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Tuberculosis (TB) remains a global health challenge, with timely and accurate

diagnosis being critical for effective disease management and control. Recent

advancements in the field of TB diagnostics have focused on the identification

and utilization of blood-based biomarkers, offering a non-invasive, rapid, and

scalable approach to disease detection. This review provides a comprehensive

overview of the latest progress in blood-based biomarkers for TB, highlighting

their potential to revolutionize diagnostic strategies. Furthermore, we explore

emerging technologies such as NGS, PET-CT, Xpert and line probe assays, which

have enhanced the sensitivity, specificity, and accessibility of biomarker-based

diagnostics. The integration of artificial intelligence (AI) and machine learning

(ML) in biomarker analysis is also examined, showcasing its potential to improve

diagnostic accuracy and predictive capabilities. This review underscores the need

for multidisciplinary collaboration and continued innovation to translate these

promising technologies into practical, point-of-care solutions. By addressing

these challenges, blood-based biomarkers and emerging technologies hold the

potential to significantly improve TB diagnosis, ultimately contributing to global

efforts to eradicate this devastating disease.
KEYWORDS

tuberculosis, blood-based biomarkers, diagnostic technologies, artificial intelligence,
global health
1 Introduction

Tuberculosis (TB) is a chronic infectious disease caused byMycobacterium tuberculosis

(Mtb), primarily leading to pulmonary infection (Miggiano et al., 2020). Other organs such

as the brain, gut, and lymph nodes can also be infected, causing extra-pulmonary
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tuberculosis (Rodriguez-Takeuchi et al., 2019).According to the

World Health Organization (WHO), tuberculosis stands as one of

the world’s deadliest infectious diseases, with an estimated 10.6

million individuals infected in 2024 (Ghebreyesus, 2024). Moreover,

1.3 million people, including 167,000 individuals living with HIV,

lost their lives to TB. About a quarter of the world’s population

harbors latent tuberculosis infection (LTBI), and between 5% to

10% of those with LTBI are expected to develop symptoms and

advance to active tuberculosis (aTB) (Getahun et al., 2015; Ying

et al., 2022).

The widespread spread of tuberculosis is mainly due to the lack

of a reliable, rapid, and accessible test for diagnosing TB (Nogueira

et al., 2022). Traditional diagnostic methods, such as sputum smear

microscopy, are commonly used in low- and middle-income

countries due to their affordability and simplicity (Figure 1,

Supplementary Table S1). However, these methods have

significant limitations, including low sensitivity and a high

detection threshold (requiring sputum with more than 1,000

bacilli/mL) (Steingart et al., 2006). Although sputum culture offers

high sensitivity (>98%) and a lower detection threshold (>10 bacilli/
Frontiers in Cellular and Infection Microbiology 02
mL), its lengthy culture duration of 2–8 weeks hinders timely

diagnosis and treatment (Domıńguez et al., 2023), potentially

leading to further TB dissemination. Additionally, tuberculin skin

tests (TST) or interferon-gamma release assays (IGRA) are

recommended for identifying individuals with LTBI (Hamada

et al., 2021). However, TST may yield false-positive results in

individuals who have received the BCG vaccine or have been

exposed to non-tuberculous mycobacteria (NTM), while IGRA

may be less reliable in children under 5 years old and individuals

with hematologic disorders or severe immunosuppression

(Mandalakas et al., 2011). The emergence of drug-resistant strains

of Mtb further complicates TB diagnosis and management (Farhat

et al., 2024). In 2020, only 71% of patients with confirmed TB were

tested for rifampin resistance, with less than half receiving

appropriate resistance treatment and a success rate of merely 60%

(Bagcchi, 2023). Drug-resistant TB can result in treatment

challenges, recurrence of the disease, and the development of

extensively drug-resistant tuberculosis (XDR-TB) (Seung et al.,

2015), prolonging treatment duration and reducing cure rates

(Farhat et al., 2024).
FIGURE 1

The strategy of existing traditional technologies.
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To address these challenges, the current recommendation is to

utilize rapid molecular diagnostic tests, such as Xpert MTB/RIF Ultra

and Truenat, as the initial diagnostic tool for individuals showing

signs and symptoms of TB (Bagcchi, 2023). However, the progress of

rapid molecular testing has been sluggish, and its implementation in

low- and middle-income countries has been hindered by its

prohibitive cost. In 2024, out of 6.4 million diagnosed patients,

only 38% were detected using rapid molecular techniques, indicating

a need for further advancement and the discovery of additional

biomarkers (Carranza et al., 2020; Ghebreyesus, 2024.).

This manuscript provides a comprehensive overview of the

strengths, limitations, and clinical applications of several traditional

tuberculosis (TB) diagnostic methods. Additionally, it highlights the

latest advancements in TB detection technologies, including PET-

CT, Xpert MTB/RIF, next-generation sequencing (NGS), and line

probe assays, which demonstrate exceptional sensitivity, accuracy,

and versatility in various clinical settings. The study also explores

the latest TB biomarkers discovered through advanced omics

technologies like transcriptomics, metabolomics, and proteomics.

These biomarkers are rigorously assessed for their sensitivity,

specificity, and practical application, providing key insights into

their potential to transform TB diagnosis and management.
2 Novel technologies for TB detection

In recent years, TB diagnostics have undergone continuous

innovation, marked by groundbreaking advancements: The Xpert

MTB/RIF nucleic acid amplification technology has notably

enhanced diagnostic efficiency through rapid detection and

simultaneous analysis of rifampicin resistance genes; AI/ML-based

microscopy image analysis systems have achieved automated

interpretation of sputum smears, substantially reducing manual

errors; PET-CT metabolic-anatomical fusion imaging enables

precise localization of active lesions, offering novel pathways for

early diagnosis of extrapulmonary TB; and line probe assays (LPAs)

facilitate rapid screening of multidrug-resistant tuberculosis (MDR-

TB) via targeted analysis of drug resistance gene mutations (Figure 2,

Supplementary Table S2).The synergistic integration of these

technologies is propelling TB diagnosis and treatment toward

precision medicine and intelligent healthcare paradigms (Khan

et al., 2024).
2.1 Automated fluorescent microscopy for
AI-driven tuberculosis detection

Sputum smear microscopy is the primary diagnostic method for

a TB in low-income countries (Hung et al., 2007), with the two most

commonly used detection methods being bright-field microscopy

and fluorescence microscopy. Manual counting methods require

trained inspectors and significant time to search for acid-fast bacilli

(AFB) under microscopic vision (Kotei and Thirunavukarasu,

2022). However, implementing an automated system for reading

microscopic slides can reduce subjectivity in results and improve
Frontiers in Cellular and Infection Microbiology 03
the performance of smear microscopy (Mota Carvalho et al., 2023).

MetaSystems’ automated fluorescent AFB slide scanner and

analyzer represents an innovative commercial solution that

integrates computer vision artificial intelligence (AI) with

automated digital microscopy (DM) systems (Tomasello et al.,

2022). The image acquisition and analysis of AFB slides are

performed by the proprietary Metafer software platform, which

incorporates a manufacturer-trained deep neural network (DNN)

architecture. This advanced AI system, developed through

supervised learning methodologies, employs a probabilistic

scoring mechanism to accurately identify and classify objects with

potential AFB characteristics (Desruisseaux et al., 2024). Among the

496 qualified smears that met the quality control criteria, the

MetaSystems platform demonstrated a sensitivity of 97.0% and a

specificity of 12.7% when used independently. When positive scans

were utilized to assist technologists, the MetaSystems platform

achieved a sensitivity of 70.7% and a specificity of 89.0%. Fu et al.

further advanced the field by developing an automated microscope

system (µ-Scan 1.1) powered by a convolutional neural network

(CNN) algorithm, which achieved remarkable performance in

detecting acid-fast bacilli (AFB) in tuberculosis sputum smears,

with an accuracy of 95.2%, sensitivity of 85.7%, and specificity of

96.9%. In parallel, an innovative cough audio classifier was

developed, leveraging AI and ML technologies to analyze cough

sounds for tuberculosis detection. When tested in Tanzania, this

classifier demonstrated promising results with a sensitivity of 80%

and specificity of 90%, underscoring the significant potential of AI

in delivering accessible diagnostic solutions, particularly in regions

with constrained healthcare infrastructure (Fu et al., 2022).
2.2 PET-CT imaging for tuberculosis
diagnosis

Chest X-ray, while maintaining its status as the most extensively

employed screening modality for suspected pulmonary tuberculosis

(PTB) cases, demonstrates significant limitations in detecting early-

stage infections and extrapulmonary manifestations owing to its

restricted sensitivity and lack of functional imaging capabilities

(Feyisa et al., 2023; Sossen et al., 2023). CT and MRI are the

preferred imaging techniques for assessing disease presence in

specific body sites when sputum is negative or extrapulmonary

tuberculosis is suspected (Skoura et al., 2015; Rodriguez-Takeuchi

et al., 2019). Positron emission tomography-computed tomography

(PET-CT) has emerged as a promising early diagnostic modality for

tuberculosis, integrating the functional metabolic imaging capabilities

of PET with the high-resolution anatomical details provided by CT,

thereby establishing a comprehensive diagnostic framework for

tuberculosis detection and evaluation. During the diagnostic

procedure, patients undergo intravenous administration of the

radioactive tracer 18F-fluorodeoxyglucose (18F-FDG), which serves

as a metabolic marker. The PET scanner subsequently detects the

positron emissions resulting from the radioactive decay of 18F-FDG,

enabling both qualitative visualization and quantitative assessment of

metabolic activity in tuberculosis lesions (Lamarca et al., 2019).When
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1567592
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fcimb.2025.1567592
combined with CT’s superior anatomical imaging capabilities, this

hybrid imaging modality facilitates precise localization and

characterization of tuberculosis lesions, significantly enhancing

diagnostic accuracy and enabling comprehensive evaluation of

disease extent and progression (Bomanji et al., 2020). A

comprehensive study conducted by Josef Yayan and colleagues

revealed that FDG-PET-CT, while susceptible to interference from

other inflammatory diseases, achieved an average diagnostic

sensitivity of 82.6% and specificity of 67.3% in tuberculosis

detection, demonstrating superior diagnostic performance with

significantly higher sensitivity rates compared to conventional

methods such as sputum testing (55%), sputum culture (70%), and

chest X-ray imaging (72.5%) (Yayan et al., 2024).
2.3 Xpert for the detection of tuberculosis

The Xpert MTB/RIF assay (Xpert) and the MTB/RIF Ultra

assay (Ultra) are the World Health Organization-recommended
Frontiers in Cellular and Infection Microbiology 04
rapid molecular detection methods for tuberculosis (Bagcchi, 2023).

These assays are utilized for initial diagnostic testing and rifampicin

resistance testing in all patients showing signs and symptoms of

tuberculosis (Chakravorty et al., 2017). Xpert MTB/RIF is an

automated polymerase chain reaction (PCR) test conducted on

the GeneXpert platform. Unlike traditional nucleic acid

amplification (NAA) tests, Xpert MTB/RIF integrates sample

processing, PCR amplification, and detection into a single self-

contained test unit (Boehme et al., 2010). All detection steps are

self-contained and isolated after sample introduction, with strong

Mtb-killing ability upon test completion, enabling Xpert to

effectively address biosafety concerns during the assay process.

Xpert MTB/RIF Ultra is an enhanced assay that features a newly

designed cartridge and can be operated on the same device after a

software update (Xie et al., 2024). Compared to Xpert MTB/RIF,

Xpert Ultra includes two different multi-copy amplification targets

and a larger DNA reaction chamber. The limit of detection (LOD)

for TB testing with Ultra is 15.6 colony-forming units (CFUs) per

mL inMtb-spiked sputum, which is approximately 8 times higher in
FIGURE 2

The strategy of novel technologies for TB detection.
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sensitivity than Xpert MTB/RIF (Chakravorty et al., 2017). Ultra is

expected to improve TB case detection rates, especially in

individuals with paucibacillary TB such as those with HIV co-

infection, as well as in pediatric patients and those with

extrapulmonary TB who typically have lower mycobacterial loads

(Wang et al., 2022).

In a comprehensive meta-analysis conducted by Man-Qing

Wang and colleagues, systematic evaluation of 187 fourfold tables

derived from 72 independent studies demonstrated that Xpert

MTB/RIF Ultra achieved an overall pooled sensitivity of 76% and

specificity of 95% for pulmonary tuberculosis detection.

Furthermore, the assay showed enhanced diagnostic performance

in detecting rifampin resistance, with pooled sensitivity reaching

94% and specificity of 97% (Wang et al., 2025).

According to the WHO report, over 80% of rifampicin-resistant

TB patients are also resistant to isoniazid, while the majority of

rifampicin-resistant patients have MDR-TB (Gandhi et al., 2010).

The use of Xpert has greatly enhanced the diagnosis of RIF-R and

MDR tuberculosis, leading to a three- to eight-fold rise in global

MDR-TB testing between 2010 and 2016 (Penn-Nicholson et al.,

2022).Known as the only automated molecular assay of lower

complexity, Xpert MTB/XDR is well-suited for a wider range of

resistance testing and for use in lower-level laboratory networks

(Tabriz et al., 2020; Pillay et al., 2022). This assay is proficient in

detecting M. tuberculosis complex (MTBC) DNA and mutations

linked to resistance against isoniazid, fluoroquinolones (ofloxacin,

moxifloxacin, levofloxacin, gatifloxacin), second-line injectable

drugs (amikacin, kanamycin, capreomycin), and ethionamide (Su

et al., 2017; Pillay et al., 2022).
2.4 Line probe assay for the detection of
tuberculosis

Line probe assays (LPAs) are a genotyping technique used for

detecting drug-resistant Mtb, utilizing DNA-DNA hybridization

technology and multiple probes to simultaneously identify common

resistance mutations (Meaza et al., 2017). Currently endorsed by the

WHO for the initial drug resistance screening of sputum smear-

positive samples are line probes such as GenoType MTBDRplus,

Nipro NTM+MDR-TB, and GenoType MTBDRsl (MacLean et al.,

2020; Brankin et al., 2022). GenoType MTBDRplus and Nipro

NTM+MDR-TB target mutations in the rpoB, katG, and inhA

genes, along with the promoter region, to assess resistance to

isoniazid and rifampicin (Ferreira Junior et al., 2014). On the

other hand, GenoType MTBDRsl examines resistance to

ethambutol, quinolones, and second-line injectables by detecting

mutations in the gyrA, rrs, and embB genes (Brossier et al., 2010;

Pinhata et al., 2023).

In a study involving 379 strains and 644 sputum samples

(Meaza et al., 2017), the sensitivity and specificity of GenoType

MTBDRplus and Nipro NTM+MDR-TB in detecting rifampin

resistance ranged from 90.3%-98.2% to 97.8%-98.5% and 92%-

96.5% to 97.5%-98.5%, respectively. For isoniazid resistance
Frontiers in Cellular and Infection Microbiology 05
detection, the sensitivity and specificity were 89.1% and 95.4% to

98.8%-99.4% and 89.6%-94.9% to 97.6%-100%, respectively. Gardee

et al. found that compared to phenotypic drug susceptibility testing,

GenoType MTBDRsl version 2.0 showed 100% sensitivity for

fluoroquinolone resistance and 89.2% sensitivity for second-line

injectable drug resistance, with specificities of 98.9% and 98.5%,

respectively (Bouzouita et al., 2021). LPAs provide a rapid

diagnostic approach for XDR-TB and MDR-TB. However, due

to incomplete understanding of the molecular mechanisms of

anti-TB drug resistance, LPA targets are limited to common drug

resistance mutations (Mindru et al., 2016).
2.5 Targeted next-generation sequencing
for the diagnosis of tuberculosis

Genotypic drug susceptibility testing methods analyze

mutations in the Mtb genome associated with drug resistance

(Yan et al., 2023). Nucleic acid amplification tests (NAATs) are

commonly used for this purpose due to their simplicity and ability

to provide results quickly, thereby improving access to drug

susceptibility testing (Cantera et al., 2019; Wang et al., 2023).

However, NAATs are limited in their scope, targeting only a few

known resistance mutations and a select range of drugs.

In contrast, targeted next-generation sequencing (NGS)

technology combines gene amplification with high-throughput

sequencing to detect resistance to multiple drugs in a single test

(Bewicke-Copley et al., 2019; Satam et al., 2023). Targeted NGS can

examine entire genes for specific resistance mutations, potentially

offering greater accuracy. Furthermore, new targeted NGS assays

can identify resistance to novel and repurposed drugs not covered

by other molecular tests recommended by the WHO, making them

a promising option for comprehensive resistance detection aligned

with modern treatment protocols (Schwab et al., 2024).

A recent survey conducted across fifty-three countries, including

those on the WHO’s list of high-burden tuberculosis countries, aimed

to assess the diagnostic accuracy of targeted NGS for various drugs,

including rifampicin, isoniazid, ethambutol, pyrazinamide,

streptomycin, injectable drugs (amikacin, capreomycin, and

kanamycin), moxifloxacin, and fluoroquinolones like levofloxacin

and moxifloxacin (Schwab et al., 2024). The study found that

targeted NGS demonstrated an overall sensitivity of 94.1% (95% CrI

90.9 - 96.3) and a specificity of 98.1% (97.0 - 98.9) for drug-resistant

tuberculosis testing. In March 2024, the WHO updated its guidelines

to include targeted NGS as a recommended tool for rapid diagnostics

in tuberculosis detection, highlighting the growing importance and

effectiveness of this technology in the fight against drug-resistant TB.
3 Potential blood-based biomarkers
for tuberculosis diagnosis

Blood-based biomarkers for tuberculosis enable non-invasive,

rapid, and highly sensitive diagnosis, with significant clinical
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potential (Li et al., 2025). Their non-invasive nature simplifies

sample collection, avoiding the discomfort of traditional methods

like sputum tests or biopsies, especially benefiting children, the

elderly, and those unable to provide sputum. Blood-based methods

(e.g., ELISA, PCR, mass spectrometry) deliver results in hours,

speeding up diagnosis and enabling early treatment. Specific

biomarkers (e.g., IP-10, RISK6) are elevated in active tuberculosis,

improving sensitivity for low bacterial load cases (Pan et al., 2021).

By integrating multiple biomarkers (e.g., cytokines, gene expression,

metabolites), the accuracy and specificity of diagnosis can be further

enhanced, effectively reducing misdiagnosis and missed diagnoses

(Tables 1, 2). Additionally, blood testing technology is well-

established, easy to standardize, and suitable for widespread use

in resource-limited settings.
3.1 Cytokine-based biomarkers for
tuberculosis diagnosis

Adaptive immunity plays a critical role in the progression of

tuberculosis, a fact well-established and extensively documented

(Jasenosky et al., 2015; de Martino et al., 2019). In the early stages of

Mtb infection, cell-mediated immune responses are vital for

containing the pathogen within a localized lung area (Li et al.,

2019; Shaukat et al., 2023). In a study conducted by Muthya Pragun

Acharya et al., 245 individuals were recruited and categorized into

groups including PTB, EPTB, LTBI, healthy controls (HCs), cured

tuberculosis (CTB), and sick controls (SCs). Host immune

biomarkers in peripheral blood mononuclear cells were identified

using multicolor flow cytometry in a cohort of 56 subjects. The

clinical performance of these biomarkers was subsequently

evaluated in a blind validation cohort of 165 subjects using whole

blood (Acharya et al., 2021). The results indicated that the

frequencies of cytokine-secreting Mtb-specific CD4 T cells with

the CD38+CD27– phenotype clearly distinguished individuals with

active tuberculosis from those without the disease. Among the

cytokines tested, tumor necrosis factor-a (TNF-a) secretion from

CD38+CD27-CD4+ T cells upon stimulation with ESAT6/CFP10

peptides demonstrated the best diagnostic accuracy, with a cutoff of

9.91% (exploratory results: 96.67% specificity, 88.46% sensitivity;

validation results: 96.15% specificity, 90.16% sensitivity).

Furthermore, this T cell subset could differentiate between

treatment-naive TB patients and individuals who had been

successfully treated for TB post-anti-TB therapy.

The persistent spread of drug-resistant TB remains one of the

most urgent and formidable challenges confronting the global

efforts to control TB. In 2023, Pavithra Sampath and colleagues

identified two potential biomarkers capable of distinguishing

between drug-sensitive and drug-resistant tuberculosis (Sampath

et al., 2023). The study population included groups of HCs,

individuals with LTBI, drug-sensitive tuberculosis (DS-TB), and

drug-resistant tuberculosis (DR-TB), with 40 participants in each

group, while those with other infections and comorbidities such as

diabetes, HIV, HCV, and HBV were excluded from the study. The

experiment initially confirmed that drug-resistant tuberculosis was
Frontiers in Cellular and Infection Microbiology 06
linked to increased levels of chemokines in plasma using the

Luminex Magpix multiplex detection system (Bio-Rad, Hercules,

CA). Following this, CXCL10 and CXCL9 exhibited statistically

significant differences across all four groups according to ROC

analysis of individual variables. The findings were further validated

through random forest (RF) analysis (Table 1).
3.2 Proteomics-based screening for
diagnostic biomarkers of tuberculosis

Proteomics has emerged as a crucial tool for comprehensively

analyzing cellular and organismal processes related to disease and

its progression at the protein level (Kavallaris and Marshall, 2005;

Al-Amrani et al., 2021). By profiling proteins, proteomics helps

uncover the intricate connections among different cellular

pathways, complementing both genomic studies and traditional

biochemical methodologies (Pandey and Ghosh, 2024; Schiff

et al., 2024).

Up to now, the majority of mass spectrometry-based (MS-

based) proteomics studies have removed numerous enriched

protein components from plasma, resulting in the loss of

biologically significant proteins. Consequently, candidate host

proteins serving as TB biomarkers commonly exhibit high

sensitivity but inadequate specificity. In a study led by Hannah F.

Schiff et al., an optimized non-depletion untargeted proteomics

method was employed to enhance the coverage of numerous

enriched proteins. This approach enables the identification of new

markers with both high sensitivity and specificity for tuberculosis

(Schiff et al., 2024). Plasma samples from 11 aTB patients and 10

HCs in South Africa and Peru were initially subjected to proteomics

analysis. Subsequently, through bioinformatics analysis that

employed linear modeling and whole-gene correlation network

analysis (WGCNA), a total of 118 differentially expressed proteins

were identified. An independent patient cohort from the United

Kingdom was later employed to validate the diagnostic potential of

MS-identified plasma biomarkers, which included 32 patients with

active TB and 30 individuals in a healthy control group. The final 6-

protein marker combination, comprising FCGR3B, FETUB, LRG1,

ADA2, CD14, and SELL, effectively differentiated patients with aTB

from HCs and other infections (ORI) with high sensitivity and

specificity. The AUC for TB and HCs was 0.972, with a sensitivity of

90.6% and a specificity of 90.0%, while the AUC for TB and ORI

was 0.930, with a sensitivity of 90.6% and a specificity of

80.8% (Table 1).

Treatment for newly diagnosed TB consists of an intensive

period of two months followed by a continuation period of four

months. However, the absence of established criteria and

biomarkers remains a challenge in effectively diagnosing cured

TB. Qiqi Lu et al. utilized data-independent acquisition (DIA) to

analyze the plasma protein expression profiles of TB patients at

different treatment stages, which encompassed 35 newly diagnosed

TB patients without treatment (group TB0), 35 TB patients after 2-

month intensive-phase treatment (group TB2), 35 cured TB

patients after 6-month intensive plus continuation phase
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TABLE 1 Evaluation of assay performance for Cytokines, Proteins, and Metabolites.

Sensitivity Specificity AUC
Validation

Stage
reference

N/A N/A
0.82(p
<

0.0001)

Clinical
Testing

(Sampath
et al., 2023)

N/A N/A
0.84(p
<

0.0001)

Clinical
Testing

(Sampath
et al., 2023)

100% 83%

0.958
(p
<

0.0010)

Clinical
Testing

(Shaukat
et al., 2023)

100% 83%
1.00(p
<

0.0007)

Clinical
Testing

(Shaukat
et al., 2023)

90.16% 96.15%

0.9462
(p
<

0.0001)

Clinical
Testing

(Acharya
et al., 2021)

87.9% 79.8%

0.859
(p
<

0.001)

Clinical
Testing

(Tan
et al., 2021)

74.5% 73%
0.79(p
<

0.005)
Preclinical

(Mamishi
et al., 2019)

71% 86%
0.79(p
<

0.001)
Preclinical

(Balcells
et al., 2018)

73.5% 85%
0.79(p
<

0.0001)
Preclinical

(Balcells
et al., 2018)

90.6% 90.0%

0.972
(p
<

0.0001)

Clinical
Testing

(Schiff
et al., 2024)
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Types Year Name Source Differentiate Testing Validation Change

chemokines 2023 CXCL9 PBMCs DR-TB vs DS-TB

Luminex
Magpix
Multiplex

Assay system

N/A UP

chemokines 2023 CXCL10 PBMCs DR-TB vs DS-TB

Luminex
Magpix
Multiplex

Assay system

N/A UP

cytokine 2023 IL-27 PBMCs Early aTB vs HC mRNA profile N/A UP

cytokine 2023 IL-24 PBMCs Early aTB vs HC mRNA profile N/A DOWN

cytokine 2021
Mtb-specific TNF-a secreting CD38CD27

+–CD4 T cells
PBMCs aTB vs HC

Polychromatic
flow cytometry

Flow
cytometry

UP

cytokine 2021 IFN-g and IL - 2 PBMCs aTB vs HC ELISA N/A UP

cytokine 2019 IP-10 PBMCs aTB vs HC ELISA N/A UP

cytokine 2018 GM-CSF PBMCs aTB vs LTBI IGRA
Multiplex

immunoassay
DOWN

cytokine 2018 IL-2 PBMCs aTB vs HC IGRA
Multiplex

immunoassay
UP

Protein 2024
FCGR3B, FETUB, LRG1, ADA2, CD14

and SELL
Plasma aTB vs HC

tandem
mass

spectrometry

proximity
extension
assays

UP
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TABLE 1 Continued

ivity Specificity AUC
Validation

Stage
reference

% 94.3%

0.963
(p
<

0.001)

Clinical
Testing

(Lu
et al., 2022)

0% 98.4%

0.999
(p
<

0.0001)

Clinical
Testing

(Koyuncu
et al., 2021)

% 88.8%

0.972
(p
<

0.0001)

Clinical
Testing

(Koyuncu
et al., 2021)

% 71.4%

0.921
(p
<

0.0001)

Clinical
Testing

(Koyuncu
et al., 2021)

% 90%

0.934
(p
<

0.001)

Clinical
Testing

(Chen
et al., 2020)

A N/A
0.93(p
<

0.001)
Preclinical

(Garay-
Baquero

et al., 2020)

% 90.5%
0.93(p
<

0.001)
Preclinical

(Garay-
Baquero

et al., 2020)

% 100%
1.00(p
<

0.001)

Clinical
Testing

(Chaiyachat
et al., 2023)

A N/A
1.00(p
<

0.0001)
Preclinical

(Chen
et al., 2021)

A N/A
0.97 (p

<
0.001)

Preclinical
(Jiang

et al., 2021)

(Continued)
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Types Year Name Source Differentiate Testing Validation Change Sensi

Protein 2022 ALB, HP, OAF and RBP4 Plasma
untreated TB vs

cured TB

Data-
independent
acquisition

N/A
UP/DOWN/
DOWN/UP

91.

Protein 2021 CXCL1 PBMCs aTB vs HC
Microarray

gene
expression

ELISA UP 100

Protein 2021 CXCL1 PBMCs aTB vs LTBI
Microarray

gene
expression

ELISA UP 94.

Protein 2021 CXCL1 PBMCs aTB vs non-TB
Microarray

gene
expression

ELISA UP 90.

Protein 2020 sCD14, PGLYRP2 and FGA Serum
MDR-TB vs

DS-TB
DIA combined
with PRM

N/A
DOWN/
UP/UP

81.

Protein 2020 CFHR5, LRG1, LBP, SAA1, and CRP Plasma aTB vs HC

high-
resolution

mass
spectrometry

ELISA or
Luminex
array

UP N/

Protein 2020
G-CSF, C3b/iC3b, procalcitonin, IP-10,

PDGF-BB
Plasma aTB vs HC

Luminex
multiplex
platform

customized,
focused

panel array
UP 72.

Metabolites 2023
Meso-hydroxyheme and

itaconic anhydride
Plasma

pre-XDR and
XDR-TB vs pan-
susceptible group

UHPLC-ESI-
QTOF-MS/MS

N/A UP 100

Metabolites 2021
Cer (d18:1/24:0), CerP (d18:1/20:3), LPE

(0:0/22:0), LPA (0:0/16:0), and LPA
(0:0/18:0)

Plasma
cured TB vs
untreated TB

UPLC-MS/MS N/A UP N/

Metabolites 2021

5-hydroxyindoleacetic acid, isoleucyl-
isoleucine, heptadecanoic acid, indole

acetaldehyde, 5-ethyl-2,4-dimethyloxazole,
and 2-hydroxycaproic acid, unknown 71

Plasma aTB vs HC
GC-TOF MS
and UHPLC-

QE-MS
N/A

UP/UP/
DOWN/
DOWN/
DOWN/
DOWN/
DOWN

N/
t

4

.

5

9

2

7
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treatment (group TB6), and 35 healthy controls (group HC) for

comparison (Lu et al., 2022). Subsequent analysis of gene ontology

(GO) function and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways indicates possible coagulation dysfunction,

along with disruptions in vitamin and lipid metabolism, during

tuberculosis treatment. By leveraging Machine Learning

and Support Vector Machine (SVM) method, we ultimately

identified four intersecting proteins (albumin [ALB, Swissprot:

A0A0C4DGB6], haptoglobin [HP, Swissprot: P00738], Out at first

protein homolog [OAF, Swissprot: E9PJ29], and retinol-binding

protein 4 [RBP4, Swissprot: P02753]) as promising biomarkers for

assessing the efficacy of pulmonary tuberculosis treatment. The

efficacy assessment model, utilizing the four proteins, achieved an

AUC of 0.963 with a sensitivity of 91.4% and specificity of 94.3% in

distinguishing between TB0 and TB6 groups, while also

demonstrating an AUC of 0.971, sensitivity of 88.6%, and

specificity of 94.3% in distinguishing TB0 and HC groups.
3.3 Metabolomics–based screening for
diagnostic biomarkers of tuberculosis

Metabolomics enables the quantitative profiling of high-

throughput metabolite molecules (Cao et al., 2020). Through the

analysis of metabolite changes, metabolomics can pinpoint specific

differentially expressed metabolites that act as biomarkers for

diagnostics, disease differentiation, and monitoring the

effectiveness of treatment (Vinayavekhin et al., 2010).

The host plasma is abundant in lipids, which constitutes the

primary source of nutrition for the growth and reproduction of

Mtb. The high-throughput detection of alterations in the entire lipid

metabolome of the host caused by Mtb infection was conducted by

Jia-Xi Chen et al. using ultra-performance liquid chromatography-

tandem mass spectrometry (UPLC-MS/MS) technology (Chen

et al., 2021). The Orthogonal Partial Least Squares-Discriminant

Analysis (OPLS-DA) model revealed that lipid metabolites between

the TB0 group and the HC group were distinctly distinguishable,

with 163 differential lipids identified. Additionally, comparisons

among the TB0, TB2, and TB6 groups highlighted 25 lipid

metabolites as differential. KEGG pathway analysis showed that

the plasma from the TB0 and HC groups displayed differences in

metabolic pathways linked to glycerophospholipid and sphingolipid

metabolism and autophagy, with a noticeable enrichment in

linolenic acid and arachidonic acid metabolic pathways as

treatment progressed. Together, these metabolites constituted an

efficacy evaluation model that accurately distinguished patients in

the TB6 group from those in the TB0 group, achieving a perfect area

under the curve (AUC) of 1.000. Specifically, the two

lysophosphatidic acids, LPA (0:0/16:0) and LPA (0:0/18:0), were

instrumental in differentiating cured and active TB patients,

exhibiting an AUC of 1, with both sensitivity and specificity

reaching 100%.

Due to the overlapping thresholds in drug susceptibility testing

for anti-TB drugs, identifying pre-extensively (pre-XDR) and

extensively drug-resistant tuberculosis (XDR-TB) poses a
T
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TABLE 2 Evaluation of assay performance for LncRNAs, MicRNAs and CirRNAs.

sitivity Specificity AUC
Validation

Stage
reference

81% 73%
0.86(p
<

0.001)
Preclinical

(Chen
et al., 2022)

80.0% 89.4%
0.918(p

<
0.0001)

Preclinical
(Sun

et al., 2022)

N/A N/A

0.8994,
0.8725,
0.9502,
0.7080
(p
<

0.001)

Preclinical
(Fang

et al., 2021)

8.98% 86.43%
0.88(p
<

0.0001)
Preclinical

(Meng
et al., 2021)

0.00% 86.36%
0.945(p

<
0.001)

Preclinical
(Li

et al., 2020)

86% 82%
0.89(p
<

0.001)
Preclinical

(Hu
et al., 2020)

1.02% 88.62%
0.914(p

<
0.0001)

Preclinical
(Wang

et al., 2019)

3.61% 86.21%
0.92 (p

<
0.0001)

Preclinical
(Wang

et al., 2019)

79.2% 75%
0.845(p

<
0.001)

Preclinical
(Chen

et al., 2017)

82% 82%
0.89(p
<

0.001)
Preclinical

(He
et al., 2024)

90.5% 81%
0.907(p

<
0.001)

Preclinical
(Massi

et al., 2023)
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Types Year Name Source Differentiate Testing Validation Change Se

LncRNA 2022
TCONS_00001838 and

n406498 + EHR
PBMCs aTB vs HC

Affymetrix
HTA2.0 array

qRT-PCR DOWN

LncRNA 2022 NORAD Plasma aTB vs HC qRT-PCR N/A UP

LncRNA 2021

NONHSAT078957.2,
NONHSAT067134.2,
NONHSAT101518.2,
NONHSAT148822.1

Plasma aTB vs HC Data analysis qRT-PCR DOWN

LncRNA 2021 n344917 + EHR Plasma aTB vs HC qRT-PCR
Prediction
model

DOWN

LncRNA 2020 uc.48+ and NR_105053 Plasma
untreated TB vs

cured TB
lncRNA microarray qRT-PCR DOWN

LncRNA 2020
ENST00000497872,

n333737, and n335265
PBMCs aTB vs HC

lncRNA microarray
and qRT-PCR

Prediction
model

DOWN/
DOWN
/UP

LncRNA 2019 LOC152742 Sputum aTB vs HC qRT-PCR qRT-PCR UP

LncRNA 2019 LOC152742 Plasma aTB vs HC qRT-PCR qRT-PCR UP

LncRNA 2017
NR 038221, NR003142,
ENST00000570366,

and ENST00000422183
Plasma aTB vs HC lncRNA microarray qRT-PCR

UP/UP/
UP/

DOWN

MicRNA 2024 miR-29a
Sputum, PBMCs,
cerebrospinal fluid

and plasma
aTB vs HC Systematic review N/A UP

MicRNA 2023
hsa-miR-425-5p,
hsa-miR-4523

Plasma LNTB vs LTBI qRT-PCR N/A
UP

\DOWN
n

8

9

9

9
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TABLE 2 Continued

Sensitivity Specificity AUC
Validation

Stage
reference

50% 0.9375%
0.750
(p

< 0.01)
Preclinical

(Kaushik
et al., 2021)

89% 89%
0.97(p
<

0.001)
Preclinical

(Hu
et al., 2019)

100% 56.67%
0.799(p

<
0.001)

Preclinical
(Chakrabarty
et al., 2019)

85.29% 56.67%
0.688(p

=
0.007)

Preclinical
(Chakrabarty
et al., 2019)

55% 90%
0.77(p
< 0.05)

Preclinical
(Zhang

et al., 2019)

40% 95%
0.70(p
< 0.01)

Preclinical
(Zhang

et al., 2019)

50% 80%
0.71(p
<

0.001)
Preclinical

(Zhang
et al., 2019)

93.75% 87.50%

0.9502
(p
<

0.001)

Preclinical
(Luo

et al., 2020)

N/A N/A
0.773(p
< 0.01)

Preclinical
(Zhang

et al., 2020)

N/A N/A
0.817(p

<
0.001)

Preclinical
(Fu

et al., 2019)

N/A N/A
0.870(p

<
0.001)

Preclinical
(Fu

et al., 2019)

N/A N/A
0.821(p

<
0.001)

Preclinical
(Fu

et al., 2019)

(Continued)
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Types Year Name Source Differentiate Testing Validation Change

MicRNA 2021 miR-185-5p exosomes aTB vs HC
whole

transcriptome
sequencing

qRT-PCR UP

MicRNA 2019
miR-20a, miR-20b, miR-26a,
miR-106a, miR-191, miR-486

Plasma PTB vs HC
Affymetrix

Genechip miRNA
4.0 Array

qRT-PCR UP

MicRNA 2019
miR-146a, miR-125b-5p

and MTBmiR-5
Plasma PTB vs HC

Ion Torrent
PGM platform

qRT-PCR UP

MicRNA 2019
miR-146a, miR-125b-5p

and MTBmiR-5
Plasma EPTB vs HC

Ion Torrent
PGM platform

qRT-PCR UP

MicRNA 2019 miR-892b PBMCs aTB vs HC
Integrated

bioinformatics
qRT-PCR DOWN

MicRNA 2019 miR-582-5p PBMCs aTB vs HC
Integrated

bioinformatics
qRT-PCR UP

MicRNA 2017 miR-199b-5p PBMCs aTB vs HC
Integrated

bioinformatics
qRT-PCR UP

circRNA 2020 hsa_circ_0001380 Plasma aTB vs HC
circRNA

−sequencing (seq)
qRT-PCR DOWN

circRNA 2020 hsa_circ_0028883 Plasma aTB vs HC
Data retrieval and
discrepancy analysis

qRT-PCR UP

circRNA 2019 hsa_circRNA_101128 PBMCs aTB vs HC
Arraystar
Microarray

qRT-PCR UP

circRNA 2019 hsa_circRNA_103017 Plasma aTB vs HC
Arraystar
Microarray

qRT-PCR UP

circRNA 2018 hsa_circRNA_059914 PBMCs aTB vs HC
Arraystar
Microarray

qRT-PCR UP
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significant challenge. Pratchakan Chaiyachat and colleagues

conducted a metabolomic analysis of one hundred and fifty Mtb

isolates using ultra-high performance liquid chromatography

coupled with electrospray ionization-quadrupole-time of flight-

mass spectrometry (UHPLC-ESI-QTOF-MS/MS) (Chaiyachat

et al., 2023). This analysis included fifty-four pre-XDR, sixty-three

XDR-TB, and thirty-three pan-susceptible (pan-S) isolates. Twelve

metabolic markers exhibiting the most significant differences

between groups were identified. Notably, meso-hydroxyheme and

itaconic anhydride demonstrated the ability to accurately classify

the resistance status of a sample with 100% sensitivity and

specificity. In addition, specific metabolites were identified in Mtb

isolates resistant to ethionamide (ETO) and ethambutol (ETH).
3.4 LncRNAs-based biomarkers for
tuberculosis diagnosis

Long non-coding RNAs (lncRNAs) are single noncoding RNA

transcripts longer than 200 nucleotides, which are crucial elements

in regulating gene expression (Figure 3). There is a growing body of

evidence indicating that blood lncRNA expression profiles are

closely linked to tuberculosis (TB), suggesting their potential as

noninvasive biomarkers for TB detection (Wei et al., 2017; Mattick

et al., 2023).

In research carried out by Zhong-liang Chen et al., plasma

lncRNAs were scrutinized through microarray analysis, with a

special focus on investigating the potential diagnostic significance

of lncRNAs in TB (Chen et al., 2017). Through a thorough analysis,

it was revealed that there were 511 differentially expressed lncRNAs

(163 up-regulated and 348 down-regulated) as well as 411

differentially expressed mRNAs (127 up-regulated and 284 down-

regulated) when comparing individuals with TB to healthy controls.

GO, KEGG, and coding-noncoding co-expression (CNC) analyses

revealed that the differentially expressed lncRNAs predominantly

played a role in regulating alpha-beta T cell activation and the T cell

receptor signaling pathway. Six lncRNAs (NR_038221, NR_003142,

ENST00000568177, ENST00000570366, ENST00000422183, and

ENST00000449589) were chosen for qPCR validation in 52 TB

patients and healthy controls. However, there were no significant

differences in the expression levels of ENST00000568177 and

ENST00000449589 between TB patients and healthy control

subjects. The final diagnostic model consisted of four distinct

lncRNAs: NR_038221, NR_003142, ENST00000570366, and

ENST00000422183, achieving an AUC of 0.845 with a sensitivity

of 79.2% and a specificity of 75%. Furthermore, the lncRNA-

mRNA-miRNA ceRNA network was developed to predict

potential interactions between 85 mRNAs and 404 miRNAs with

the identified lncRNAs (Table 2).

Plasma lncRNA could potentially serve as a biomarker for

accurately evaluating the recovery status of tuberculosis. Zhi-Bin

Li et al. utilized lncRNA microarray analysis to identify

differentially expressed plasma lncRNAs in untreated and cured

TB individuals. They confirmed the expression levels of these

lncRNAs using qPCR (Li et al., 2020). The findings revealed
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significant differences in the expression of lncRNAs uc.48+ and

NR_105053 between untreated and cured tuberculosis groups.

These lncRNAs were used to establish a predictive model for

tuberculosis recovery. The model demonstrated a sensitivity of

90.00%, specificity of 86.36%, and an AUC value of 0.945. These

lncRNAs could serve as biomarkers to differentiate between

untreated TB patients and those who have been cured.

Furthermore, the study predicted target genes of uc.48+ and

NR_105053 by constructing co-expression networks between

coding and non-coding genes, as well as an mRNA-lncRNA-

miRNA interaction network.
3.5 MicRNAs–based biomarkers for
tuberculosis diagnosis

MicroRNAs (miRNAs) are small non-coding RNAs, typically

18 to 24 nucleotides in length, They regulate gene expression at the

post-transcriptional level and play a crucial role in various

biological processes, including immune responses (Ying et al.,

2008). Exosomal miRNAs have emerged as promising

biomarkers, and in a study by Xuejiao Hu et al., they were

combined with electronic health records (EHRs) for tuberculosis

diagnosis (Gao et al., 2021). In the initial phase of the study,

microarrays were utilized to analyze an exploratory cohort

consisting of 11 active TB patients (7 PTB and 4 tuberculosis

meningitis) and 8 HCs, aiming to identify differentially expressed
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exosomal miRNAs. Eleven candidate miRNAs, with miR-486

among them, were chosen from a pool of 102 differentially

expressed exosomal miRNAs. Finally, six exosomal miRNAs

(miR-20a, miR-20b, miR-26a, miR-106a, miR-191, and miR-486)

were found to be differentially expressed in TB patients through

qRT-PCR analysis. Subsequently, miRNAs and EHRs were

employed to construct diagnostic models for PTB and

Tuberculous Meningitis (TBM) in the selection cohort utilizing

the Support Vector Machine (SVM) algorithm. The integrated

“EHR+miRNA” model exhibited superior performance compared

to using EHR data or miRNA data independently, achieving a

diagnostic sensitivity of 0.94 and a specificity of 0.95 for TBM.

For PTB, the sensitivity was 0.89, with a corresponding

specificity (Table 2).

In a separate study, Muhammad Nasrum Massi and colleagues

identified distinct expression patterns of miR-425-5p and miR-4523

in patients with active PTB, LTBI, and lymph node tuberculosis

(LNTB) (Massi et al., 2023). The total study sample consisted of 23

patients with active PTB, 21 patients with LTBI, 21 patients with

EPTB, and 25 HCs. The levels of hsa-miR-425-5p and hsa-miR-

4523 in blood samples from various populations were quantified

using RT-qPCR. The level of hsa-miR-425-5p miRNA expression in

LNTB was found to be higher than that observed in LTBI.

Additionally, the expression of hsa-miR-4523 miRNA was

notably lower in PTB and LNTB compared to LTBI. ROC

analysis of a single sample revealed that only mir-4523 had the

capability to distinguish between LTBI and HCs, showcasing an

AUC of 0.829 (Table 2).
FIGURE 3

Mechanisms of lncRNA Action: (A) LncRNAs recruit chromatin-modifying enzymes to specific gene loci, whereby the modulation of chromatin
status results in the activation or suppression of nearby genes. (B) LncRNAs engage in the formation of RNA-protein complexes (RNPs), facilitating
either the promotion or repression of transcription. (C) LncRNAs recruit transcriptional machinery proteins to nearby target gene sites in order to
enhance their transcriptional activity. (D) LncRNAs act as a decoy for the transcription factor, contributing to the repression of certain pro-
apoptotic genes.
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3.6 CirRNAs–based biomarkers for
tuberculosis diagnosis

Circular RNAs (circRNAs) represent a unique class of RNA

characterized by the covalent linkage of their 3’ and 5’ ends, forming

a closed-loop structure (Ruiz Esparza Garrido and Velázquez

Flores, 2023) (Figure 4). Unlike linear RNAs, circRNAs, with

their covalently closed loops, exhibit heightened resistance to

RNase degradation, making them preferentially enriched during

sample processing and superior candidates for molecular diagnostic

biomarkers compared to other RNA types (Qu et al., 2015).

In a study by Zi-KunHuang et al., differential circRNA expression

was analyzed using microarray assay in three patients diagnosed with

aTB and three HCs matched in terms of age and gender. A total of 37

circRNAs were identified as being differentially expressed between the

two groups, comprising 13 up-regulated circRNAs and 24 down-

regulated circRNAs. The three most significantly up-regulated and

down-regulated circRNAs were chosen for validation using qRT-PCR

in an independent cohort comprising 40 TB patients and 40 healthy

controls. The findings suggested that hsa_circRNA_001937,

hsa_circRNA_009024, and hsa_circRNA_005086 were elevated,

while hsa_circRNA_102101, hsa_circRNA_104964, and
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hsa_circRNA_104296 were decreased in TB patients compared to

the normal control group. The AUCs of the six candidate circRNAs

were all above 0.750, with hsa_circRNA_001937 attaining the highest

AUC of 0.873, outperforming the other five circRNAs in the study.

hsa_circRNA_001937 was subsequently examined in a separate

cohort comprising 115 TB patients, 40 pneumonia patients, 40

chronic obstructive pulmonary disease (COPD) patients, 40 lung

cancer patients, and 90 control subjects. In the new cohort, the AUC

of hsa_circRNA_001937 was 0.850, with sensitivity and specificity

rates of 72.2% each; the expression level of hsa_circRNA_001937 in

this cohort was significantly higher than that in patients with

pneumonia and lung cancer (Table 2).

A thorough analysis integrating bioinformatics and molecular

biology revealed that hsa_circ_0028883 holds promise as a potential

biomarker for the diagnosis of active tuberculosis (Zhang et al.,

2020). The study collected gene expression datasets for circRNA

(GSE117563 and GSE106953), microRNA (miRNA, dataset

GSE29190), and mRNA (GSE54992) from the Gene Expression

Omnibus (GEO) database. A competing endogenous RNA (ceRNA)

network was constructed based on potential interactions between

circRNA, miRNA, and mRNA (Xie et al., 2018). GO and KEGG

pathway analyses were used to predict their biological functions. To
FIGURE 4

Mechanisms of action of cirRNA: (A) CircRNAs have the capability to directly interact with transcription complexes, thereby influencing the
expression of parental genes. (B) CircRNAs have the ability to act as miRNA sponges. (C) circRNAs can interact with circRNA binding proteins (cRBPs)
modulate their functions. (D) CircRNAs have the ability to encode peptides and proteins.
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validate the results, qRT-PCR was performed to measure

hsa_circ_0028883 and hsa-miR-409-5p levels in 20 active TB

patients and 20 healthy donors. An ROC curve was then

generated to evaluate hsa_circ_0028883’s diagnostic value. We

discovered that hsa_circ_0028883 exhibited an impressive AUC

value of 0.773 (Table 2).
4 Discussion

Significant progress has been made in tuberculosis diagnosis

over the past few decades, transitioning from culture-based

methods to faster, more accurate tests that are less labor-intensive

and time-consuming, without the need for sophisticated biosafety

labs (Walzl et al., 2018; Xie et al., 2018). Nonetheless, achieving the

2030 targets outlined in the World Health Organization’s End TB

Strategy will necessitate ongoing technological advancements

(Gupta-Wright and Denkinger, 2024).

Beyond improving diagnostic methods, it is crucial to collect

and analyze biologic treatment data for TB patients during their

treatment (Ahuja and Zaheer, 2025) (Supplementary Table S3).

This involves documenting TB exposure history, symptom checks,

and comorbidities. Key diagnostic tools like skin testing/IGRA,

Xpert MTB/RIF, sputum culture, and chest X-rays should be

carefully recorded. Additionally, the use of biologic agents such as

TNF-a inhibitors and chemopreventive therapy, along with

standard treatment protocols and immunosuppression data, must

be thoroughly tracked (Naidu et al., 2023). TNF-a is a key biological

agent for treating autoimmune diseases and a critical factor in

maintaining the structure and function of tuberculous granulomas.

Its inhibition can destabilize granulomas, leading to the reactivation

of LTBI or the rapid progression of new Mtb infections to active

tuberculosis. In terms of diagnosis, TNF-a inhibitors can suppress

delayed-type hypersensitivity (DTH), resulting in a false-negative

rate of up to 50-70% in the TST (de Oliveira Magalhães et al., 2024).

Although the IGRA is not affected by DTH, long-term TNF-a
inhibition may reduce IFN-g release levels, increasing the risk of

false negatives by 20-30%. Therefore, when using these drugs, it is

essential to combine molecular testing (e.g., Xpert MTB/RIF) and

imaging assessments to mitigate the interference of immune

suppression on traditional diagnostic methods. The impact of

chemopreventive therapy on tuberculosis diagnosis is equally

significant. It may reduce the activity or quantity of Mtb, affecting

the sensitivity of bacterial culture or molecular testing and leading

to false-negative results. Additionally, chemopreventive therapy

may modulate immune responses, compromising the accuracy of

TST or IGRA and resulting in false negatives. When evaluating

treatment efficacy or monitoring for relapse, chemopreventive

therapy may also interfere with LTBI diagnosis. Therefore,

interpreting diagnostic results requires integrating clinical context

with other testing methods, taking into account the influence of

chemopreventive therapy (Prakash Babu et al., 2023).

Furthermore, future research efforts should prioritize the

development and application of cutting-edge technologies with

the potential to transform TB diagnosis, such as Spatial CITE-seq
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for spatially resolved single-cell analysis, multimodal tri-omics for

comprehensive molecular profiling, and perturb-DBiT for high-

throughput functional genomics (Zhang et al., 2024). These

innovative approaches hold promise for unraveling the complex

mechanisms of TB pathogenesis and enabling more precise, early-

stage detection. Despite the remarkable strides in tuberculosis (TB)

diagnosis, several challenges persist. The prohibitive costs

associated with many cutting-edge diagnostic technologies act as

a significant barrier to their implementation in low-resource

settings. Additionally, the detection of certain biomarkers

necessitates sophisticated laboratory infrastructure and technical

expertise, which are often unavailable in primary healthcare

facilities. Future research endeavors should focus on elucidating

the clinical utility of biomarkers, refining detection methodologies,

and reducing costs to enhance accessibility (Baysoy et al., 2024).
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T. L., Ellner, J. J., et al. (2022). Diagnostic biomarkers for active tuberculosis: progress
and challenges. EMBO Mol. Med. 14, e14088. doi: 10.15252/emmm.202114088

Pan, L. P., Gao, M. Q., Jia, H. Y., Huang, M. L., Wei, R. R., Sun, Q., et al. (2021).
Diagnostic performance of a novel Mycobacterium Tuberculosis specific T-Cell based
assay for tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi 44, 443–449. doi: 10.3760/
cma.j.cn112147-20200821-00916

Pandey, D., and Ghosh, D. (2024). Proteomics-based host-specific biomarkers for
tuberculosis: The future of TB diagnosis. J. Proteomics 305, 105245. doi: 10.1016/
j.jprot.2024.105245
frontiersin.org

https://doi.org/10.1016/j.tube.2021.102065
https://doi.org/10.1038/s41579-024-01025-1
https://doi.org/10.1590/0074-0276130469
https://doi.org/10.3390/s23156781
https://doi.org/10.3390/s22218497
https://doi.org/10.1111/jcmm.2019.23.issue-3
https://doi.org/10.1016/s0140-6736(10)60410-2
https://doi.org/10.1002/jcla.23871
https://doi.org/10.1172/jci.insight.137427
https://doi.org/10.1172/jci.insight.137427
https://doi.org/10.1183/13993003.01245-2015
https://doi.org/10.1183/13993003.01245-2015
https://doi.org/10.25259/ijmr_261_2024
https://doi.org/10.1183/13993003.00167-2021
https://doi.org/10.1177/1535370220968058
https://doi.org/10.3389/fpubh.2024.1384510
https://doi.org/10.1128/jcm.01973-19
https://doi.org/10.1016/j.ebiom.2019.01.023
https://doi.org/10.3389/fmicb.2018.02010
https://doi.org/10.1159/000487454
https://doi.org/10.1159/000487454
https://doi.org/10.1016/s1473-3099(07)70059-2
https://doi.org/10.1111/imr.12274
https://doi.org/10.2147/idr.S330493
https://doi.org/10.1093/bib/bbab210
https://doi.org/10.5694/j.1326-5377.2005.tb06817.x
https://doi.org/10.1080/17576180.2024.2349423
https://doi.org/10.1016/j.pbiomolbio.2022.03.004
https://doi.org/10.1371/journal.ppat.1009773
https://doi.org/10.1016/j.jhep.2019.01.038
https://doi.org/10.1016/j.ijid.2020.01.005
https://doi.org/10.1016/j.micres.2024.128038
https://doi.org/10.3389/fimmu.2019.02282
https://doi.org/10.1016/j.cca.2022.08.002
https://doi.org/10.3892/mmr.2020.10992
https://doi.org/10.3892/mmr.2020.10992
https://doi.org/10.1128/jcm.01582-19
https://doi.org/10.1007/s11033-019-05067-0
https://doi.org/10.5588/ijtld.10.0631
https://doi.org/10.5588/ijtld.10.0631
https://doi.org/10.1016/j.ncrna.2023.07.001
https://doi.org/10.1038/s41580-022-00566-8
https://doi.org/10.1038/s41580-022-00566-8
https://doi.org/10.1186/s12879-017-2389-6
https://doi.org/10.3389/fmolb.2021.632185
https://doi.org/10.3390/pathogens9050385
https://doi.org/10.3390/pathogens9050385
https://doi.org/10.1016/j.pbiomolbio.2023.03.002
https://doi.org/10.3389/fphar.2023.1152915
https://doi.org/10.15252/emmm.202114088
https://doi.org/10.3760/cma.j.cn112147-20200821-00916
https://doi.org/10.3760/cma.j.cn112147-20200821-00916
https://doi.org/10.1016/j.jprot.2024.105245
https://doi.org/10.1016/j.jprot.2024.105245
https://doi.org/10.3389/fcimb.2025.1567592
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fcimb.2025.1567592
Penn-Nicholson, A., Georghiou, S. B., Ciobanu, N., Kazi, M., Bhalla, M., David, A.,
et al. (2022). Detection of isoniazid, fluoroquinolone, ethionamide, amikacin,
kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-
sectional multicentre diagnostic accuracy study. Lancet Infect. Dis. 22, 242–249.
doi: 10.1016/s1473-3099(21)00452-7

Pillay, S., Steingart, K. R., Davies, G. R., Chaplin, M., De Vos, M., Schumacher, S. G.,
et al. (2022). Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance
to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst.
Rev. 5, Cd014841. doi: 10.1002/14651858.CD014841.pub2

Pinhata, J. M. W., Brandao, A. P., Gallo, J. F., Oliveira, R. S., and Ferrazoli, L. (2023).
GenoType MTBDRsl for detection of second-line drugs and ethambutol resistance in
multidrug-resistant Mycobacterium tuberculosis isolates at a high-throughput
laboratory. Diagn. Microbiol . Infect . Dis. 105, 115856. doi : 10.1016/
j.diagmicrobio.2022.115856

Prakash Babu, S., Ezhumalai, K., Raghupathy, K., Sundaresan, M., Jain, K.,
Narasimhan, P. B., et al. (2023). Comparison of IGRA and TST in the diagnosis of
latent tuberculosis among women of reproductive age in South India. Indian J. Tuberc.
70, 12–16. doi: 10.1016/j.ijtb.2022.03.011

Qu, S., Yang, X., Li, X., Wang, J., Gao, Y., Shang, R., et al. (2015). Circular RNA: A
new star of noncoding RNAs. Cancer Lett. 365, 141–148. doi: 10.1016/
j.canlet.2015.06.003

Rodriguez-Takeuchi, S. Y., Renjifo, M. E., and Medina, F. J. (2019). Extrapulmonary
tuberculosis: pathophysiology and imaging findings. Radiographics 39, 2023–2037.
doi: 10.1148/rg.2019190109

Ruiz Esparza Garrido, R., and Velázquez Flores, M. (2023). Circular RNAs: the next
level of gene regulation. Am. J. Transl. Res. 15, 6122–6135.

Sampath, P., Rajamanickam, A., Thiruvengadam, K., Natarajan, A. P., Hissar, S.,
Dhanapal, M., et al. (2023). Plasma chemokines CXCL10 and CXCL9 as potential
diagnostic markers of drug-sensitive and drug-resistant tuberculosis. Sci. Rep. 13, 7404.
doi: 10.1038/s41598-023-34530-z

Satam, H., Joshi, K., Mangrolia, U., Waghoo, S., Zaidi, G., Rawool, S., et al. (2023).
Next-generation sequencing technology: current trends and advancements. Biol.
(Basel) 12 (5), 286. doi: 10.3390/biology12070997

Schiff, H. F., Walker, N. F., Ugarte-Gil, C., Tebruegge, M., Manousopoulou, A.,
Garbis, S. D., et al. (2024). Integrated plasma proteomics identifies tuberculosis-specific
diagnostic biomarkers. JCI Insight 9 (8), e173273. doi: 10.1172/jci.insight.173273

Schwab, T. C., Perrig, L., Göller, P. C., Guebely de la Hoz, F. F., Lahousse, A. P.,
Minder, B., et al. (2024). Targeted next-generation sequencing to diagnose drug-
resistant tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 24,
1162–1176. doi: 10.1016/s1473-3099(24)00263-9

Seung, K. J., Keshavjee, S., and Rich, M. L. (2015). Multidrug-resistant tuberculosis
and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med. 5,
a017863. doi: 10.1101/cshperspect.a017863

Shaukat, S. N., Eugenin, E., Nasir, F., Khanani, R., and Kazmi, S. U. (2023).
Identification of immune biomarkers in recent active pulmonary tuberculosis. Sci.
Rep. 13, 11481. doi: 10.1038/s41598-023-38372-7

Skoura, E., Zumla, A., and Bomanji, J. (2015). Imaging in tuberculosis. Int. J. Infect.
Dis. 32, 87–93. doi: 10.1016/j.ijid.2014.12.007

Sossen, B., Richards, A. S., Heinsohn, T., Frascella, B., Balzarini, F., Oradini-Alacreu,
A., et al. (2023). The natural history of untreated pulmonary tuberculosis in adults: a
systematic review and meta-analysis. Lancet Respir. Med. 11, 367–379. doi: 10.1016/
s2213-2600(23)00097-8

Steingart, K. R., Ng, V., Henry, M., Hopewell, P. C., Ramsay, A., Cunningham, J.,
et al. (2006). Sputum processing methods to improve the sensitivity of smear
microscopy for tuberculosis: a systematic review. Lancet Infect. Dis. 6, 664–674.
doi: 10.1016/s1473-3099(06)70602-8

Su, K. Y., Yan, B. S., Chiu, H. C., Yu, C. J., Chang, S. Y., Jou, R., et al. (2017). Rapid
sputum multiplex detection of the M. tuberculosis complex (MTBC) and resistance
mutations for eight antibiotics by nucleotide MALDI-TOF MS. Sci. Rep. 7, 41486.
doi: 10.1038/srep41486

Sun, W., He, X., Zhang, X., Wang, X., Lin, W., Wang, X., et al. (2022). Diagnostic
value of lncRNA NORAD in pulmonary tuberculosis and its regulatory role in
Mycobacterium tuberculosis infection of macrophages. Microbiol. Immunol. 66, 433–
441. doi: 10.1111/1348-0421.12986

Tabriz, N. S., Skak, K., Kassayeva, L. T., Omarkulov, B. K., and Grigolashvili, M. A.
(2020). Efficacy of the Xpert MTB/RIF assay in multidrug-resistant tuberculosis.
Microb. Drug Resist. 26, 997–1004. doi: 10.1089/mdr.2019.0326
Frontiers in Cellular and Infection Microbiology 18
Tan, Y., Tan, Y., Li, J., Hu, P., Guan, P., Kuang, H., et al. (2021). Combined IFN-g and
IL-2 release assay for detect active pulmonary tuberculosis: a prospective multicentre
diagnostic study in China. J. Transl. Med. 19, 289. doi: 10.1186/s12967-021-02970-8

Tomasello, G., Foroughi, F., Padron, D., Moreno, A., and Banaei, N. (2022).
Evaluation of MetaSystems automated fluorescent microscopy system for the
machine-assisted detection of acid-fast bacilli in clinical samples. J. Clin. Microbiol.
60, e0113122. doi: 10.1128/jcm.01131-22

Vinayavekhin, N., Homan, E. A., and Saghatelian, A. (2010). Exploring disease
through metabolomics. ACS Chem. Biol. 5, 91–103. doi: 10.1021/cb900271r

Vrieling, F., Alisjahbana, B., Sahiratmadja, E., van Crevel, R., Harms, A. C.,
Hankemeier, T., et al. (2019). Plasma metabolomics in tuberculosis patients with and
without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Sci.
Rep. 9, 18669. doi: 10.1038/s41598-019-54983-5

Walzl, G., McNerney, R., du Plessis, N., Bates, M., McHugh, T. D., Chegou, N. N.,
et al. (2018). Tuberculosis: advances and challenges in development of new
diagnostics and biomarkers. Lancet Infect. Dis. 18, e199–e210. doi: 10.1016/s1473-
3099(18)30111-7

Wang, G., Huang, M., Jing, H., Jia, J., Dong, L., Zhao, L., et al. (2022). The practical
value of Xpert MTB/RIF ultra for diagnosis of pulmonary tuberculosis in a high
tuberculosis burden setting: a prospective multicenter diagnostic accuracy study.
Microbiol. Spectr. 10, e0094922. doi: 10.1128/spectrum.00949-22

Wang, M., Liu, H., Ren, J., Huang, Y., Deng, Y., Liu, Y., et al. (2023). Enzyme-assisted
nucleic acid amplification in molecular diagnosis: A review. Biosens. (Basel) 13.
doi: 10.3390/bios13020160

Wang, L., Xie, B., Zhang, P., Ge, Y., Wang, Y., and Zhang, D. (2019). LOC152742 as a
biomarker in the diagnosis of pulmonary tuberculosis infection. J. Cell. Biochem. 120,
8949–8955. doi: 10.1002/jcb.v120.6

Wang, M. Q., Zheng, Y. F., Hu, Y. Q., Huang, J. X., Yuan, Z. X., Wu, Z. Y., et al.
(2025). Diagnostic accuracy of Xpert MTB/RIF Ultra for detecting pulmonary
tuberculosis and rifampicin resistance: a systematic review and meta-analysis. Eur. J.
Clin. Microbiol. Infect. Dis 44 (3), 681-702. doi: 10.1007/s10096-024-05032-1

Wei, J. W., Huang, K., Yang, C., and Kang, C. S. (2017). Non-coding RNAs as
regulators in epigenetics (Review). Oncol. Rep. 37, 3–9. doi: 10.3892/or.2016.5236

Xie, L., Dang, Y., and Xie, J. (2018). Post-translational modification and regulatory
network of Mycobacterium tuberculosis antibiotic resistance. Sheng Wu Gong Cheng
Xue Bao 34, 1279–1287. doi: 10.13345/j.cjb.170530

Xie, Y. L., Eichberg, C., Hapeela, N., Nakabugo, E., Anyango, I., Arora, K.,
et al. (2024). Xpert MTB/RIF Ultra versus mycobacterial growth indicator tube
liquid culture for detection of Mycobacterium tuberculosis in symptomatic adults: a
diagnostic accuracy study. Lancet Microbe 5, e520–e528. doi: 10.1016/s2666-5247(24)
00001-6

Yan, M., Zhao, Z., Wu, T., Liu, T., Xu, G., Xu, H., et al. (2023). Highly sensitive
detection of complicated mutations of drug resistance in mycobacterium tuberculosis
using a simple, accurate, rapid, and low-cost tailored-design competitive wild-type
blocking assay. Small Methods 7, e2201322. doi: 10.1002/smtd.202201322

Yayan, J., Rasche, K., Franke, K. J., Windisch, W., and Berger, M. (2024). FDG-PET-
CT as an early detection method for tuberculosis: a systematic review and meta-
analysis. BMC Public Health 24, 2022. doi: 10.1186/s12889-024-19495-6

Yi, Z., Gao, K., Li, R., and Fu, Y. (2018). Dysregulated circRNAs in plasma from
active tuberculosis patients. J. Cell Mol. Med. 22, 4076–4084. doi: 10.1111/jcmm.13684

Ying, S. Y., Chang, D. C., and Lin, S. L. (2008). The microRNA (miRNA): overview of
the RNA genes that modulate gene function. Mol. Biotechnol. 38, 257–268.
doi: 10.1007/s12033-007-9013-8

Ying, C., He, C., Xu, K., Li, Y., Zhang, Y., and Wu, W. (2022). Progress on diagnosis
and treatment of latent tuberculosis infection. Zhejiang Da Xue Xue Bao Yi Xue Ban 51,
691–696. doi: 10.3724/zdxbyxb-2022-0445
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