempting to target the microbial

community for GC treatment, aiming to improve the tumor

microenvironment (TME), enhance immune suppression, and

increase drug efficacy by modulating the microbial community.

Overall, research on the microbial community in GC is in a stage

of vigorous development, requiring further in-depth studies and

clinical validation, which are crucial for elucidating the

pathogenesis of GC, identifying new therapeutic targets, and

formulating personalized treatment strategies.
Frontiers in Cellular and Infection Microbiology 03
2 GC and alterations in the microbiota
structure

GC is closely associated with alterations in the microbial

community structure. Current research focuses on dysbiosis in

the oral, gastric, and colonic microbiota (Table 1). These studies

suggest that changes in the microbial community may play a

significant role in the occurrence and development of GC,

offering new insights into its prevention and treatment.
TABLE 1 Studies of microbiota related to GC.

Specimen
Sample size
(tumor vs

non-tumor)

Sequencing
methods

Elevated
microbiota

Decreased microbiota Ref

Gastric mucosa 54, 81
16S rRNA
gene sequencing

Actinobacteria, Bacillota Bacteroidota, Fusobacteria spp. (Federici et al., 2022)

Gastric juice 50, 45
16S rRNA
gene sequencing

Neisseria sicca, Prevotella
melaninogenica, Veillonella
parvula, Prevotella jejuni,
Veillonella atypica

– (Wang et al., 2022)

Gastric cancer and
adjacent noncancerous
tissues

45, 45
Internal transcribed
spacer rDNA
gene analysis

Candida, Alternaria
Fusicolla acetilerea,

Saitozyma, Thermomyces (Zhong et al., 2021)

Gastric cancer and
gastric mucosal tissue

53, 30
16S rRNA
gene sequencing

Prevotella spp.,
Oceanobacter,
Methylobacterium,
Syntrophomonas,
Acinetobacter, Deiftia

Helicobacter, norank
furibaculaceae, Escherichia-
Shigella, Bifdobacterium

(Peng et al., 2022)

Saliva 99, 194
16S rRNA
gene sequencing

Corynebacterium,
Streptococcus spp.

Bulleidia,Fusobacterium,
Peptostreptococcus,
Lachnoanaerobaculum,
Haemophilus, Neisseria spp.,
Parvimonas, Porphyromonas,
Prevotella spp.

(Huang et al., 2021)

Tongue coating 57, 80
16S rRNA
gene sequencing

Bacillota Bacteroidota (Wu et al., 2018)

Mouthwash 165, 323
Shotgun
metagenomic
sequencing

Betaproteobacteria,
Neisseriales, Neisseriaceae,
Neisseria mucocosa,
Prevotella pleuritidis

Mycoplasma orale, Tenericutes,
Eubacterium yurii, Cutibacterium

(Yang et al., 2022b)

Saliva 10, 118
16S rRNA
gene sequencing

Neisseria spp.,
Porphyromonas gingivalis

– (Kageyama et al., 2019)

Tongue coating 11, 27 16S rDNA sequencing

Neisseria spp., Prevotella
spp.,
Veillonella,
Porphyromonas,
Leptotrichia

Sphingomonas, Rudaea,
Phyllobacterium, Helicobacter,
Bradyrhizobium, Arthrobacter

(Wu et al., 2021)

Saliva and
tongue coating

26, 18 2b-RAD sequencing Malassezia globosa Saccharomyces cerevisiae (He et al., 2023)

Fecal samples 49, 49
16S rRNA
gene sequencing

Lactobacillus,
Fusobacterium,
Streptococcus spp.

Lachnospiraceae, Clostridia,
Roseburia, Blautia, Actinobacteria

(Yu et al., 2021)

Fecal samples 50, 56
Shotgun
metagenomics
sequencing

Streptococcus spp.,
Prevotella spp.,
Veillonella, Lactobacillus

–
(Erawijantari
et al., 2020)
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2.1 Intratumoural microbiota

The gastric microbiota plays a crucial role in maintaining

endocrine balance, immune modulation, and promoting digestion

and absorption. Significant alterations in the microbial composition

and abundance occur in GC tumor tissues, leading to a state of

microbial dysbiosis. This imbalance is widely considered to be a

result of decreased microbial diversity and increased pathogenic

microorganisms, among which Helicobacter pylori (H. pylori)

infection is closely related. H. pylori is widely recognized as one

of the most dangerous infection factors associated with GC, with a

global infection rate exceeding 50%, and 1% to 3% of H. pylori-

infected individuals developing GC (Noto et al., 2019; Xiao and Ma,

2022). H. pylori infection can result in the enrichment of other

bacterial phyla, such as Proteobacteria, Bacillota, and Bacteroidota

(Gao et al., 2018). On one hand, H. pylori has been demonstrated to

activate NF-kB and induce the production of b-defensin in gastric

epithelial cells through the cytotoxin-associated gene A protein

(CagA), potentially influencing the microbiota composition

(Hamanaka et al., 2001; Wada et al., 2001; Brandt et al., 2005).

On the other hand, H. pylori directly inhibits acid secretion in

epithelial cells through T4SS, CagA, and NF-kB-dependent
mechanisms, leading to an increase in gastric pH. This less acidic

environment promotes microbial diversification in the ecological

niche, potentially enhancing diversity and reshaping the

community structure of the gastric microbiota (Göõz et al., 2000;

Saha et al., 2008; Smolka and Backert, 2012). Additionally, studies

by Noto et al. have found that changes in the gastric microbiota are

dependent on CagA and are not related to inflammatory responses,

suggesting that CagA itself directly influences the microbial

community structure (Noto et al., 2019). Moreover, in Drosophila

intestinal stem cells, the expression of CagA fosters excessive cell

proliferation and triggers the expression of innate immune

components, such as Diptericin and Duox, which have the

potential to modify the host microbiota (Jones et al., 2017). H.

pylori also expresses the duodenal ulcer-promoting gene A (DupA),

closely linked to peptic ulcer disease but exerting minimal impact

on the microbiota, thereby preserving the relative abundance of the

gastric microbial community. However, DupA(-) H. pylori is

abundant in precancerous lesions (Chen et al., 2023a). Other

studies suggest that although microbial diversity decreases in GC

tissue, this result appears unrelated to H. pylori. In GC tissue, the

abundance of H. pylori decreases, while other bacterial genera, such

as Citrobacter, Achromobacter, Clostridium, Prevotella spp.,

Rhodococcus, Propionibacterium acnes (P. acnes), Clostridium,

Slackia exigua, Fusobacterium, Parvimonas micra, Streptococcus

spp., and Dialister pneumosintes, increase in TME, with most of

these genera representing intestinal symbionts (Coker et al., 2018;

Ferreira et al., 2018; Hsieh et al., 2018; Liu et al., 2019; Dai et al.,

2021; Png et al., 2022; Zhou et al., 2022). Moreover, in patients with

favorable prognosis, the presence of H. pylori in TME is

significantly increased (Yang et al., 2023b). Another study

indicates that H. pylori infection may diminish the efficacy of

immune checkpoint inhibitor therapy, resulting in markedly

shorter median progression-free survival (PFS) and overall
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survival (OS) among H. pylori-positive patients. Consequently,

long-term dynamic monitoring becomes essential for individuals

with H. pylori infection (Magahis et al., 2023). Certain bacterial

genera such as Bacteroidota and Fusobacteria spp., Prevotella spp.,

show variable abundance in tumor tissue (Ferreira et al., 2018; Liu

et al., 2019). Fusobacteria spp. and Prevotella spp. are significantly

associated with poorer overall survival in GC patients (Lehr et al.,

2023). Interestingly, Lactobacillus species (spp.), a probiotic, are

significantly enriched in GC tissue, especially in the absence of H.

pylori (Ferreira et al., 2018; Hsieh et al., 2018; Gantuya et al., 2020;

Dai et al., 2021). This may be related to the elevated expression of

IL-1b, mucin 4, and mucin 13 in gastric mucosa (Ferreira et al.,

2018; Breugelmans et al., 2022; Kim et al., 2022). However, the exact

role of probiotics in the TME of GC tissue warrants

further investigation.

In GC patients with concomitant bile reflux, the gastric

microbiota is significantly altered. These patients exhibit an

enrichment of bacterial genera such as Comamonas, Pseudomonas,

Halomonas , Arthrobacter , Bradymonas, Shewanella, and

Marinobacter (Huang et al., 2022). This phenomenon is likely

attributed to the presence of bile acids (BAs), which include free

and conjugated forms. The presence of BAs in gastric fluid, such as

deoxycholic acid (DCA), reduces microbial diversity and leads to

significant enrichment of Limosilactobacillus, Burkholderia-

Caballeronia-Paraburkholderia, and Rikenellaceae RC9 (Xu et al.,

2023b). Conjugated BAs elevate gastric pH, promoting the

proliferation of bacteria producing lipopolysaccharide (LPS) in the

stomach. As a result, the relative abundance of bacteria such as

Neisseria sicca, Veillonella parvula, Veillonella atypica, Prevotella

melaninogenica, and Parvimonas pallens significantly increases in

gastric fluid (Wang et al., 2022). This has a profound impact on

patients who have undergone gastrointestinal reconstruction surgery.

Some bacterial genera previously unreported in the gastric

microbiota have been identified, such as Keratinibaculum

spp., an anaerobic thermophilic bacterium isolated from soil

(Mannion et al., 2023).

In GC tissues, fungal dysbiosis is observed, with Candida albicans

serving as a biomarker for GC. The abundance of Candida albicans

significantly increases in GC, reshaping the microbial composition.

This is characterized by an elevated presence of filamentous fungi

such as Fusicolla acetilerea, Fusicolla aquaeductuum, and Arcopilus

aureus, while Candida glabrata, Saitozyma podzolica, Penicillium

arenicola, and Aspergillus montevidensis exhibit markedly reduced

abundance (Zhong et al., 2021). These alterations in microbial

composition, predominantly featuring certain pathogenic bacteria,

impact the prognosis of GC. For example, the heightened presence of

Methylobacterium in GC tissues is significantly linked to an

unfavorable prognosis in GC patients (Peng et al., 2022). A

correlation analysis of the gastric mucosal microbiome in 170 GC

tumor tissues and matched non-tumor tissues with immune-

activated related transcripts revealed that Akkermansia muciniphila

may play a role in modulating the expression of Granzyme B in the

gastric cancer mucosal microenvironment. However, this requires

further exploration (Lu et al., 2024). In addition, the GC microbiome

was classified into three distinct subtypes (MS1, MS2, andMS3): MS1
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exhibited high immune activity and enrichment of microbiota

associated with immunotherapy and butyrate production,

suggesting a potential sensitivity to immunotherapy; MS2 showed

the highest a-diversity and activation of the TFF signaling pathway;

MS3 was characterized by epithelial-mesenchymal transition (EMT),

associated with poor prognosis and reduced responsiveness to

chemotherapy. These findings provide novel insights into the

relationship between GC microbiome characteristics, prognosis,

and treatment efficacy, contributing to the development of

personalized therapeutic strategies (Wang et al., 2024).
2.2 Oral microbiota

The functions of oral microbiota in oral health include

maintaining the health of oral mucosa, participating in food

digestion, regulating oral pH balance, and resisting invasion by

external pathogenic microorganisms. When the oral microbial

community becomes imbalanced, it not only leads to the occurrence

of oral diseases but also correlates with the risk of GC. In fact,

abundant oral bacteria, such as Peptostreptococcus, Streptococcus spp.,

Fusobacterium, and Campylobacter concisus, can be detected in GC

samples and may serve as potential non-invasive biomarkers (Chen

et al., 2019; Cui et al., 2019; Feng et al., 2023). Oral-associatedmicrobial

communities, including Veillonella parvula and Streptococcus oralis,

are enriched in gastric cancer tissues and are associated with overall

survival (Lei et al., 2024). The changes in microbial composition are

characterized by the accumulation of pro-inflammatory bacteria such

as Corynebacterium and Streptococcus spp., and a reduction in bacteria

metabolizing carcinogenic substances like Haemophilus and Neisseria

spp (Wu et al., 2018; Huang et al., 2021). However, in other studies,

Neisseria spp. and Prevotella spp. are significantly enriched, while

Mycoplasma and Eubacterium are reduced (Kageyama et al., 2019;

Yang et al., 2022b). The ectopic colonization of oral microbiota may

drive dysbiosis in the microbial ecology of GC tissue infected with H.

pylori (Wu et al., 2021). Furthermore, fungal dysbiosis has been

observed in the oral microbiome. For instance, samples of saliva and

tongue coating collected from GC patients are enriched with

Malassezia globosa, while Saccharomyces cerevisiae is reduced (He

et al., 2023). Tongue coating displays varying colors and thicknesses,

each harboring distinct microbial communities. Bacteria such as

Capnocytophaga leadbetteri, fungus Ampelomyces_sp_IRAN_1 could

potentially serve as biomarkers for the white thin coating, while

Megasphaera micronuciformis, Prevotella maculosa, Acinetobacter

ursingii, and Selenomonas sputigena ATCC 35185 may serve as

biomarkers for the white thick coating (Xu et al., 2019). This

provides a novel approach to tongue coating diagnosis.
2.3 Fecal microbiota

The occurrence of GC is intricately linked to the composition and

dynamics of the gut microbiota. Under normal circumstances, the gut

microbiota plays a critical role in maintaining intestinal homeostasis

and overall host health. It contributes to various physiological
Frontiers in Cellular and Infection Microbiology 05
processes, including nutrient metabolism, immune system regulation,

and protection against pathogenic invaders. However, when the gut

microbiota is imbalanced, it may trigger chronic inflammation, affect

the host’s immune system, and thereby increase the risk of GC. For

example, fecal Streptococcus spp. alterations are closely linked to GC

incidence and liver metastasis, suggesting their potential as biomarkers

for GC prediction. These findings offer valuable insights into early

diagnosis and treatment strategies for GC (Yu et al., 2021; Chen et al.,

2022a). In animal models, the abundance of the phyla Actinobacteria

and Bacillota is highest in the GC group (Yu et al., 2020). The intestinal

microbiota composition of invasive GC patients infected withH. pylori

has changed, characterized by a significant reduction in protective

bacterial genera such as Lactobacillus (Devi et al., 2021). Additionally,

post GC surgery patients exhibit higher species diversity and richness

in their intestinal microbiota, along with increased abundance of

aerobic, facultative anaerobic bacteria, and oral microbiota, indicating

an association with postoperative complications such as the occurrence

of metachronous colorectal cancer after gastric resection (Erawijantari

et al., 2020). Certain intestinal microbial communities can differentiate

between surgical and non-surgical GC patients, including Enterococcus,

Corynebacterium, Megasphaera, Roseburia, and Lachnospira. GC

patients with lymph node metastasis show no significant differences

compared to those receiving chemotherapy. Furthermore, the

abundance of Blautia, Oscillospira, and Ruminococcus is associated

with Ki67 expression, while the abundance of Prevotella spp.,

Lachnospira, Eubacterium, and Desulfovibrio correlates with

HER2 expression (Chen et al., 2022a). The dysbiosis of microbial

communities in GC patients involves the enrichment or reduction of

multiple microbial taxa, and the identification of representative

microbes remains challenging. In an in vivo GC model, the

colonization of Enterotoxin Bacteroides fragilis in the

mouse intestines significantly accelerated chemotherapy-induced

muscle and adipose tissue depletion, and promoted the development

of GC cachexia by disrupting cell junctions and attracting

M1 macrophages, thereby damaging the intestinal mucosal barrier

(Wu et al., 2024a).
3 The pro-carcinogenic mechanisms
of microbiota in GC

The dysregulation of the microbial community contributes to

the complex mechanisms underlying the initiation and progression

of GC. Current research indicate that dysbiotic microbiota can drive

tumorigenesis and progression by enhancing host genomic damage,

impeding cellular DNA repair, activating aberrant cellular signaling

pathways, influencing tumor cell metabolism, and reshaping the

tumor immune microenvironment.
3.1 Microbiota dysbiosis and gastric
epithelial cell genomic damage

In its quest for long-term residence in the host stomach, H.

pylori employs a diverse array of outer membrane adhesins to
frontiersin.org
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optimize its binding to the gastric mucosa. These adhesins facilitate

a strong and persistent interaction with the host epithelial cells,

promoting the bacterium’s survival and persistence in the gastric

environment (Figure 1). H. pylori attaches to gastric epithelial cells

using adhesins like HopQ and carcinoembryonic antigen-related

cell adhesion molecules (Odenbreit et al., 2000; Javaheri et al., 2016;

Hamway et al., 2020). Key adhesins inH. pylori, such as AlpA/B and

BabA/B, are glycosylated, enhancing their binding ability. Loss of

glycosylation severely impairs adhesin resistance to proteases,

stability, and binding capacity (Teng et al., 2022). Upon binding

to host epithelial cells, the cag pathogenicity island encodes a

bacterial type IV secretion system (T4SS) that delivers a potent

virulence protein, CagA, directly into epithelial cells. This event

affects multiple pathways in host cells, stimulating epithelial cell

proliferation and contributing to gastric carcinogenesis (Odenbreit

et al., 2000; Ohnishi et al., 2008; Javaheri et al., 2016; Noto et al.,

2019; Hamway et al., 2020). Mechanistically, CagA leads to aberrant

b-catenin activation, promoting GC cell proliferation (Franco et al.,

2005). Treatment of H. pylori-infected mice with the b-catenin
inhibitor (KYA1797A) could significantly alleviate gastric epithelial

DNA damage (Li et al., 2023). Escherichia coli (E. coli) and

Fusobacterium nucleatum (F. nucleatum) possess a unique

bacterial adhesin/invasin called FadA, which presents in two

distinct states: pre-FadA and mature FadA (mFadA). Initially,

pre-FadA is embedded within the inner membrane and remains

soluble under neutral pH conditions. Upon maturation, mFadA

becomes insoluble and is subsequently secreted outside the

bacterium. When fluorescently labeled mFadA is introduced to

epithelial cells alone, no binding is detected. However, when

combined with unlabeled pre-FadA, binding and invasion of

epithelial cells by mFadA occur. The Pre-FadA-mFadA complex
Frontiers in Cellular and Infection Microbiology 06
could anchor within the inner membrane and extend through the

outer membrane, facilitating bacterial invasion of host cells (Xu

et al., 2007). Once internalized by host cells, E. coli secretes the

genotoxin colibactin, leading to crosslinking between induced DNA

strand and double-strand DNA breaks (Cullin et al., 2021). F.

nucleatum utilizes lectin-like adhesins and a “zipping” mechanism

to adhere to and invade human gingival epithelial cells (Han et al.,

2000), or interacts with the Gal-GalNAc carbohydrate moiety

on cell surfaces through its Fap2 galactose-binding lectin,

specifically colonizing colorectal cancer and breast cancer (Abed

et al., 2016; Parhi et al., 2020). This interaction may induce EMT, a

critical process associated with cancer cell invasion, metastasis,

stemness, and therapeutic resistance (Zhang et al., 2020). F.

nucleatum can generate significant quantities of hydrogen sulfide

(H2S) from L-cysteine via the enzymatic activity of L-cysteine

desulfhydrase, leading to increased DNA damage (Fukamachi

et al., 2002; Basudhar et al., 2016). Evidence suggests that the

production of H2S contributes to DNA damage, partly through

the generation of reactive oxygen species (ROS) (Attene-Ramos

et al., 2010). The invasion of oral epithelial cells by Prevotella

intermedia requires type C fimbriae, which are highly

enriched in GC tissue (Dorn et al., 1998). Further research is

needed to determine if Prevotella intermedia invades GC cells in

the same manner and to elucidate the specific molecular

mechanisms involved.

Pathogenic bacteria can also generate carcinogens through the

metabolism of dietary components. Chronic H. pylori infection

reduces gastric acid secretion, potentially fostering the growth of

diverse gastric bacterial communities. The alteration in the

microbiota could enhance aggression towards the gastric mucosa,

potentially culminating in malignant tumor formation. The
FIGURE 1

Microbial adhesion and invasion of gastric epithelial cells. H. pylori can bind to gastric epithelial cells via adhesin HopQ, glycan-modified proteins
AlpA/B and BabA/B. H. pylori directly injects a potent virulence protein CagA into epithelial cells via the T4SS. F. nucleatum adheres to gastric
epithelial cells through the pre-FadA-mFadA complex and Fap2 galactose-binding lectin, ensuring bacterial invasion of host cells. F. nucleatum
produces high levels of H2S, increasing DNA damage. Once internalized by host cells, E. coli secretes genotoxin colibactin, inducing DNA double-
strand breaks.
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microbiota sustains inflammation and converts nitrate to N-nitroso

compounds, thereby promoting malignancy. The functional

composition of the overall GC microbiota demonstrates an

augmented presence of enzymes such as nitrate reductase, which

catalyzes the reduction of nitrate to nitrite, and nitrite reductase,

facilitating the conversion of nitrite to nitric oxide (Ferreira et al.,

2018). This increased enzymatic activity suggests a potential

mechanism through which the microbiota contributes to the

pathogenesis of GC. Elevated protein intake can result in

heightened levels of protein within the colon. In this

environment, various bacteria, including certain Bacillota and

Bacteroidota, metabolize amino acids into N-nitrosyl compounds.

These compounds can induce DNA alkylation and host mutations,

potentially contributing to carcinogenesis (Gill and Rowland, 2002).

Colonic bacteria metabolize carcinogens, generating compounds

that damage DNA, such as ethanol and heterocyclic amines, or

directly producing carcinogens like non-hexane (Huycke and

Gaskins, 2004). Primary bile acids are converted into secondary

deoxycholic acid (DCA) by certain bacteria, including Clostridium

scindens. DCA disrupts cell membranes, releasing arachidonic acid

as a tumor promoter. Arachidonic acid, when metabolized by COX-

2 and lipoxygenase, undergoes conversion into prostaglandins and

ROS. These compounds play a crucial role in triggering

inflammatory responses and causing DNA damage, contributing

to various pathological conditions. Furthermore, taurocholic acid

serves as a tumor promoter by fostering the production of genotoxic

hydrogen sulfide and fueling the expansion of specific inflammatory

bacteria, such as Bilophila wadsworthia, contributing to

carcinogenesis (Ridlon et al., 2016). Under conditions of iron

deficiency, H. pylori exacerbates gastric injury in insulin-gastrin

mice, highlighting the interplay between bacterial infection and

nutrient status in gastrointestinal health. While the observed

phenotypes are not mechanistically driven by changes in the

gastric microbiota, targeted metabolomics studies unveiled

substantial alterations in bile acids among iron-deficient mice

infected with H. pylori. Notably, the carcinogenic bile acid DCA

showed significant upregulation. Treatment with DCA worsened

the severity of gastric injury in H. pylori-infected mice. In vitro

experiments demonstrated that DCA enhances the translocation of

the H. pylori oncogenic protein CagA into host cells (Noto et al.,

2022). TDCA and LPS drive gastric carcinogenesis by triggering

activation of the IL-6/JAK1/STAT3 pathway in gastric epithelial

cells, implicating inflammation in the development of GC (Wang

et al., 2022). Conversely, DCA induces alterations in the gastric

environment, characterized by abnormal bile acid metabolism and

microbial dysbiosis. Specifically, there is a notable enrichment of

Gemmobacter and Lactobacillus, suggesting a complex interplay

between bile acids and the gastric microbiota in gastric

pathophysiology (Jin et al., 2022). Bile acids, shown to function as

endogenous antagonists of leukemia inhibitory factor (LIF), bind to

a heterodimeric receptor during tumor initiation. Tissue analysis of

bile acid content in both non-cancerous and GC biopsies

demonstrates an accumulation of bile acids within cancer tissues.

Specifically, glycodeoxycholic acid acts as a negative regulator of

LIFR expression (Di Giorgio et al., 2024).
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3.2 Microbiota dysbiosis and gastric
epithelial cell genome repair

Cells undergo a series of complex biological processes to repair

DNAwhen subjected to external damage or internal errors resulting

in DNA breaks, base damage, and other situations, thereby

preserving the genome’s integrity and stability. These processes

primarily include direct damage repair mechanisms such as

mismatch repair (MMR), single-strand break repair (SSBR), and

double-strand break repair (DSBR). Additionally, they encompass

indirect damage repair mechanisms like nucleotide excision repair

(NER), base excision repair (BER), cross-link repair. MMR is a

highly conserved biological pathway crucial for maintaining

genome stability. This pathway specifically targets base mispairs

and insertion/deletion mispairs that arise during DNA replication

and recombination processes (Li, 2008). Co-culturing GC cells with

various strains of H. pylori results in a dose-dependent decrease in

the levels of MMR proteins, including MutS (MSH2 and MSH6)

and MutL (MLH1, PMS2, and PMS1) (Kim et al., 2002). This may

be attributed to CagA EPIYA motifs and vacuolating cytotoxin A

(vacA) genotypes (Mi et al., 2020). H. pylori suppresses the

expression of MMR proteins by upregulating miR-155-5p, miR-

3163, and miR-150-5p (Santos et al., 2017). F. nucleatum triggers

the expression of miR-205-5p by activating the Toll-like receptor 4

(TLR4) and MyD88-dependent innate immune signaling pathway.

This upregulation, in turn, suppresses the expression of key MMR

proteins (MLH1, MSH2, and MSH6). The resulting MMR

deficiency leads to increased DNA damage and enhanced cell

proliferation, contributing to the progression of squamous cell

carcinoma of the head and neck (Hsueh et al., 2022).

Microsatellite instability (MSI) refers to the alteration in the

length of microsatellite sequences, which are DNA sequences

consisting of short repetitive motifs, during cellular replication.

MSI is typically caused by defects in the DNA MMR system,

including mutations in MMR genes, epigenetic changes, or other

mechanisms. Therefore, the detection of MSI has become an

important indicator for assessing tumor risk, diagnosis, and

treatment strategy selection. In patients with GC, oral microbiota

of oral origin is associated with immune gene expression and tumor

mutation burden (Byrd et al., 2023). There is a lack of foundational

experimental evidence regarding whether microbiota in GC affects

other DNA repair deficiencies. Investigating the disruption of

microbiota on DNA repair may hold significant implications for

understanding the molecular mechanisms underlying the onset and

progression of GC. Microbiota increase host cell genome damage

and inhibit genome repair as shown in Figure 2.
3.3 Microbiota dysbiosis and aberrant
signaling pathways in GC

The interaction between dysbiosis and cancer cell aberrations

involves multiple signaling pathways that can influence tumor

initiation, progression, and therapeutic response (Figure 3).

Infection with H. pylori drives the nuclear accumulation and
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transcriptional activity of yes-associated protein 1 (YAP) and b-
catenin in gastric epithelial cells and transgenic insulin-gastrin

mice. This interaction between YAP and b-catenin promotes their

nuclear activation. Consequently, the activation of target genes such

as CDX2, LGR5, and RUVBL1 is initiated, fostering cell

proliferation, and contribute to the pathogenesis of GC (Li et al.,

2023). H. pylori infection not only triggers the expression of IL-11

but also upregulates cancer-related genes such as PTGER4 and

TGF-b in insulin-gastrin mice. These molecular changes further

expedite the progression of gastric cancer (Lertpiriyapong et al.,

2014). F. nucleatum induces the activation of actin and genes

regulating cell motility, promoting the invasiveness of GC cells

(Hsieh et al., 2021). In addition, the microbiota can induce

sustained inflammatory responses, generating ROS and causing

DNA fragmentation, membrane breakdown, and protein

misfolding through modifications of key substrates such as

nucleic acids, lipids, and proteins (Chen et al., 2022c). These

processes may lead to cellular senescence (Pérez-Mancera et al.,

2014). Senescent cells stand apart from quiescent and apoptotic cells

by maintaining high cellular viability and efficient metabolic

function (Campisi and D’adda Di Fagagna, 2007). Senescent cells

collectively produce a range of cytokines, chemokines, growth

factors, proteases, and other secretory signaling factors, forming

what is known as the senescence-associated secretory phenotype

(SASP) (Coppé et al., 2010). Senescent cells have a dual role through

autocrine or paracrine signaling: they play a physiological role in

tissue development, prevent proliferation of damaged cells, aid in

tissue repair, and contribute to tumor suppression. However, they
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also promote the onset of age-related diseases, including cancer

(Chen et al., 2022b). Mounting evidence indicates that dysregulated

SASP sustains an inflammatory environment, promoting cancer cell

proliferation, migration, invasion, and EMT, thereby accelerating

the growth of xenograft tumors (Chen et al., 2022b). Research on

the mechanisms of microbial dysbiosis in GC cells remains unclear,

presenting a highly promising avenue for investigation. In addition,

certain viruses can also trigger the abnormal activation of signaling

pathways. For example, Epstein-Barr virus (EBV) infection can

activate the cGAS-STING pathway and upregulate the expression of

olfactomedin 4 (OLFM4), which binds to the extracellular cadherin

domain of FAT1, thereby disrupting its intracellular interaction

with MST1 and subsequently activating YAP in recipient cells (Wen

et al., 2024). Naturally occurring or genetically engineered viruses,

such as the CF33 oncolytic virus, are capable of delivering

functional proteins (e.g., hNIS-antiPDL1) and exhibit significant

antitumor activity in peritoneal metastasis gastric cancer models

following intraperitoneal injection (Yang et al., 2023a). The

expression and/or integration of human papillomavirus

oncogenes in gastric cancer may play a potential etiological role,

but the underlying mechanisms remain to be further explored (Xu

et al., 2023a).

The imbalance of the microbial community may lead to abnormal

accumulation or deficiency of metabolites, thereby affecting host

metabolic health. These metabolites can influence host cell function

and metabolic status through different signaling pathways. For

example, in atrophic gastritis induced by H. pylori, there is an

elevated expression of glucose-6-phosphate 1-dehydrogenase
FIGURE 2

The microbiota increases host cell genomic damage and suppresses genome repair. Primary bile acids, nitrate, and proteins metabolized by certain
microbial communities produce substances such as DCA, N-nitrosamines, and heterocyclic amines, leading to DNA damage. F. nucleatum increases
the expression of miR-205-5p through the TLR4 and MyD88-dependent innate immune signaling pathway, suppressing the expression of MLH1,
MSH2, and MSH6. H. pylori upregulates miR-150-5p, miR-155-5p, and miR-3163 to suppress the expression of MSH2 and MSH3 proteins.
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(G6PD) and D-lactate dehydrogenase (D-LDH) (Parsons et al., 2017).

This contributes to inducing anaerobic metabolic shift, thereby

generating energy (Chen et al., 2023c). Some bacteria enriched in

GC tissues, although not yet reported in GC, have been shown to alter

the glycolipid metabolism of other tumor cells. For example, F.

nucleatum activates the transcription of long non-coding RNA

ENO1-IT1 by enhancing the binding efficiency of transcription

factor SP1 to the promoter region of ENO1-IT1. The increased

expression of ENO1-IT1 acts as a guiding module for KAT7 histone

acetyltransferase, directing its histone modification pattern on target

genes, including ENO1, a key glycolytic enzyme, thereby altering

glycolysis in colorectal cancer cells (Hong et al., 2021). The microbiota

provides lipid synthesis precursors or stimulates host cell lipid

synthesis through its own metabolic products. For example, short-

chain fatty acids (SCFAs) can serve as substrates for energy

production, lipid synthesis, gluconeogenesis, and cholesterol

synthesis (Bergman, 1990). d-Valerobetaine, generated by diverse

bacterial strains, activates the transcription factor PPAR-a, thereby
driving transcriptional regulation of lipid processing and
Frontiers in Cellular and Infection Microbiology 09
mitochondrial energy metabolism in the liver of mice. As a result,

there is a reduction in mitochondrial fatty acid oxidation (FAO) and

an increase in lipid accumulation (Liu et al., 2021). The biologically

active components derived from the small bowel microbiota

Clostridium bifermentans selectively induce the expression of

diacylglycerol O-acyltransferase 2 (DGAT2), which participates in

triacylglycerol synthesis. The exact mechanism behind this induction

remains to be explored (Liu et al., 2021). H. pylori can decrease

endoplasmic reticulum stress levels in gastric epithelial cells while

enhancing the autophagy gene ATG16L1 (rs2241880, G-allele)

expression, thereby promoting increased IL-8 production and

driving the carcinogenesis process. This may be associated with the

role of IL-8 recruitment of granulocytes in the development of

intestinal metaplasia and GC (Fu et al., 2016; Mommersteeg et al.,

2022). Investigating dysregulated microbiota and abnormal signaling

pathways in GC enhances our comprehension of tumorigenesis

mechanisms. This exploration sheds light on the microbiota’s

involvement in GC development, offering novel insights and

strategies for GC prevention, diagnosis, and treatment.
FIGURE 3

Microbiota dysbiosis alters gastric epithelial cell signaling pathways. H. pylori promotes nuclear accumulation and transcriptional activity of YAP and
b-catenin in gastric epithelial cells, leading to activation of target genes CDX2, LGR5, and RUVBL1, facilitating cell proliferation and expansion,
ultimately resulting in GC development. H. pylori also induces the expression of IL-11 and cancer-related genes Ptger4 and TGF-b. H. pylori
enhances autophagy gene ATG16L1, increasing IL-8 production, driving carcinogenesis. H. pylori induces the expression of G6PD and D-LDH in host
cells, facilitating glycolysis, and energy production. F. nucleatum upregulates transcription factor SP1, activates lncRNA ENO1-IT1 transcription,
guides KAT7 histone acetyltransferase to modify target gene ENO1, increasing host cell glycolysis. d-valerobetaine produced by various bacteria
inhibits mitochondrial FAO and increases lipid accumulation via transcription factor PPAR-a. SCFAs serve as substrates for lipid synthesis.
Additionally, the microbiota can induce sustained inflammatory responses, generate ROS, causing DNA fragmentation, membrane disintegration, and
protein misfolding through modification of key substrates such as nucleic acids, lipids, and proproteins, leading to cellular senescence, secretion of
SASPs, and accelerated tumor growth. EBV infection can activate the cGAS-STING pathway and upregulate the expression of OLFM4, thereby
leading to the activation of YAP in recipient cells.
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3.4 Microbiota and GC hypoxia

Hypoxia is considered a hallmark of cancer, with most solid

tumors, including GC, exhibiting oxygen deficiency (Ye et al., 2019).

The intratumoural microbiota is intricately associated with hypoxia

in TME. This linkage is evident through several avenues: Microbial

colonization within tumor tissues elicits inflammatory responses,

leading to endothelial cell injury, dysfunctional endothelial cell

activity, and compromised vascular function, ultimately

culminating in hypoxia due to impaired blood perfusion. Certain

microbes, such as H. pylori and Streptococcus spp., which are

facultative anaerobes or aerobes, further contribute to hypoxia by

consuming oxygen (Cullin et al., 2021; Chen et al., 2022c).

Mechanistically, bacteria can utilize high-affinity terminal

oxidases to scavenge O2 at low concentrations, even at nanomolar

levels, exacerbating the degree of hypoxia in tumor tissues (Morris

and Schmidt, 2013; Kelly et al., 2015). Furthermore, microbial

derivatives such as SCFAs increase oxygen consumption by

pathways including b-oxidation of butyrate and oxidative

phosphorylation-dependent epithelial O2 consumption (Hamer

et al., 2008; Kelly et al., 2015; Zheng et al., 2017). Additionally,

microbial communities recruit innate and adaptive immune cell

infiltrates, most notably neutrophils and eosinophils, which

consume local oxygen via the NADPH oxidase-2 (NOX-2) during

oxidative bursts (Campbell et al., 2014; Masterson et al., 2019)

Therefore, the microbial community in TME is one of the factors

contributing to the formation and maintenance of chronic hypoxia,

driving alterations in tumor cell signaling pathways, primarily

associated with increased expression of the hypoxia-inducible

factor (HIF). This is associated with tumor size, lymph node

involvement, vascular invasion, and pathological staging (Zhang

et al., 2010). In mice infected with H. pylori, levels of HIF-1a
significantly increase, enhancing the toxicity of CagA, promoting

IL-8 secretion, and exacerbating host pro-inflammatory responses

(Noto et al., 2023). Conversely, the massive production of ROS

generated by inflammatory responses not only stimulates the

expression of HIF-1a but also contributes to its stabilization

under hypoxic conditions (Leung and Chan, 2009). TLRs are a

highly conserved class of pattern recognition receptors that detect

pathogen-associated molecular patterns and play a crucial role in

the immune system, protecting the body from infections by

initiating immune responses (Akira and Takeda, 2004). LPS

activates the tumor cell TLR4 signaling pathway and NF-kB,
thereby upregulating HIF-1a, promoting the progression of

pancreatic adenocarcinoma (Zhang et al., 2010). Activation of

HIF reprograms metabolism, protein synthesis, and cell cycle

processes (Chen et al., 2023c).
3.5 Microbiota and tumor immune
microenvironment

A wealth of evidence suggests that dysbiosis of the gastric

microbiota and immune system dysfunction, particularly immune

evasion, are critical for the onset and progression of GC. Changes in
Frontiers in Cellular and Infection Microbiology 10
the recruitment and function of innate and adaptive immune cells

predominantly drive the progression and prognosis of GC. H. pylori

induces the expression of natural killer group 2, member D (NKG2D)

ligands on gastric epithelial cells through vacA, which are released

from the cell surface via protein hydrolysis or extracellular vesicles

(EVs). This leads to downregulation of the NKG2D receptor

expression on NK cells and cytotoxic granule release, thereby

contributing to immune evasion by tumor cells (Anthofer et al.,

2024). P. acnes significantly increases in GC tissues infected with H.

pylori, activating the TLR4/PI3K/Akt signaling pathway, inducing

polarization of M2-type tumor-associated macrophages (TAMs), and

promoting the secretion of immunosuppressive factors IL-10 and

CCR-2 (Li et al., 2021c). M2 TAMs maintain an inflammatory

environment in TME, creating an immunosuppressive

microenvironment that promotes tumor cell proliferation and

survival, fosters cancer stem cells, supports metastasis, and

contributes to the progression and metastasis of GC (Mantovani

et al., 2017; Long et al., 2019; Piao et al., 2022). Butyrate derivatives

from probiotics negatively regulate the NLRP3-mediated

inflammatory signaling pathway, inhibit the activation of associated

macrophages, and reduce their expression levels of PD-L1 and IL-10,

thereby suppressing tumor growth in mice (Yao et al., 2022; Lee et al.,

2024). H. pylori and Methylobacterium can decrease the TGF-b
expression and infiltration of CD8+ T cells in GC mouse models,

but their mechanisms remain to be elucidated (Oster et al., 2022;

Peng et al., 2022). Some less abundant bacterial genera in GC tissues,

such as Selenomonas and Brevundimonas, are positively correlated

with regulatory T cells (Tregs) (Ling et al., 2019; Yang et al., 2022a).

Mechanistically,H. pylori activates the TLR2/NLRP3/caspase-1/IL-18

axis in dendritic cell to induce Tregs, shaping an immunosuppressive

microenvironment (Koch and Müller, 2015). H. pylori drives the

activation of pro-inflammatory T cells, secretes IL-21, induces STAT3

phosphorylation, and promotes RORg-t expression, facilitating the

differentiation of T helper 17 (Th17) cells and the secretion of IL-17

(Carbo et al., 2014). Additionally, H. pylori activates TLR9, promotes

the expression of the negative regulatory factor TRIM family protein

TRIM30a, thereby downregulating the activation of transcription

factor interferon regulatory factor 3 (IRF3) and inhibiting the

stimulator of interferon genes (STING) signaling pathway. These

mechanisms contribute to the induction of Th17 cell inflammatory

response and tumor-promoting effects in vivo (Dooyema et al., 2022).

Candida is positively correlated with pro-inflammatory immune

factors IL1A, IL1B, IL6, IL8, CXCL1, CXCL2, and IL17C, which

are associated with neutrophil and Th17 cell infiltration (Dohlman

et al., 2022; Li et al., 2022). These possible mechanisms are

summarised in Figure 4.

Furthermore, dysbiosis of the microbiota may affect other stromal

cells in the tumor microenvironment, such as endothelial cells.

Dysbiosis of the microbiota can disrupt the balance between pro-

angiogenic and anti-angiogenic factors, crucial for angiogenesis. This

imbalance may accelerate tumor angiogenesis, leading to rapid but

abnormal blood vessel formation (Carmeliet and Jain, 2000; Jain, 2005;

2014). In vitro, low concentrations of probiotic metabolite butyrate

promote angiogenesis via G-protein-coupled receptor 43 (GPR43, also

known as FFAR2) (Castro et al., 2021). LPS stimulation of NOD-like
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receptor (NLR) and TLR increases microvascular formation, inducing

human intestinal microvascular endothelial cell migration and

proliferation (Peng et al., 2004). Nevertheless, dysbiosis of the

microbiota plays a vital role in various critical aspects of GC

development. Particularly, the enrichment of intratumoral probiotics

and their metabolites in GC warrants further exploration. The sC
protein from avian reovirus or UV-inactivated avian reovirus can bind

to TLR3 on the surface of CD8+ tumor-infiltrating lymphocytes,

activating the TLR3/NF-kB/IFN-g/TRAIL signaling pathway in

immune cells. This induces the production of TRAIL, thereby

initiating immunogenic apoptosis targeting cancer cells (Wu et al.,

2024b). Based on these mechanisms, microbial dysbiosis affects GC
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chemotherapy and immunotherapy (Li et al., 2021b; Kim et al., 2023;

Magahis et al., 2023). Exploring the microbial mechanisms of

carcinogenesis helps deepen our understanding of the interplay

between microbiota and GC development, providing new research

perspectives and strategies for both preventing and treating GC.

Although this study systematically explores several key molecular

mechanisms (such as CagA, short-chain fatty acids, DNA repair

pathways, and the IL-6/JAK/STAT3 signaling axis), it lacks in-depth

analysis linking these mechanisms to clinical practice. Their potential

value in diagnostic biomarker development, prognostic assessment,

therapeutic target identification, and resistance mechanisms has not

been fully demonstrated. Future research could further investigate the
FIGURE 4

Microbiota shapes the suppressive immune microenvironment. H. pylori induces expression of the NKG2D ligand in gastric epithelial cells, which is
released from the cell surface via protein hydrolysis or extracellular vesicles, leading to decreased expression of the NKG2D receptor on NK cells and
cytotoxic granule degranulation, thereby facilitating immune evasion by tumor cells. P. acnes activates the TLR4/PI3K/Akt signaling pathway,
inducing M2 TAM polarization, promoting secretion of immunosuppressive factors IL-10 and CCR-2. Butyrate, a derivative of probiotics, negatively
regulates the NLRP3-mediated inflammatory signaling pathway, inhibits related macrophage activation, and decreases levels of PD-L1 and IL-10
expression, thereby suppressing tumor growth in mice. H. pylori activates TLR9, promotes expression of negative feedback regulator TRIM30a,
downregulates activation of transcription factor IRF3, inhibits the STING signaling pathway, and promotes Th17 inflammatory responses and anti-
tumor responses in vivo. H. pylori drives activation of pro-inflammatory T cells, secretes IL-21, induces phosphorylation of STAT3, and induces
expression of RORg-t, promoting Th17 differentiation and IL-17 secretion. H. pylori activates dendritic cells via the TLR2/NLRP3/caspase-1/IL-18 axis
to induce Tregs, shaping the immune suppressive microenvironment. H. pylori and Methylobacterium can reduce expression of TGF-b and CD8+ T
cell infiltration in a GC mouse model, but their mechanisms remain to be elucidated.
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clinical applicability of these mechanisms, such as their roles in

biomarker screening, patient stratification, and prediction of

treatment response, in order to enhance the translational relevance

and clinical impact of the study.
4 Microbiota-related therapeutic
application

The application of microbiota-related therapy in GC is

gradually becoming a focus of research. These therapeutic

approaches include probiotic therapy, prebiotic therapy,

antimicrobial therapy, carrier application, dietary adjustments,

fecal microbiota transplantation (FMT), and traditional Chinese

medicine treatment, aiming to regulate gut microbiota balance,

improve intestinal health in GC patients, and enhance immune

system function (Figure 5). Although these therapeutic methods are

still in the research and exploration stages, they offer new insights

and hope for the treatment of GC.
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4.1 Probiotic application

The application of probiotics in GC treatment is an area of great

interest. Research indicates that probiotics and their derivatives can

impact the onset and progression of GC by altering the gut

microbiota, influencing the host’s immune status, and regulating

inflammation levels (Cao et al., 2022). On one hand, probiotics can

improve the structure of the microbiota, particularly in the post-GC

surgery gut microbiota, enhancing host immunity (Zheng et al.,

2019, 2021a; He et al., 2022). This helps to ameliorate intestinal

dysbiosis caused by mechanical bowel preparation, thereby

reducing the incidence of postoperative delirium (Yang et al.,

2022c). Furthermore, probiotics and their derivatives have been

found to alleviate intestinal damage induced by chemotherapy

drugs like oxaliplatin in both mice and human patients. They also

enhance the response to anti-programmed cell death protein 1 (PD-

1)/programmed death-ligand 1 (PD-L1) immunotherapy (Yuan

et al., 2022; Han et al., 2023). On the other hand, probiotic

derivatives such as butyrate salts enhance the cytotoxic function
FIGURE 5

Therapeutic applications based on the microbiota, such as probiotic, prebiotic, antibiotic use, carrier application, dietary modulation, and traditional
Chinese medicine, have shown promising efficacy. However, most of these applications are still in the preclinical stage, and their clinical efficacy and
potential complications remain to be determined.
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of CD8+ T cells or CAR-Claudin 18.2 CD8+ T cells against GC cells

via GPR109A and homeodomain-only protein X (HOPX) (Yu et al.,

2024). A combination of probiotics (Lactobacillus acidophilus

NCFM and Lactobacillus plantarum Lp-115) effectively recruits

more lymphocytes, plasma cells, and neutrophils (Shen et al.,

2023; Ye et al., 2024). Furthermore, probiotics such as

Lactobacillus significantly reduce inflammatory cytokines,

preventing host macrophages from producing pro-inflammatory

cytokines IL-1b, IL-6, IL-8, TNF-a, and IFN-g (Gebremariam et al.,

2019; Zhao et al., 2022; Wu et al., 2023). Lactobacillus rhamnosus

GG induces FPR1, a tumor suppressor, to maintain inflammation

resolution with anti-angiogenic potential (Liotti et al., 2022).

However, the heightened presence of lactobacillus during cancer

progression challenges the notion of their predominantly protective

role in GC. Lactobacillus contributes to carcinogenesis by

promoting factors such as ROS, N-nitroso compounds, lactate

production, as well as inducing EMT and immune tolerance

(Yang et al., 2021; Nabavi-Rad et al., 2022). Therefore, due to the

unclear roles and functionalities of some probiotics enriched in GC

tissues, the application of probiotics in GC patients needs to be

approached with caution.
4.2 Prebiotic application

Prebiotics, indigestible substances metabolized by probiotic

bacteria into SCFAs like acetate, propionate, and butyrate, play a

vital role in promoting human health. They enhance resistance to

pathogenic colonization, maintain mucosal barrier integrity, regulate

intestinal pH, and boost anti-tumor immunity, thereby enhancing

anti-cancer activity (Verspreet et al., 2016). The combination of

sodium butyrate and dexamethasone significantly downregulates

the oncogene TNS4 in GC cells, exhibiting a notable anti-

proliferative effect (Eladwy et al., 2024). Raffinose is a

polysaccharide composed of one molecule of glucose, one molecule

of galactose, and one molecule of fructose. It is particularly abundant

in foods such as beans, onions, beets, and carrots. Human

gastrointestinal tract cannot directly digest and absorb raffinose, but

it is fermented by the microbes in the intestine, producing SCFAs,

which can lower the risk of GC (Turati et al., 2023). Ellagic acid is a

bioactive phytochemical known for its high antioxidant and

anticancer effects. However, its absorption rate in the intestine is

low, and it is easily excreted. When encapsulated with low

methoxylated and high methoxylated pectin films at a 1:4 molar

ratio, ellagic acid lysine salt not only increases the water solubility of

ellagic acid but also preserves its biological activity. After

fermentation by gut microbiota, it produces SCFAs, demonstrating

good prebiotic activity (Ortenzi et al., 2021). Some prebiotics, such as

mushroom polysaccharides, can stimulate the growth of beneficial

bacteria in the colon (Nowak et al., 2018). Combination formulations

containing both probiotics and prebiotics are promising for

promoting intestinal health, enhancing immune function, and

improving nutrient utilization. More research is necessary to fully

comprehend the role and functionality of prebiotics in mitigating the

risk of digestive tract tumors (Enache et al., 2022). In addition, some
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postbiotics, such as Urolithin A, not only exert their anti-tumor

effects by activating autophagy and further activating the downstream

Hippo pathway, inhibiting the Warburg effect, and promoting cell

apoptosis, but also by modulating the composition of the gut

microbiota, resulting in an increase in probiotics and a decrease in

pathogenic bacteria (Qiao et al., 2024).
4.3 Antibiotic application

Antibiotics have the potential to impact tumors through altering

the microbiota, modulating immune responses, and affecting their

own drug metabolism. Co-administration of antibiotics with

probiotics can reduce the changes and imbalance in the intestinal

microbiota induced by antibiotics and improve the success rate of

eradicating H. pylori (Oh et al., 2016) However, long-term antibiotic

use may increase the risk of cancer development (Boursi et al., 2015;

Hao et al., 2022; Chen et al., 2023b), or lead to complications such as

anemia, gastrointestinal bleeding, and mortality (Quinn et al., 2020).

For example, in multiple cohorts of patients with advanced GC

undergoing PD-1 inhibitor therapy, the use of antibiotics has

consistently been associated with poorer PFS and OS (Kim et al.,

2023). Additionally, existing antibiotic-based traditional approaches

lack targeted effects, resulting not only in failure in approximately

20% of patients but also in severe bacterial resistance and disruption

of gut microbiota. This may be associated with upregulation of

multidrug resistance proteins, methicillin-resistant regulator

proteins, vancomycin-resistant sensor histidine kinases,

chloramphenicol resistance proteins, and tetracycline resistance

proteins (Guo et al., 2020). Therefore, the development of

alternative or antibacterial agents is crucial for treating GC.

Nanostructured lipid carriers (NLC), even when not loaded with

any drugs, show bactericidal effects against H. pylori at low

concentrations. Mechanistically, NLC can rapidly bind to and

penetrate the membrane of H. pylori, causing destabilization and

disruption. This leads to the leakage of cytoplasmic contents

and ultimately results in bacterial death (Seabra et al., 2018; Chitas

et al., 2022). A pH-responsive metal-organic framework hydrogen-

generation nanoparticle (Pd(H)@ZIF-8) encapsulated in an ascorbate

palmitate (AP) hydrogel can target and adhere to inflammatory sites

through electrostatic interactions. Subsequently, it undergoes

hydrolysis by matrix metalloproteinases. The released Pd(H)@ZIF-

8 nanoparticles are further decomposed by gastric acid, producing

zinc ions (Zn2+) and hydrogen gas. This process effectively kills H.

pylori, alleviates inflammation, and helps restore damaged gastric

mucosa. Additionally, this approach helps to avoid dysbiosis of the

intestinal microbiota (Zhang et al., 2022). It’s interesting that cancer

risk, including GC, is reduced in diabetic patients treated with

metformin. Metformin exhibits direct antibacterial activity against

H. pylori, but its widespread applicability and mechanism require

further elucidation (Jauvain et al., 2021). Engineering common dairy

probiotics like Lactobacillus into complexes that secrete H. pylori-

binding guide peptide (MM1) and broad-spectrum antimicrobial

peptides can offer high selectivity againstH. pylori while avoiding the

development of pathogen resistance (Choudhury et al., 2023).
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4.4 Carrier application

Some microbiota can metabolize chemotherapy drugs, greatly

reducing their bioavailability. Therefore, carriers act as a medium,

delivering drugs to specific areas through their own specific

biological functions or by carrying substances with biological

functions. Common carriers include NPs and biological carriers.

Encapsulating 5-fluorouracil (5-FU) in chitosan NPs (CS NPs) and

incorporating them into retrograde starch and pectin (RS/P)

microparticles can prevent premature degradation or release of

the NPs as they pass through the stomach and upper digestive tract,

ensuring that 5-FU reaches the colon (Dos Santos et al., 2021).

Rhamnogalacturonan-I is a type of natural pectic polysaccharide.

When passing through gastric and intestinal fluids, capsules exhibit

minimal in vitro release, degrading only through the action of

colonic microbiota. Leveraging this property, the substance can

serve as an excellent carrier for drug delivery (Svagan et al., 2016).

Probiotics coated with silk fibroin NPs or mineralized coatings can

prevent damage in the stomach, enhance survival rates, reach the

intestine, regulate the gut microbiota, and synergistically enhance

therapeutic effects in a mouse model of intestinal mucosal

inflammation (Hou et al., 2021; Geng et al., 2023). Conversely,

probiotics can also serve as oral drug carriers, transporting

medications (such as metal NPs) to the intestines. This not only

enhances the gut microbiota but can also be utilized for magnetic

hyperthermia and photothermal therapy (Garcés et al., 2022).

Furthermore, some rare elements such as selenium have beneficial

effects on intestinal inflammation after trace intake. Constructed

Se@Albumin complex NPs significantly ameliorate chemotherapy-

induced complications of intestinal mucositis in a mouse model by

reducing intestinal oxidative stress levels, lowering intestinal

permeability, and alleviating gastric motility disorders (Deng

et al., 2021). A pH-responsive ROS nanogenerator (Fe-HMME@

DHA@MPN) consists of an acid-responsive metal phenolic

network (MPN) shell and a mesoporous metal-organic

nanostructure core [Fe-HMME (hematoporphyrin monomethyl

ether, a sonosensitizer)]. Encapsulating dihydroartemisinin

(DHA), these NPs generate more ROS singlet oxygen under

ultrasound than the sonosensitizer HMME alone. The

sonochemical process is driven by the Fenton/Fenton-like

reaction between the degradation product Fe (II) in gastric acid

and hydrogen peroxide (H2O2) in the infected microenvironment,

producing oxygen. Encapsulated DHA acts as a hydrogen peroxide

source, enhancing the peroxidase-like activity of Fe-HMME@

DHA@MPN, thereby generating ROS hydroxyl radicals to kill

multidrug-resistant Helicobacter pylori and eradicate biofilms,

with minimal effects on the normal gut microbiota (Yu et al., 2023).
4.5 Dietary regulation

Dietary habits can influence the occurrence and development of

GC by modulating the microbiota. Diet represents an economical,

non-invasive, natural, and sustainable therapeutic approach. On one
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hand, a Western diet, characterized by high fat, high sugar, and low

fiber intake, can disrupt the balance of gut microbiota, a condition

known as dysbiosis. This dysbiosis contributes to an increased risk of

GC (Rinninella et al., 2020). The high-fat diet leads to severe

dysbiosis in the stomach. Changes in the microbiota are

accompanied by an increase in gastric leptin, leading to the

development of intestinal metaplasia (Arita and Inagaki-Ohara,

2019; Arita et al., 2019). Typically, high-temperature (150-300°C)

cooking and nitrite-curing of meats result in the formation of toxic

compounds like heterocyclic amines. These compounds have a high

mutagenic potential and are implicated in the development of colon

cancer and GC. Lactobacillus casei DN 114001 reduces the

genotoxicity of heterocyclic amines, suggesting that bacteria may

metabolize or adsorb heterocyclic amines (Nowak and Libudzisz,

2009; Van Hecke et al., 2015). Recent studies suggest that a diet rich

in capsaicin, the primary pungent compound in chili peppers, might

promote gastric cancer metastasis. This effect could occur through

the regulation of transient receptor potential vanilloid 1 (TRPV1)

expression and alterations in the gut microbiota composition. This

suggests the importance of controlling chili consumption for GC

patients (Deng et al., 2023). On the other hand, a high-fiber diet,

foods rich in probiotics and prebiotics, and other similar dietary

choices can foster the growth of beneficial bacteria and help

maintain the balance of intestinal microbiota, thereby reducing the

risk of developing GC (Rinninella et al., 2020). Some foods

contribute to the growth of probiotics. For example, spinach rich

in cobalamin is positively correlated with genera of Bacteroides,

propionates, and butyrates (Zheng et al., 2021b). Vegetable and

seafood patterns may interact with dysbiosis to mitigate the risk of

male GC, while dairy patterns may interact with dysbiosis to reduce

the risk of GC in females (Gunathilake et al., 2021). Based on

exogenous metabolites, adenosylcobalamin, soybean, common

wheat, dates, and barley are considered potential candidates for

the treatment of atrophic gastritis without H. pylori infection, while

gallate from gallnuts is considered a candidate for the treatment of

atrophic gastritis with H. pylori infection (Gao et al., 2023). Dairy

products containing baicalin and baicalein can inhibit the expression

of the vacA gene inH. pylori, interfere with its adhesion and invasion

capabilities to human GC cells, and reduce the levels of H. pylori-

specific serum IgM and IgA as well as IL-8 expression (Chen et al.,

2018). Taken together, adjusting the dietary habits of GC patients to

modulate the microbiota offers multiple advantages, including

safety, comprehensiveness, naturalness, sustainability, and

comprehensiveness. This approach represents an effective means

of preventing and supporting the treatment of GC.
4.6 FMT

FMT not only alters the composition of bacteria but also

establishes a cross-domain balance between intestinal fungi,

viruses, and bacteria to promote the restoration of microbial

homeostasis. Prior to first-line chemotherapy, FMT from healthy

obese donors may improve the chemotherapy response (to
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capecitabine and oxaliplatin) and survival rates of patients with

metastatic esophagogastric cancer (De Clercq et al., 2021). After

radical gastrectomy, patients undergoing FMT exhibit

immunomodulatory effects by adjusting the intestinal microbiota

structure, characterized by an increase in the relative abundance of

certain bacteria producing SCFAs. Mechanistically, butyrate

downregulates the NLRP3-mediated inflammatory signaling

pathway, inhibits macrophage activation, and suppresses the

secretion of pro-inflammatory mediators such as cysteine

aspartate-specific protease-1 and IL-1b, thereby reducing

intestinal inflammation levels and promoting nutrient absorption

(Yao et al., 2022). FMT is an effective treatment for recurrent

Clostridium difficile infection, with its effectiveness in preventing

recurrence reaching approximately 90% (Konturek et al., 2015).

However, FMT may lead to complications that should not be

overlooked, including the possibility of pathogen transmission to

the recipient. Therefore, FMT is not a one-size-fits-all approach,

and research is needed to determine the microbial composition that

has specific effects on patients with different diseases. Akkermansia

muciniphila can enhance the anticancer effect of oxaliplatin by

producing pentadecanoic acid, which inhibits the activity of the

glycolysis regulator far upstream element binding protein 1, thereby

blocking aerobic glycolysis in cancer cells (Xu et al., 2024). This

suggests that FMT can alter the gut microbiota structure, thereby

enhancing the potential efficacy of chemotherapeutic agents, such

as oxaliplatin, in GC.
4.7 Traditional Chinese medicine

Traditional Chinese medicine can influence the progression of

cancer by regulating the gut microbiota. It alters the composition
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and structure of the gut microbiota and modifies the levels of

endogenous metabolites. These changes enhance intestinal barrier

function, bolster the immune system, and improve overall body

metabolism, contributing to the significant anti-tumor properties of

Chinese herbal medicine (Wei et al., 2024). Jianpi Yangzheng helps

regulate the structure of the gut microbiota and reduces the

proportion of myeloid-derived suppressor cells, along with their

production of inflammatory factors (Zhu et al., 2024). Gexia-Zhuyu

Tang inhibits GC growth, reduces the expression levels of proteins

associated with metastasis and invasion, including CD147, vascular

endothelial growth factor (VEGF), and matrix metalloproteinase-9

(MMP-9). Additionally, modified Gexia-Zhuyu Tang significantly

enhances caspase-1-dependent pyroptosis. This is supported by a

dose-dependent rise in TNF-a, IL-1b, IL-18, and lactate

dehydrogenase (LDH) levels, accompanied by increased protein

expression of NLRP3, apoptosis-associated speck-like protein

(ASC), and caspase-1 (Zhao and Yu, 2024). Cordycepin has

antibacterial and anti-inflammatory effects on mice infected with

H. pylori. Compared to the control group treated with the carrier

alone, cordycepin treatment results in approximately 50% reduction

in the production of inflammatory cytokines, including IL-6 and IL-

1b, and about 60% reduction in the infiltration of immune cells such

as Th17 cells (Kong et al., 2022). Therefore, oral traditional Chinese

medicine exhibits multiple effects such as anti-tumor properties,

immune modulation, alleviation of side effects, and improvement of

overall health. Although the efficacy of traditional Chinese medicine

in treating GC requires further scientific validation and clinical

research, its role as an adjunctive therapy holds promise in

enhancing patient quality of life and mitigating treatment side

effects. The mechanisms, outcomes, and limitations of

microbiota-related therapeutic applications are summarized

in Table 2.
TABLE 2 Mechanisms, outcomes, and limitations of Microbiota-related therapeutic applications.

Microbiota-related
therapeutic application

Mechanisms Outcomes Limitations

Probiotic application

Regulate gut microbiota structure and
restore balance after GC surgery.
Enhance host immunity and CD8+ T/
CAR-T cell cytotoxicity.
Reduce inflammation by lowering IL-
1b, IL-6, TNF-a, and mitigating
chemo-induced gut damage.
Improve response to PD-1/PD-L1
immunotherapy.
Recruit immune cells via specific
probiotic combinations.

Promote postoperative recovery and
reduce delirium by enhancing gut
barrier and immunity.
Alleviate chemotherapy-induced gut
toxicity.
Boost PD-1/PD-L1 immunotherapy
response.
Improve tumor immune
microenvironment by enhancing anti-
tumor immunity and
reducing inflammation.

Some probiotics like Lactobacillus may
promote GC by inducing ROS, EMT,
and immune tolerance. Their roles
remain unclear, and effects may be
double-edged. Probiotic use in GC
should be cautious and strain-specific.

Prebiotic application

Prebiotics boost SCFA production,
lower gut pH, suppress harmful
bacteria, strengthen the barrier, and
enhance anti-tumor immunity. They
also promote beneficial bacteria and
microbiota stability. Encapsulation
improves the stability and efficacy of
anti-cancer compounds.

Sodium butyrate with dexamethasone
enhances anti-cancer effects in GC.
Prebiotics like raffinose and tannic acid
boost SCFA production and reduce GC
risk. Modified tannic acid shows strong
prebiotic activity. Synbiotics offer
synergistic benefits for gut and
immune health.

Individual gut microbiota differences
lead to variable prebiotic effects. Some
compounds have low bioavailability
before encapsulation. Anti-cancer
mechanisms remain under-researched,
with limited clinical validation.
Prebiotics may also interfere with
cancer treatments.

(Continued)
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5 Conclusions and perspectives

Although these processes have been extensively studied for

decades, the potential impact of the microbiome on cancer

development, progression, and treatment response has remained

elusive until recently. The microbiota is diverse, abundant, and
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influenced by factors such as altitude, climate, diet, host immunity,

GC heterogeneity, and surgical procedures (Ravegnini et al., 2020; Li

et al., 2021a; Jang et al., 2022). This complexity complicates the use of

the microbiome in precision therapeutics. Therefore, our primary

goal is to identify differentially abundant taxa more accurately.

Developing effective metatranscriptomic strategies is crucial for
TABLE 2 Continued

Microbiota-related
therapeutic application

Mechanisms Outcomes Limitations

Antibiotic application

Antibiotics combined with probiotics
can reduce dysbiosis and improve H.
pylori eradication.
New strategies include NLCs that
disrupt bacterial membranes, Pd(H)
@ZIF-8 nanoparticles that release Zn²+

and hydrogen to kill H. pylori and
reduce inflammation, and engineered
probiotics that selectively target H.
pylori without promoting resistance.

Antibiotics can effectively eradicate H.
pylori and combining with probiotics
improves success rates. However, long-
term use may increase GC risk and
reduce immunotherapy efficacy. New
approaches like nanocarriers and
engineered probiotics offer better
targeting and lower resistance.

Long-term use can lead to dysbiosis, an
increase in resistant strains, and poor
targeting.
When combined with immunotherapy
(e.g., PD-1 inhibitors), it may
reduce efficacy.

Carrier application

Nanoparticles encapsulating
chemotherapy drugs can prevent
premature release of the drugs in the
stomach and upper digestive tract,
ensuring they reach the colon to exert
their effects.
Protecting probiotics through gastric
acid increases their colonization rate
and improves their therapeutic effect on
intestinal mucosal inflammation.
Mechanisms such as reducing intestinal
permeability help improve
chemotherapy-induced intestinal
mucosal damage.

The nanodelivery system delays drug
release, improves targeting, and
enhances therapeutic efficacy.
Alleviates chemotherapy-related
intestinal toxicity and promotes
recovery.
Effectively kills resistant bacteria and
maintains the stability of the normal
gut microbiota.

Primarily animal models, lacking
clinical research validation.
Complex formulation technology, high
production costs, and challenges in
large-scale application.
The long-term safety, metabolic
process, and impact of nanomaterials
on the microecosystem are not yet fully
understood.
Individual differences in gut microbiota
may affect drug efficacy and response,
requiring personalized strategies
for support.

Dietary regulation

Western diets and high-temp cooking
disrupt gut microbiota, increasing GC
risk. Some compounds (e.g., capsaicin)
may promote GC, while foods like
spinach and dairy support beneficial
bacteria. Veggie/seafood diets may
lower GC risk in men; dairy diets may
help women.

Western diets and processed meats
increase GC risk, while fiber, probiotics,
and prebiotics reduce it. Foods like
spinach, soybeans, and dates promote
beneficial bacteria, lowering GC risk.
Dairy products with baicalin and
baicalein inhibit H. pylori and reduce
GC incidence.

Dietary responses vary across
populations, influenced by genetics and
lifestyle. Most studies are observational,
lacking long-term trials to confirm
dietary impacts on GC. Due to GC’s
multifactorial nature, diet alone may
have limited effectiveness, requiring
combination with other therapies.

FMT

FMT restores gut microbiota balance in
GC patients by promoting SCFA-
producing bacteria, which modulate the
immune system. Butyrate
downregulates the NLRP3 inflammatory
pathway, inhibits macrophage
activation, and reduces intestinal
inflammation, improving
nutrient absorption.

FMT improves chemotherapy responses
and survival rates in some cancer
patients, including those with metastatic
esophagogastric cancer. It is highly
effective in preventing recurrent
Clostridium difficile infections (90%
success rate) and helps regulate gut
microbiota and function.

While FMT shows benefits, it carries
risks, such as potential pathogen
transmission. It is not suitable for all
patients, and personalized treatment
based on individual conditions is
needed. Further research is required to
identify effective microbial compositions
for different diseases.

Traditional Chinese medicine

Traditional Chinese medicine impacts
gut microbiota composition and
metabolism, improving intestinal
barrier function, immunity, and
metabolism. Herbal formulas like Jianpi
Yangzheng and Gexia-Zhuyu Tang
inhibit gastric cancer growth by
regulating microbiota and immune
responses, enhancing pyroptosis.
Ingredients like cordycepin reduce
inflammation and immune cell
infiltration in GC through antibacterial
and anti-inflammatory effects.

Traditional Chinese medicine has anti-
tumor properties, modulates the
immune system, reduces tumor
invasion and metastasis, and improves
patients’ quality of life. It serves as an
adjunct therapy for GC, reducing
inflammation, alleviating chemotherapy
side effects, and regulating the gut
microbiota to improve immune and
intestinal function.

The efficacy of traditional Chinese
medicine for GC requires more
scientific research and clinical trials. Its
mechanisms are not fully understood,
and more studies are needed to explore
its specific actions. Current data is
insufficient to support its independent
use, and more clinical evidence
is necessary.
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accurately characterizing the microbiome in human tissues with

lower microbial biomass, which plays a significant role in

microbiome research (Pereira-Marques et al., 2024). Furthermore,

we should delve deeper into the specific molecular mechanisms of

differential taxa in TME, targeting both tumor and stromal cells. This

will help us better understand the roles and functions of microbes in

tumor progression, facilitating the development of drugs targeting

these key points. Finally, microbial-related therapies await further

development. Although some therapeutic applications, such

as probiotics, prebiotics, antibiotic applications, carrier applications,

dietary regulation, traditional Chinese medicine, and bacteriophages,

have shown promising efficacy, most of these are in preclinical stages

and come with some significant side effects that cannot be overlooked

in GC patients (Federici et al., 2022). Currently, only a small number

of clinical trials (such as NCT06250075, NCT05901779,

NCT05544396) are underway regarding the clinical investigation of

probiotics on the gut microbiota of GC patients, neoadjuvant

chemotherapy, and the progression mechanisms of GC. These

clinical trials are in either the “enrolling by invitation” or

“recruiting” phase, and the therapeutic efficacy and potential

complications remain to be determined. In conclusion, research on

the microbiota in GC has not only deepened our understanding of

this disease but also provided new hope and directions for

future treatments.
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