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The intestinal microbiota plays a crucial role in the occurrence and development of

colorectal cancer, and its anti - colorectal cancer mechanism has become a

research hotspot. This article comprehensively expounds on the molecular

mechanisms of the intestinal microbiota in anti - colorectal cancer, including

aspects such as immune regulation, activation of carcinogenic signaling pathways

(it should be noted that it is more reasonable to be “inhibition of carcinogenic

signaling pathways”), metabolite - mediated effects, and maintenance of intestinal

barrier function. At the same time, it explores the roles and potential mechanisms of

intervention methods such as probiotic supplementation therapy, immunotherapy,

and fecal microbiota transplantation. In addition, it analyzes the impact of the

intestinal flora on the therapeutic efficacy of colorectal cancer. The existing

research results are summarized, and the future research directions are

prospected, with the aim of providing new theoretical bases and treatment ideas

for the prevention and treatment of colorectal cancer.
KEYWORDS
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1 Introduction

Colorectal cancer, as one of the malignant tumors with high incidence and mortality

rates globally, is currently ranked third in incidence and second in mortality according to

the latest global cancer burden data released by the International Agency for Research on

Cancer (IARC) of the World Health Organization in 2020. It accounts for 10% and 9.4% of

the total cases of cancer incidence and mortality, respectively, posing a significant threat to

human health and quality of life (Smith et al., 2024; Huang ZM. et al., 2024). Despite certain

advancements in diagnostic and therapeutic approaches, there remains an urgent need to

further investigate its pathogenesis and effective prevention and treatment strategies

(Marcellinaro et al., 2023). In recent years, the role of the gut microbiota in human

health and disease has gradually emerged as a focal point of medical research,

with particular attention being paid to its relationship with colorectal cancer
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(Janney et al., 2020). The human gastrointestinal tract harbors

trillions of microorganisms, which form a complex and delicate

ecosystem with the host, playing a crucial role in maintaining

normal physiological functions of the gut, participating in

nutrient metabolism, and regulating the immune system

(Tremaroli and Bäckhed, 2024). A substantial body of clinical and

basic research evidence indicates that alterations in the composition

and function of the gut microbiota are closely linked to the

occurrence and progression of colorectal cancer (Garrett, 2019;

Yan et al., 2017). Compared to healthy individuals, colorectal cancer

patients exhibit a marked dysbiosis in their gut microbiota,

characterized by a significant increase in the abundance of

certain pathogenic microorganisms and a relative decrease in

beneficial microbes (Wang and Dong, 2021). This alteration in

microbial communities may influence the disease progression of

colorectal cancer through various mechanisms, including but

not limited to the induction of chronic inflammatory responses,

the production of carcinogenic metabolites, the impact on

intestinal barrier integrity, and the modulation of the host

immune response (Chassaing et al., 2014). Therefore, a

comprehensive understanding of the mechanisms by which gut

microbiota exerts anti-colorectal cancer effects is of paramount

theoretical and clinical significance for elucidating the pathogenesis

of colorectal cancer, developing novel diagnostic biomarkers, and

innovating therapeutic strategies.

Figure 1 illustrates the potential applications of gut microbiota in

the diagnosis and treatment of colorectal cancer (CRC). The gut
Frontiers in Cellular and Infection Microbiology 02
microbiota holds significant value in the early diagnosis of CRC.

Specific microbial biomarkers, such as Fusobacterium nucleatum and

Bacteroides fragilis, are markedly enriched in CRC patients and can

be detected in fecal samples, offering a non-invasive diagnostic

approach. Additionally, compositional shifts in the microbial

community—including reduced microbial diversity and dysbiosis of

specific bacterial taxa—may serve as novel biomarkers for early CRC

screening and risk stratification. In therapeutic contexts, the gut

microbiota demonstrates broad prospects for CRC management. On

one hand, microbiota-mediated modulation of the host immune

system can influence the tumor microenvironment, thereby

enhancing the efficacy of immunotherapy. For instance, specific

probiotics (e.g., Bifidobacterium and Lactobacillus) have been

shown to activate antitumor immune responses and potentiate the

therapeutic effects of immune checkpoint inhibitors, such as PD-1/

PD-L1 inhibitors. On the other hand, microbial-derived metabolites,

including short-chain fatty acids (SCFAs), exert direct antitumor

effects by suppressing proliferation or inducing apoptosis in

neoplastic cells. Furthermore, microbiota-targeted personalized

therapies—such as fecal microbiota transplantation (FMT)—are

under active investigation, aiming to optimize treatment outcomes

and mitigate adverse effects through strategic modulation of gut

microbial composition. This article aims to provide a comprehensive

review of the research progress regarding the mechanisms by which

gut microbiota contributes to anti-colorectal cancer effects, with the

intention of offering valuable references and insights for further

exploration and clinical application in this field.
FIGURE 1

Potential applications of gut microbiota in the diagnosis and treatment of colorectal cancer.
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2 Overview of the gut microbiota

The gut microbiota is a vast and intricate ecosystem residing

within the human gastrointestinal tract, primarily composed of

bacteria, fungi, viruses, and archaea, with bacteria dominating in

both quantity and function. In terms of sheer numbers, the gut

microbiota is extraordinarily abundant, estimated to contain

approximately 10^14 microbial individuals, with a total gene

count exceeding 100 times that of the human genome, which

underscores its potential influence on human physiological

processes (Kim and Lee, 2022). The diversity of gut bacteria is

significant, with over 1,000 identified species belonging to various

phyla, including Firmicutes, Bacteroidetes, Proteobacteria, and

Actinobacteria, among which Firmicutes and Bacteroidetes

account for the highest proportions, approximately 90%. These

bacteria are unevenly distributed throughout the gastrointestinal

tract, with their numbers and types gradually increasing from the

stomach to the colon, where the colon represents the most densely

populated area, containing up to 10^11 to 10^12 bacterial cells per

gram of intestinal content (Gao et al., 2017). The gut microbiota and

the host have co-evolved over a long period, establishing a close and

complex symbiotic relationship that participates in numerous

physiological functions. During digestion, they assist in breaking

down complex carbohydrates, proteins, and fats found in food;

related studies have indicated that colonic probiotics can ferment

dietary fibers to produce short-chain fatty acids, thereby providing

energy to the host. Additionally, they play a crucial role in vitamin

synthesis (such as vitamin K and B vitamins) and mineral

absorption, ensuring the host’s nutritional needs are met (Fusco

et al., 2024). Furthermore, research has confirmed that the gut

microbiota actively participates in the development and maturation

of the human immune system, regulating the balance of immune

responses through interactions with intestinal epithelial cells and

immune cells, which enables the body to fend off pathogenic

invasions while preventing excessive inflammatory responses that

could harm the organism, thereby maintaining a stable intestinal

environment and laying the foundation for human health (Fusco

et al., 2024). However, this balance, once disrupted, may be

associated with the occurrence and progression of various

diseases, including colorectal cancer.
3 The association between gut
microbiota and colorectal cancer

A substantial body of research indicates that changes in the

composition and function of the gut microbiota are closely

associated with the occurrence and progression of colorectal

cancer (Wong and Yu, 2023). In the gut microbiota of colorectal

cancer patients, a pronounced dysbiosis has been observed. The

abundance of certain pathogenic bacteria has significantly

increased; studies have confirmed that the levels of specific

virulent strains of Fusobacterium nucleatum, Escherichia coli, and

Bacteroides fragilis have risen markedly (Quaglio et al., 2022).

Fusobacterium nucleatum can bind to receptors on the surface of
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colorectal cancer cells through its surface adhesins, promoting the

proliferation, migration, and invasion of cancer cells, and it

accumulates in tumor tissues, correlating with poor prognosis

(Góralczyk-Bińkowska et al., 2022). Certain pathogenic strains of

Escherichia coli can produce genotoxins, such as colibactin, which

can induce DNA damage in host cells, leading to genomic instability

and increasing the risk of colorectal cancer (Ling et al., 2022).

Concurrently, the abundance of beneficial bacteria tends to decrease

in the intestines of colorectal cancer patients (Wang et al., 2023b).

Research has shown that beneficial bacteria, such as Bifidobacterium

and Lactobacillus, play crucial roles in maintaining intestinal barrier

integrity, regulating immunity, and inhibiting the growth of

harmful bacteria. A reduction in their numbers weakens intestinal

protective functions, creating favorable conditions for

tumorigenesis (Sen et al., 2021). The gut microbiota also

influences the progression of colorectal cancer through its

metabolic products (Fan et al., 2023). Relevant studies have

indicated that secondary bile acids produced by the gut bacterium

Fusobacterium nucleatum exhibit carcinogenic effects at high

concentrations, inducing intestinal inflammation and cell

proliferation (Schneider et al., 2024). In contrast, short-chain fatty

acids produced by the fermentation of beneficial bacteria, such as

butyrate, exhibit anti-cancer effects by inhibiting tumor cell growth,

inducing apoptosis, and modulating immunity. The imbalance of

metabolic products from the gut microbiota plays a critical role in

the development of colorectal cancer (Feizi et al., 2023).

Table 1 elaborates the multifaceted roles and functional

mechanisms of gut microbiota in colorectal carcinogenesis.

Fusobacterium nucleatum: Aggregates in CRC tissues, activating

NF-kB and Wnt signaling pathways upon colonization. NF-kB, a
pivotal transcription factor, promotes cell proliferation, anti-

apoptosis, and inflammation-associated gene expression upon

activation, fostering a permissive microenvironment for cancer

cell survival. Aberrant Wnt signaling disrupts normal cellular

differentiation and proliferation, driving uncontrolled neoplastic

growth. Escherichia coli: Functions as a driver through

inflammation mediation, inducing chronic mucosal damage and

impaired repair that establishes a pro-carcinogenic inflammatory

milieu. Reactive oxygen species generated during inflammation

exacerbate DNA damage and mutagenesis, accelerating malignant

transformation. Bacteroides fragilis: Produces enterotoxins that

degrade E-cadherin, compromising intercellular junctions and

facilitating metastasis. Concurrently, it induces Th17/IL-17-

mediated inflammation to promote tumor progression.

Bifidobacterium: Exerts protective effects by reducing b-
glucuronidase activity, thereby inhibiting the conversion of

procarcinogens into active carcinogens. Lactobacillus: Mitigates

intestinal acidification through lactate reduction while activating

Toll-like receptors to enhance anti-tumor immunity. Helicobacter

pylori: Elevated in CRC patients, its vacuolating cytotoxin damages

epithelial integrity and potentiates carcinogen susceptibility.

Enterococcus faecalis: Generates extracellular superoxide that

induces DNA damage and dysregulated proliferation.

Eubacterium rectale and Clostridium septicum: Their depletion

reduces protective butyrate/short-chain fatty acid production,
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impairing anti-inflammatory responses and epithelial protection,

thereby elevating CRC risk.

Moreover, the abnormal interaction between the gut microbiota

and the host immune system is also associated with colorectal

cancer. Dysbiosis may lead to alterations in the intestinal immune

microenvironment, resulting in chronic inflammation; the

prolonged stimulation of colonic epithelial cells by inflammatory

factors can promote cellular carcinogenesis, while the immune

system’s ability to surveil and eliminate tumor cells may also be

compromised, further facilitating the progression of colorectal

cancer. These findings underscore the significant role of the gut

microbiota in the pathogenesis of colorectal cancer and provide

critical insights for further exploration of its mechanisms and the

development of therapeutic strategies.
4 Molecular mechanisms of the gut
microbiota in the anticancer activity
against colorectal cancer

4.1 Host genetic variations

In the association between the gut microbiota and colorectal

cancer, host genetic variations play a pivotal role. The microbiota

can influence host gene expression through various mechanisms,

thereby affecting the onset and progression of colorectal cancer.

Relevant studies have indicated that bacteria from the genus

Streptococcus are significantly enriched in colorectal cancer

patients with KRAS gene mutations (Pant et al., 2023).

Additionally, other researchers have confirmed that the

abundance of non-toxigenic Bacteroides fragilis is associated with

a CpG island methylation phenotype (CIMP)-high and

microsatellite instability (MSI)-high status, while the abundance

of enterotoxigenic Bacteroides fragilis correlates with CIMP-high

and BRAF mutations. Furthermore, studies have shown that short-

chain fatty acids can enter host cells and act as signaling molecules

for intracellular transcription factors, inhibiting the expression of
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genes associated with pro-carcinogenic signaling pathways such as

NF-kB, while reducing the activation of genes related to

inflammatory responses and tumor cell proliferation (Zhao and

Zou, 2023). Simultaneously, the microbiota may also influence the

host’s DNA methylation patterns and histone modification states.

Research has demonstrated that beneficial bacteria can regulate the

activity of DNA methyltransferases, leading to the demethylation of

specific tumor suppressor genes and restoring their normal

expression, thereby exerting tumor-suppressive functions (Yu

et al., 2024). In terms of histone modifications, microbial

metabolites can alter the acetylation and methylation levels of

histones, reshaping chromatin structure and resulting in changes

in the expression of genes related to cell cycle regulation and

apoptosis, thereby enhancing the host cells’ resistance to

tumorigenesis. These changes at the level of host genetics reveal

the complex and intricate molecular regulatory network of the gut

microbiota in the anticancer process against colorectal cancer,

providing an important theoretical foundation for further

exploration of prevention and treatment strategies.
4.2 Activation of carcinogenic signaling
pathways

Clinical studies have suggested that the transformation from

normal cells to tumor cells is caused by the disruption of

regulatory mechanisms within cellular pathways (Ronen et al.,

2024). As shown in Table 2, international researchers have

confirmed a relationship between host signaling pathways and

intratumoral bacteria, revealing that colorectal cancer is associated

with the modulation of the peripheral blood PI3K-Akt signaling

pathway (Chen Y. et al., 2024). In a study involving 96 patients with

advanced colorectal cancer, it was indicated that downregulation of

the PI3K-Akt signaling pathway could improve the clinical status of

colorectal cancer. Numerous pathogens transduce the PI3K-Akt

signaling pathway by directly interacting with surface receptors on

colonic epithelial cells. Furthermore, other scholars have

demonstrated a close association between the Notch1 signaling
TABLE 1 The impact and functions of gut microbiota on the occurrence of colorectal cancer.

Microorganisms Impact on Colorectal Cancer Functions

Fusobacterium nucleatum Increased Abundance in Colorectal Cancer
Accumulation in Colorectal Cancer, Activating NF-kB and Wnt

Signaling Pathways

Escherichia coli Oncogenic Role Mediating Inflammation

Bacteroides fragilis Oncogenic Role
Toxic Products, Promoting E-Cadherin Degradation, Inducing Th17/IL-

17 Inflammatory Response

Bifidobacterium Protective Role Reducing b-Glucuronidase Activity

Lactobacillus Protective Role Decreasing Lactate Production, Activating Toll-like Receptors

Helicobacter pylori Increased Abundance in Colorectal Cancer Producing Various Functional Vacuolating Toxins

Enterococcus faecalis Oncogenic Role Generating Extracellular Peroxides Leading to DNA Damage

Faecalibacterium prausnitzii Decreased Abundance in Colorectal Cancer Producing Butyrate

Clostridium septicum Decreased Abundance in Colorectal Cancer Short-chain fatty acids (SCFAs)
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pathway and colorectal cancer (Png et al., 2024). In an experiment

utilizing azoxymethane/dextran sulfate sodium-induced

inflammation-associated colorectal cancer mice, which were

divided into a control group, a model group, and a ginsenoside Rg-

3 group, each consisting of 16 mice, it was concluded that low

expression of the Notch1 signaling pathway is related to enhanced

angiogenesis, thereby inhibiting the progression of azoxymethane/

dextran sulfate sodium-induced colorectal cancer. Research has also

shown that Fusobacterium, through its surface adhesin FadA, binds

to E-cadherin on colonic epithelial cells, activating the Wnt/b-
Catenin signaling pathway and mediating pro-tumor effects (Zhao

et al., 2024). Table 2 elucidates the intricate interactions between gut

microbiota and carcinogenic signaling pathways. The intestinal

microbiota influences oncogenic pathways through multifaceted

mechanisms, encompassing microbial metabolites, inflammatory

responses, and immunomodulatory effects. Specifically, certain

microbial metabolites such as short-chain fatty acids (SCFAs) and

secondary bile acids demonstrate regulatory capacities—either

directly or indirectly—over pivotal carcinogenic signaling pathways

including Wnt/b-catenin, PI3K/AKT, and NF-kB. Furthermore, gut

dysbiosis may induce chronic inflammatory states that subsequently

activate STAT3 and MAPK signaling cascades, thereby fostering

tumorigenesis. Conversely, probiotic species such as Lactobacillus

and Bifidobacterium exhibit antitumor properties through

suppression of these pathological signaling pathways.
4.3 Immunoregulatory effects

The gut microbiota exerts anti-colorectal cancer effects

through various immune modulation pathways. On one hand,

certain beneficial bacteria can stimulate the maturation and

differentiation of immune cells within the intestine (Wegierska

et al., 2022). Research has confirmed that Bifidobacterium and

others can activate dendritic cells, enhancing their antigen-

presenting capabilities, thereby inducing T lymphocyte

differentiation into effector CD8+ T cells with anti-tumor

activity to kill colorectal cancer cells (Mhanna et al., 2024).
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Furthermore, the microbiota can regulate the secretion of

immune-related cytokines. For instance, some Lactobacillus

strains can promote the production of anti-inflammatory factors

such as IL-10 while inhibiting the excessive expression of pro-

inflammatory factors like TNF-a and IL-6, creating an immune

microenvironment conducive to anti-cancer activity and reducing

the risk of inflammation-induced cancer (Liu et al., 2021a). The

immune modulation relationships are illustrated in Figure 2.

Related studies indicate that collecting fecal samples from

infants aged 30 to 35 days and extracting Bifidobacterium

bifidum, Bifidobacterium longum, and Bifidobacterium infantis,

followed by co-culturing with dendritic cells obtained from the

infants’ cord blood, revealed that, except for Bifidobacterium

infantis, the other Bifidobacterium strains could enhance effector

CD8+ T cells and increase IL-10 levels (Chen and Wang, 2022;

Zhu et al., 2022; D’Amico et al., 2023; Lee and Chiu, 2024).

Additionally, the gut microbiota is involved in maintaining the

integrity of the intestinal mucosal barrier. Studies have found that

during Gram-positive bacterial infections, the gut microbiota can

induce the production of Small Proline-Rich Protein 2A

(SPRR2A), which disrupts the cell membrane of Gram-positive

bacteria, preventing such bacteria from breaching the intestinal

barrier (Settanni et al., 2021; Li and Roy, 2023; Liu et al., 2023;

Masenga and Kirabo, 2023; Suslov et al., 2024). Simultaneously,

the gut microbiota can induce intestinal epithelial cells to secrete

mucus and tight junction proteins, blocking the invasion of

harmful substances and pathogens, thereby preventing abnormal

immune activation and indirectly hindering the occurrence and

development of colorectal cancer, contributing to the fight against

colorectal cancer at the level of immune modulation.
4.4 Metabolite-mediated effects

Empirical studies (Zhou et al., 2021; Bastings et al., 2023; Pérez-

Morales et al., 2024) have confirmed that during colorectal

carcinogenesis, gut microbiota-derived metabolites play pivotal

mediating roles. Mitochondria, as central hubs of cellular energy
TABLE 2 The relationship between gut microbiota and carcinogenic signaling pathways.

Microbial Strains Signaling Pathways Biological Effects Literature

Polybacterium

Notch signaling pathway
Mediating the Self-Renewal of Colorectal Cancer Stem

Cells (CCSCs)
(Wong and Yu, 2023)

MAPK(JNK)-AP1 signaling pathway
Upregulation of MMP-7 Expression Induces

Metastasis in Colorectal Cancer Cells
(Quaglio et al., 2022)

Alpk1-NF-kB signaling pathway
Upregulation of the Adhesion Molecule ICAM1

Expression Promotes Metastasis
(Wang et al., 2023b)

Wnt signaling pathway Inducing Metastasis in Colorectal Cancer Cells (Feizi et al., 2023)

Anaerobic Digestion Streptococcus PI3K-Akt signaling pathway

Myeloid-derived suppressor cells, tumor-associated
macrophages, and tumor-associated neutrophils are
significantly increased, driving the progression of

colorectal cancer.

(Chen Y. et al., 2024)

Porphyromonas gingivalis MAPK/ERK signaling pathway Promoting the Proliferation of Colorectal Cancer Cells (Liu et al., 2021a)
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metabolism, exhibit functional interdependence with these

metabolites. Substances such as nicotinamide adenine

dinucleotide (NAD+)-nicotinamide participate in mitochondrial

physiological signaling and energy metabolism. Intestinal

microbiota dysbiosis elevates harmful stimuli, potentially

triggering mitochondrial dynamics alterations—including

aberrant fission-fusion equilibrium—that perturb cellular

metabolism. Kynurenine, a microbial metabolite, engages in

metabolic reprogramming by interacting with mitochondrial

transport proteins (e.g., mitochondrial carrier homolog 1) to

modulate intracellular trafficking and bioenergetics, thereby

promoting colorectal cancer cell proliferation and survival.

Concurrently, microRNAs (miRNAs) regulate mitochondrial

functionality and cellular metabolism through gene expression

modulation (Badgeley et al., 2021). Gut microbiota-derived

vitamins and cofactors—including coenzyme Q10, riboflavin, and

biotin—are indispensable for mitochondrial function maintenance,

participating in oxidative phosphorylation pathways; their

metabolic dysregulation may induce mitochondrial dysfunction

and drive oncogenesis (Wang et al., 2023a; Chandrasekaran et al.,

2024; Lamaudière et al., 2024). Emerging interventions such as

adeno-associated virus (AAV)-mediated gene therapy and

mitochondria-targeting nanoparticles offer novel strategies to

counteract microbiota-metabolite-mediated colorectal cancer

progression. Figure 3 schematically illustrates this metabolite-

mediated mechanism of gut microbiota in colorectal carcinogenesis.
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4.5 Induction of inflammatory responses

Under normal circumstances, the gut microbiota maintains

immune homeostasis; however, under certain conditions, it can

also induce inflammatory responses that promote colorectal cancer

(Li et al., 2021). Some pathogenic bacteria produce endotoxins such

as lipopolysaccharides, which activate pattern recognition receptors

on the surface of host immune cells. Research has confirmed that

Toll-like receptors can initiate inflammatory signaling pathways

such as NF-kB (Kaul et al., 2024). When the NF-kB pathway is

activated, it releases a substantial amount of inflammatory

cytokines, including interleukin-6 (IL-6), tumor necrosis factor-

alpha (TNF-a), and interleukin-17 (IL-17). A sustained

inflammatory environment can lead to DNA damage, abnormal

cell proliferation, and the recruitment of immune cells, creating a

microenvironment conducive to tumor cell proliferation and

metastasis, thereby promoting the occurrence and progression

of colorectal cancer. The mechanisms of action are illustrated

in Figure 4. Furthermore, foundational experimental research has

demonstrated that a study involving 50 SD rats, which constructed a

colorectal cancer model, randomly assigned them into a model

group, a probiotic group, a gut microbiota transplantation group,

and a gut microbiota transplantation plus probiotic group, with 10

rats in each group. The results indicated that gut microbiota

transplantation combined with probiotics significantly alleviated

the inflammatory response in colorectal cancer rats. This leads to
FIGURE 2

Immune modulation relationships of gut microbiota in colorectal cancer.
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FIGURE 3

Mediating relationships of metabolites of gut microbiota in colorectal cancer.
FIGURE 4

Molecular mechanisms of gut microbiota in colorectal cancer.
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the conclusion that there is an association between inflammatory

responses and gut microbiota, which can drive the progression of

colorectal cancer (Xu et al., 2024).
4.6 Maintaining gut barrier function

The integrity of intestinal barrier function is crucial for the

prevention of colorectal cancer, and the gut microbiota plays a key

role in maintaining this barrier function (Melamed et al., 2022;

Gervasi and Mandalari, 2023; Luo et al., 2023). The gut microbiota

enhances tight junctions between intestinal epithelial cells through

various mechanisms. Studies have shown that beneficial bacteria

such as Bifidobacterium and Lactobacillus acidophilus can stimulate

intestinal epithelial cells to secrete tight junction proteins, leading to

increased expression of associated proteins such as ZO-1 and

occludin, which help to reinforce the connections between

epithelial cells and form a tight physical barrier that prevents

harmful substances, bacteria, and toxins from crossing the

intestinal mucosa into the bloodstream, thereby reducing the risk

of intestinal inflammation and tumorigenesis. Additionally, the gut

microbiota is involved in the formation and maintenance of the

mucus layer. Research has indicated that the mucus secreted by

intestinal goblet cells is an important component of the intestinal

barrier, and the gut microbiota can regulate the secretion state of

mucus, making it more viscous to effectively resist pathogen

invasion, reduce damage to intestinal epithelial cells, and mitigate

inflammatory responses, thereby providing a stable internal

environment for intestinal epithelial cells and inhibiting the

occurrence and progression of colorectal cancer (Xu et al., 2020;

Cortés et al., 2021; Matsuzaki et al., 2023).
5 Molecular mechanisms by which gut
microbiota influences the efficacy of
colorectal cancer treatment

5.1 Probiotic supplementation therapy

Probiotic supplementation therapy, as one of the strategies for

modulating the gut microbiota to combat colorectal cancer, has

garnered significant attention in recent years, with its molecular

mechanisms of action encompassing multiple dimensions.

5.1.1 In terms of immune modulation
Many probiotics, such as Bifidobacterium and Lactobacillus

acidophilus, can stimulate the development and maturation of gut-

associated lymphoid tissue, thereby enhancing the activity of immune

cells. Research has confirmed that a study involving 110 gastric cancer

patients divided them into a control group and a probiotic group. The

results indicated that the probiotic group exhibited a significant

enhancement in their immune function. Consequently, it was

concluded that the supplementation of probiotics in gastric cancer
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patients with gastrointestinal dysfunction could promote the

maturation and differentiation of dendritic cells (DCs), upregulate

the expression of surface co-stimulatory molecules, and more

effectively present antigens to T lymphocytes, activating CD4+ and

CD8+ T cells, thereby enhancing the body’s anti-tumor immune

response and inducing apoptosis in cancer cells or inhibiting their

proliferation (Yang et al., 2022). Additionally, probiotics can modulate

the cytokine secretion profile, increasing the production of anti-

inflammatory cytokines such as IL-10 while suppressing the release

of pro-inflammatory cytokines like IL-6 and TNF-a, thereby

maintaining the stability of the intestinal immune microenvironment

and reducing the risk of inflammation-related colorectal cancer (Marra

et al., 2021; Koga, 2022; Zhu and Ding, 2024).
5.1.2 In terms of maintaining intestinal barrier
function

Probiotics can induce intestinal epithelial cells to secrete tight

junction proteins such as ZO-1 and occludin, thereby enhancing the

tight junctions between epithelial cells, reducing intestinal

permeability, and preventing harmful substances, bacteria, and

toxins from entering the body, which decreases damage to the

intestinal mucosa and inflammatory stimuli, consequently

inhibiting the development of colorectal cancer (Kim, 2023; Jiang,

2024; Petruzziello et al., 2024). Research has confirmed that a study

involving 30 pancreatic cancer patients divided them into a control

group and a combination group, with the control group receiving

enteral nutrition and the combination group receiving enteral

nutrition plus probiotic supplementation. The results indicated

that enteral nutrition combined with probiotic supplementation

significantly protected the intestinal mucosal barrier in pancreatic

cancer patients, with Lactobacillus rhamnosus promoting mucus

secretion and forming a thicker and more protective mucus layer

that obstructs the contact between pathogens and intestinal

epithelial cells, thereby maintaining the integrity of the intestinal

barrier (Wu et al., 2024).

5.1.3 In terms of the mediation of metabolic
products

The mechanisms by which gut microbiota exert anti-colorectal

cancer effects through metabolites are complex and multifaceted,

with short-chain fatty acids (SCFAs), secondary bile acids, and

polyamines playing pivotal roles in regulating host physiological

and pathological processes. SCFAs (e.g., butyrate, propionate, and

acetate) are the primary end products of dietary fiber fermentation

by gut microbiota. Butyrate induces histone hyperacetylation by

inhibiting histone deacetylases (HDACs), thereby activating tumor

suppressor genes (e.g., p21 and Bax) and promoting cell cycle arrest

and apoptosis in colorectal cancer cells (Song et al., 2023).

Additionally, butyrate inhibits the NF-kB signaling pathway by

activating G protein-coupled receptors (GPR43 and GPR109A),

reducing the release of pro-inflammatory cytokines (IL-6, TNF-a),
and blocking chronic inflammation-driven carcinogenesis. Clinical

studies have shown that the abundance of butyrate-producing
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bacteria (e.g., Roseburia) is significantly reduced in colorectal

cancer patients, and supplementation with butyrate precursors

(e.g., resistant starch) can restore SCFA levels and inhibit tumor

growth (Zhang et al., 2024). Primary bile acids are converted

into secondary bile acids (e.g., deoxycholic acid and lithocholic

acid) by gut microbiota (e.g., Bacteroides), which exhibit

cytotoxicity and genotoxicity at high concentrations, inducing

DNA damage and oxidative stress. However, beneficial bacteria

such as Bifidobacterium reduce secondary bile acid production by

inhibiting 7a-dehydroxylase activity and promote their conjugation

with taurine to form less toxic compounds for excretion (Ryu,

2020). Furthermore, secondary bile acids can regulate intestinal

stem cell proliferation and differentiation by activating the farnesoid

X receptor (FXR), thereby suppressing abnormal hyperplasia.

Polyamines (e.g., putrescine and spermidine) are important

microbial metabolites that promote intestinal epithelial repair at

low concentrations but stimulate cell proliferation and tumor

progression when excessively accumulated. Probiotics (e.g.,

Lactobacillus acidophilus) degrade excess polyamines by secreting

polyamine oxidase, maintaining intestinal homeostasis. Studies

have shown elevated fecal polyamine levels in colorectal cancer

patients, and probiotic intervention significantly reduces their

concentration, inhibiting tumor angiogenesis (Guven et al., 2020).

Tryptophan is metabolized by microbiota into indole derivatives

(e.g., indole-3-propionic acid), which activate the aryl hydrocarbon

receptor (AhR), promote regulatory T cell differentiation, suppress

Th17-mediated inflammatory responses, and enhance the efficacy

of immune checkpoint inhibitors (e.g., anti-PD-1) (Zaragoza-

Garcıá et al., 2020). Additionally, the activity of indoleamine 2,3-

dioxygenase (IDO) is regulated by microbial metabolites,

influencing tryptophan depletion and T cell function, thus

providing new targets for combination therapy. In summary,

microbial metabolites exert anti-colorectal cancer effects through

multiple pathways, including epigenetic regulation, inflammation

suppression, and immune modulation, making targeted metabolic

pathways a promising direction for future precision.
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5.2 Immunotherapy

Immunotherapy has emerged as one of the important

modalities for the treatment of colorectal cancer, with the gut

microbiota playing a crucial role in this process. Immunotherapy

is a treatment approach that utilizes the body’s own immune system

to combat colorectal cancer. The core of this strategy lies in the

activation and enhancement of the body’s immune cells, such as T

cells and NK cells, enabling them to accurately recognize and attack

colorectal cancer cells (Fan et al., 2021; Lindner et al., 2023; Marano

et al., 2023; Park, 2024). See Figure 5.

5.2.1 Regulation of immune cell function
Gut microbiota can promote the maturation and activation of

dendritic cells (DCs), increase the expression of surface co-

stimulatory molecules, and enhance their antigen-presenting

capacity, thereby more effectively activating cytotoxic T

lymphocytes (CTLs) and helper T lymphocytes (Th), which

improves their cytotoxic effects against colorectal cancer cells

(Wu et al., 2022). Research has confirmed that fresh tumor

tissues from clinical patients were collected to establish a

colorectal cancer model in severely immunodeficient mice, which

were divided into a blank group, a model group, and an immune

modulation agent group. Analysis revealed that the immune

function of the rats in the immune modulation agent group was

significantly improved due to the presence of beneficial bacteria,

such as Bifidobacterium, in the mice, which can modulate the

signaling pathways within DCs, allowing for better recognition of

tumor antigens and presentation to T cells, thereby stimulating an

immune response (Carneiro et al., 2022). Additionally, the gut

microbiota also influences the activity and cytotoxicity of natural

killer (NK) cells (Li and Han, 2024). By secreting specific metabolic

products or interacting with NK cell surface receptors, gut

microbiota can regulate the functional state of NK cells,

enhancing their ability to recognize and kill colorectal cancer

cells, thereby strengthening the body’s anti-tumor immune
FIGURE 5

The relationship between gut microbiota and the occurrence, development, and treatment of colorectal cancer.
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defense in immunotherapy and improving therapeutic outcomes,

providing new targets and research directions for immunotherapy

in colorectal cancer (Dai et al., 2023; Sun et al., 2023; Huang B. et al.,

2024). See Figure 6.
5.2.2 Influence on the expression of immune
checkpoint molecules

The immune checkpoint molecule programmed cell death

receptor 1 (PD-1) and its ligand (PD-L1) are critical factors in

tumor immune evasion. Research has confirmed that relevant

scholars conducted foundational experiments and discovered PD-

1 for the first time through interleukin-3 deprivation in mice (Li X.

et al., 2022; Mafra et al., 2024). This protein is expressed in activated

T/B lymphocytes. The gut microbiota can regulate signaling

pathways within immune cells, thereby influencing the expression

levels of these immune checkpoint molecules. Studies have

demonstrated that transfecting the indoleamine 2,3-dioxygenase

gene into mouse dendritic cells (DCs) and performing real-time

quantitative polymerase chain reaction and immunocytochemical

assays, designated into six groups: DC group, empty vector

transfected DC group, transfected DC group, transfected DC +

tryptophan group, DC + tryptophan metabolite group, and

transfected DC + tryptophan metabolite group, revealed that

transfected DCs can express functional indoleamine 2,3-

dioxygenase gene, and that transfected DCs combined with

tryptophan metabolites can synergistically inhibit CD4+ T cell

proliferation (Feng et al., 2020; Kobayashi et al., 2021; Yu et al.,

2022). It can thus be concluded that certain specific gut microbes,

such as indole and tryptophan metabolites, can act on immune cells

through their metabolic products to reduce the expression of PD-L1

on the surface of tumor cells, making it difficult for tumor cells to

suppress the activity of immune cells, enhancing the cytotoxic

capability of immune cells against tumor cells, and improving the

efficacy of immune checkpoint inhibitors (Zhang et al., 2023;

D’Alessio et al., 2024; Li et al., 2024). Furthermore, the gut

microbiota may also influence the expression of other immune
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checkpoint molecules, such as cytotoxic T lymphocyte-associated

antigen 4 (CTLA-4), thereby regulating the balance between the

immune system and tumor cells from multiple dimensions,

optimizing the effects of immunotherapy, and providing new

research perspectives and potential therapeutic targets for

immunotherapy in colorectal cancer (Pusceddu and Del Bas,

2020; Dikeocha et al., 2022; Ding et al., 2024).

5.2.3 Immunoregulatory role of metabolites
Metabolites produced by the gut microbiota, such as short-

chain fatty acids (SCFAs), play a significant regulatory role in

immunotherapy. SCFAs, particularly butyrate, can inhibit histone

deacetylase (HDAC) activity, thereby altering the gene expression

profile of immune cells and enhancing their immune functions.

Relevant studies have confirmed that butyrate promotes the

differentiation and activation of T cells, enabling them to more

effectively recognize and attack colorectal cancer cells (Guan and

Liu, 2023; Yuan et al., 2024). Additionally, other research has

demonstrated that butyrate can impact the barrier function of

gastrointestinal epithelial cells under inflammatory conditions,

leading to a loss of function (Okumura et al., 2021; Grosicki et al.,

2023; Kang et al., 2023). Furthermore, SCFAs can modulate the

inflammatory response, reducing the release of pro-inflammatory

factors and creating a microenvironment conducive to

immunotherapy, thereby enhancing the infiltration and

cytotoxicity of immune cells against tumors. This synergistic

effect with immunotherapy improves the treatment efficacy for

colorectal cancer, providing new insights for optimizing

immunotherapeutic strategies and revealing the critical role of gut

microbiota metabolites in immune regulation and colorectal

cancer treatment.

5.2.4 Regulation of the tumor microenvironment
On one hand, the microbiota can modulate the cytokine network

within the tumor microenvironment. Beneficial bacteria can stimulate

immune cells to secrete cytokines such as interferon-g and tumor
FIGURE 6

Diagram of molecules regulating immune cell function.
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necrosis factor-a, enhancing the anti-tumor activity of immune cells

while simultaneously inhibiting the production of immunosuppressive

factors such as interleukin-10 and transforming growth factor-b,
thereby reducing immunosuppressive signals within the tumor

microenvironment. On the other hand, gut microbiota influence the

expression and secretion of chemokines (Tanes et al., 2021; Liang et al.,

2022; Guo et al., 2023). Relevant studies have confirmed that the

upregulation of chemokines such as CXCL9 and CXCL10, which are

microbial metabolites, can induce corresponding tumor tissues in

colorectal cancer, attracting more cytotoxic T lymphocytes and

natural killer cells to infiltrate the tumor site, thereby enhancing the

cytotoxic effects of immune cells against tumor cells, remodeling the

tumor microenvironment from an immunosuppressive state to an

immune-activated state, and improving the efficacy of immunotherapy

for colorectal cancer, thus opening new avenues for comprehensive

treatment of colorectal cancer (Marzhoseyni et al., 2024). See Figure 7.
5.3 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT), as an emerging

therapeutic approach, exhibits a unique mechanism of action in

the association between gut microbiota and the efficacy of colorectal

cancer treatment, offering new insights and hope for the

management of colorectal cancer (Chi et al., 2021; Liu Y. et al.,

2022; Saygili et al., 2024). The impact of FMT on the efficacy of

colorectal cancer treatment is primarily achieved through the

restructuring of the gut microbiota composition. The feces of

healthy donors contain a rich and diverse microbial community,

which, upon transplantation into patients, can rectify the dysbiotic

state of the gut microbiota in colorectal cancer patients (Halverson

and Alagiakrishnan, 2020; Guo et al., 2022; Nabizadeh et al., 2023;

Hammer et al., 2024). Studies have confirmed that beneficial

bacteria with anti-cancer properties, such as butyrate-producing

bacteria and bifidobacteria, may recolonize and proliferate

significantly within the recipient’s gut, inhibiting the growth of

harmful bacteria and optimizing the gut microbial ecosystem,

thereby creating favorable conditions for subsequent anti-cancer

therapies (Ding and Xiao, 2020; Młynarska et al., 2022;

Lloyd, 2024).
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5.3.1 Immunomodulation aspect
Fecal microbiota transplantation (FMT) can significantly

influence the immune response of the host. Clinical studies have

demonstrated that the transplanted gut microbiota can modulate

the function of gut-associated lymphoid tissue, leading to

alterations in the activity and function of immune cells such as T

lymphocytes and natural killer cells (Polak et al., 2021; Calabrò

et al., 2023; Chasov et al., 2024). Beneficial bacteria can enhance the

antigen-presenting capacity of dendritic cells by stimulating their

maturation and activation, thereby activating cytotoxic T

lymphocytes to exert cytotoxic effects against colorectal cancer

cells (Xu et al., 2024; Loo et al., 2020; Sasso et al., 2023; Su et al.,

2024). Concurrently, FMT may also regulate the cytokine secretion

profile, inhibiting the excessive production of inflammatory factors

such as tumor necrosis factor-a and interleukin-6, alleviating

intestinal inflammatory responses, enhancing the host’s anti-

tumor immune response, and improving the efficacy of

immunotherapeutic agents (Zhao et al., 2022; Bernabeu et al.,

2024; Wang et al., 2024).

5.3.2 Metabolic pathways aspect
Fecal microbiota transplantation (FMT) involves the transfer of

functional microbial communities from healthy donor feces into the

intestinal tract of patients to reconstruct gut microbiota homeostasis.

Colorectal cancer patients typically exhibit dysbiosis characterized by

increased pathogenic bacteria and diminished beneficial species. FMT

enhances the abundance and diversity of beneficial intestinal flora such

as Bifidobacterium and Lactobacillus, which participate in multiple

metabolic pathways. Post-FMT intervention, gut microbiota

metabolizes dietary fibers to produce short-chain fatty acids (SCFAs)

including acetate, propionate, and butyrate. Animal studies

demonstrate that FMT-treated mice exhibit 2.5-fold elevation in

colonic butyrate concentrations and 40% reduction in tumor volume

(Kim and Lee, 2021; Li Z. et al., 2022; Kong et al., 2023). As the primary

energy substrate for colonocytes, butyrate promotes normal cellular

proliferation and differentiation while exhibiting inhibitory effects on

colorectal carcinogenesis (Gou et al., 2023; Huang et al., 2023; Ionescu

et al., 2023). Concurrently, SCFAs modulate intestinal pH levels to

suppress pathogenic bacterial growth and maintain mucosal

microenvironment stability. Gut microbiota participates in bile acid
FIGURE 7

Molecular diagram of tumor microenvironment regulation.
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biotransformation, with FMT regulating metabolic pathways to

enhance conversion of primary bile acids into secondary forms.

Certain secondary bile acids like lithocholic acid demonstrate

carcinogenic potential, whereas FMT-mediated metabolic modulation

alters bile acid composition ratios, reducing oncogenic derivatives and

mitigating colorectal cancer risk. Clinical investigations reveal post-

FMT elevation in fecal taurocholic acid proportions negatively

correlating with tumor marker (CEA) levels (Wei et al., 2024). FMT

modulates tryptophan metabolism pathways, promoting generation of

indole derivatives that activate aryl hydrocarbon receptors. These

metabolites regulate immune responses, enhance epithelial barrier

integrity, and remodel tumor immune microenvironments, thereby

inhibiting neoplastic progression and metastasis (Gamez-Belmonte

et al., 2023; Png et al., 2024). Collectively, FMT orchestrates

multidimensional metabolic reprogramming to reconstruct intestinal

microenvironments, offering novel therapeutic strategies for colorectal

cancer management through metabolic pathway regulation.

5.3.3 Tumor microenvironment aspect
Following colonization in the gut, transplanted healthy fecal

microbiota alter the composition and metabolites of the intestinal

microbiome, indirectly influencing the tumor microenvironment

(Chen H. et al., 2023; Chen S. et al., 2023; Lu et al., 2024).

Metabolites produced by beneficial bacteria modulate cytokine

levels in the tumor microenvironment, reducing the secretion of

pro-tumorigenic cytokines such as IL-6 and TNF-a while

increasing the release of anti-tumor cytokines like IFN-g, thereby
inhibiting tumor cell proliferation and metastasis (Cho et al., 2020;

Dong et al., 2022; Zheng et al., 2024). Additionally, fecal microbiota

transplantation (FMT) impacts immune cell infiltration and

function within the tumor microenvironment. Studies have

shown (Katoh and Katoh, 2022) that FMT promotes the

infiltration of more CD8+ T lymphocytes and natural killer cells

into tumor tissues, enhancing their cytotoxic activity against tumor

cells, while suppressing the function of immunosuppressive cells

such as regulatory T cells. This reshapes the immune balance in the

tumor microenvironment, shifting it from a pro-tumor to an anti-

tumor state, improving the therapeutic efficacy of colorectal cancer,

and opening new avenues for its comprehensive treatment.
5.4 The beneficial role of microbiota in
preventing adverse events associated with
radiotherapy and chemotherapy for
colorectal cancer

Radiotherapy and chemotherapy are the cornerstone treatments

for Colorectal Cancer (CRC), yet their adverse effects, including

gastrointestinal toxicity, immunosuppression, and secondary

infections, severely limit therapeutic efficacy and decrease

patients’ quality of life. Recent studies have shown that the gut

microbiota alleviates these treatment-related adverse events

through multidimensional mechanisms, with specific modes of

action as follows:
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5.4.1 Maintaining intestinal barrier function:
resisting pathogen invasion and inflammation
spread

Chemotherapeutic drugs (such as 5-fluorouracil and irinotecan)

and radiotherapy can induce intestinal epithelial cell apoptosis and

disrupt tight junction proteins (e.g., ZO-1, occludin), leading to

“leaky gut,” which facilitates the translocation of intestinal

endotoxins (e.g., lipopolysaccharide) into the bloodstream,

triggering systemic inflammatory responses and even sepsis. The

gut microbiota repairs barrier function through the following

pathways: Direct protective effects of probiotics: Bifidobacteria and

lactobacilli stimulate intestinal epithelial cell proliferation and

migration by activating the epidermal growth factor receptor

(EGFR) signaling pathway, accelerating mucosal repair. For

example, the extracellular polysaccharides secreted by Lactobacillus

reuteri upregulate occludin expression and reduce irinotecan-

induced intestinal permeability increases (Dariya et al., 2020).

Barrier-enhancing effects of short-chain fatty acids (SCFAs):

Butyrate promotes goblet cell secretion of mucin MUC2 by

inhibiting histone deacetylase (HDAC), forming a dense mucus

layer that physically isolates pathogens from epithelial contact.

Animal experiments show that supplementing with butyrate

precursors (resistant starch) increases the mucus layer thickness by

50% in irradiated mice, significantly reducing the risk of bacterial

translocation (Liu et al., 2021b). Inhibition of pro-inflammatory

cytokine release: Probiotics (e.g., Lactobacillus acidophilus)

downregulate the nuclear factor-kB (NF-kB) pathway, reducing

the production of tumor necrosis factor-a (TNF-a) and

interleukin-6 (IL-6), blocking secondary damage to the intestinal

barrier by inflammatory cascades. Clinical evidence: A randomized

controlled trial involving 200 CRC chemotherapy patients showed

that combined use of bifidobacteria and fructooligosaccharides

(prebiotics) reduced the incidence of grade 3 or higher diarrhea

from 42% to 18% (P<0.01), with a 60% decrease in serum endotoxin

levels (Wong et al., 2020).

5.4.2 Regulating immune homeostasis: balancing
inflammation and immune reconstruction

Radiotherapy and chemotherapy often lead to bone marrow

suppression and lymphocyte depletion, increasing the risk of

opportunistic infections. The gut microbiota restores immune

homeostasis through the following mechanisms: Enhancing innate

immune responses: Bifidobacterium enhances the phagocytic function

of neutrophils and macrophages by activating Toll-like receptor 2

(TLR2) and promoting the secretion of interferon-g (IFN-g) by

dendritic cells (DCs). For example, in a mouse model of

radiotherapy, supplementation with Bifidobacterium longum restored

neutrophil counts to 80% of normal levels, significantly reducing sepsis

mortality (Reis et al., 2019). Regulating adaptive immunity: Butyrate

induces the differentiation of regulatory T cells (Tregs) by activating the

GPR43 receptor, inhibiting excessive inflammatory responses.

Meanwhile, propionate reduces IL-17-mediated intestinal damage by

inhibiting Th17 cell differentiation. Clinical studies have shown a

positive correlation between butyrate concentration in the feces of
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CRC patients and the proportion of Tregs in peripheral blood (r=0.71),

suggesting its immune-modulating potential (Erfanian et al., 2023).

Improving the efficacy of immune checkpoint inhibitors (ICIs): The

gut microbiota, such as butyrate-producing bacteria, enhances the

antitumor effect of ICIs by upregulating the sensitivity of the PD-1/

PD-L1 signaling pathway. A retrospective analysis found that among

CRC patients receiving anti-PD-1 treatment, those with a higher

abundance of Faecalibacterium in the gut had an objective response

rate (ORR) of 45%, significantly higher than that of the low-abundance

group (15%) (Biondi et al., 2021).

5.4.3 Metabolic detoxification and antioxidation:
reducing therapeutic toxicity

Chemotherapeutic agents and radiotherapy generate reactive

oxygen species (ROS) and toxic metabolites, which can exacerbate

tissue damage. The gut microbiota exerts a detoxifying effect through

the following pathways: Drug metabolism and transformation:

Certain Clostridium species, such as Clostridium butyricum, express

b-glucuronidase, which reconverts the toxic metabolite SN-38G of

irinotecan into its inactive form, thereby reducing intestinal epithelial

cell damage. Animal experiments have shown that supplementation

with C. butyricum can reduce intestinal SN-38 concentration by 70%

and decrease the incidence of mucositis by 50% (Ghanavati et al.,

2020; An et al., 2023; Cho et al., 2024). Antioxidant defense: Probiotics,

such as Lactobacillus plantarum, neutralize free radicals generated by

radiotherapy by secreting glutathione (GSH) and superoxide

dismutase (SOD). In vitro studies have demonstrated that the

supernatant of Lactobacillus plantarum can reduce the apoptosis

rate of radiation-induced intestinal epithelial cells from 35% to 12%

(Garavaglia et al., 2022). Bile acid metabolism regulation: Secondary

bile acids, such as deoxycholic acid, can induce intestinal epithelial

apoptosis by activating the farnesoid X receptor (FXR). However,

Bifidobacterium reduces the production of secondary bile acids by

inhibiting 7a-dehydroxylase activity. Clinical trials have confirmed

that probiotic intervention can lower deoxycholic acid levels in the

feces of CRC patients by 40%, which is significantly correlated with

improved mucosal injury scores (Liu X. et al., 2022).

5.4.4 Inhibiting opportunistic pathogens:
reestablishing ecological balance of gut
microbiota

Antibiotic overuse and immunosuppression readily lead to

overproliferation of pathogens such as Clostridioides difficile,

while microbiota intervention can restore ecological balance

through the following mechanisms: Competitive exclusion: Fecal

microbiota transplantation (FMT) introduces butyrate-producing

bacteria (e.g., members of the genus Roseburia) to competitively

inhibit the colonization of C. difficile. A multicenter study showed

that FMT achieved a cure rate of 92% for recurrent C. difficile

infections, significantly outperforming vancomycin (67%) (Benito

et al., 2021; Barreira et al., 2023). Antimicrobial substance secretion:

Lactic acid bacteria directly kill drug-resistant bacteria by producing

bacteriocins (e.g., reuterin). In vitro experiments demonstrated that

reuterin secreted by Lactobacillus reuteri could eliminate 90% of
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methicillin-resistant Staphylococcus aureus (MRSA) within 6 hours

(Chen et al., 2020; Sharma and Shukla, 2020; Rohani et al., 2024).

Metabolite inhibition of pathogens: Butyrate inhibits the growth of

pathogenic bacteria (e.g., Salmonella) by lowering intestinal pH.

Additionally, the antimicrobial properties of secondary bile acids

can selectively eliminate some Gram-negative bacteria, maintaining

microbial stability.
6 Conclusion and prospects

6.1 Conclusion

The intestinal microbiota exhibits intricate and pivotal

mechanisms in combating colorectal carcinogenesis. On one hand,

beneficial microorganisms enhance immune surveillance through

immunomodulation, activating effector cells to improve neoplastic

cell recognition and cytotoxicity, while simultaneously suppressing

pro-inflammatory cascades and reducing pro-carcinogenic factor

production. On the other hand, microbial metabolites such as

short-chain fatty acids (SCFAs) exert anticancer effects by

modulating cellular proliferation, apoptosis, and epigenetic

modifications. Multi-omics technologies provide robust

methodologies for mechanistic exploration: metagenomics enables

comprehensive profiling of microbial genetic architecture to identify

potential anticarcinogenic functional genes; metabolomics captures

dynamic metabolite flux to pinpoint critical therapeutic biomolecules;

while transcriptomics and proteomics delineate molecular cross-talk

between microbial communities and host cells at gene expression and

protein interaction levels. Current research limitations persist,

particularly in elucidating the tripartite interaction network

encompassing gut microbiota-host-environment crosstalk, with

mechanistic pathways of specific microbial taxa and their metabolic

derivatives remaining partially characterized.
6.2 Future prospects

With the advancement of multi-omics technologies, single-cell

sequencing, and bioinformatics, there is a promising prospect for

further elucidating the intricate molecular interaction networks

between the gut microbiome and colorectal cancer. This progress

may facilitate the realization of personalized diagnostics and

precision therapies based on the gut microbiome, thereby offering

new hope for improving the prognosis and quality of life of

colorectal cancer patients and propelling the prevention and

treatment of colorectal cancer to new heights.
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