AUTHOR=Yanamandra Sai , Marsh Holly , Cvitkovic Romana , Gui Qin , Belvin Benjamin R. , Lewis Janina P. TITLE=The Porphyromonas gingivalis RNA-binding protein is required for growth in high levels of zinc and persistence with host cells JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=Volume 15 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2025.1569544 DOI=10.3389/fcimb.2025.1569544 ISSN=2235-2988 ABSTRACT=The oral periodontal pathogen Porphyromonas gingivalis must adapt to an ever-changing environment to survive and cause disease. So far, most of the efforts concerning the regulatory mechanisms employed by the bacterium centered on DNA-binding regulators. Although global regulatory mechanisms employing RNA-binding proteins (RBP) are reported in most forms of life so far, such mechanism of regulation remains unknown in the oral Bacteroidetes group. Examination of the genome of P. gingivalis led to the discovery of a putative RBP with the RNA recognition motif 1 (RRM-1) designated here RbpPg1 (RNA-binding protein Porphyromonas gingivalis 1). The recombinant form of the protein-bound RNA and RNA-pull down identified a zinc exporter transcript as the most enriched one in agreement with the higher levels of zinc in the absence of the protein. Deletion of RbpPg1 reduced the ability of the bacterium to grow with 0.5 mM zinc. The RgpB protein level and the Arg-X protease activity was reduced in both iron replete and iron deplete conditions in the mutant strain when compared to the wild type. Lys-X protease activity was reduced, although Kgp protein levels were not altered by deletion of RbpPg1. The mutant grew better in hemin-deplete conditions when compared to the wild type. Finally, RbpPg1 was indispensable for the bacterium to survive with host cells. We have determined that both the transcriptome and proteome are affected by the deletion of RbpPg1 and found that the major group of proteins with elevated expression were the ones associated with response to environmental stress changes, while proteins mediating metabolic processes were downregulated. Overall, the first RBP characterized in P. gingivalis plays a significant role in the biology of the bacterium and differs from RBPs in other Gram-negative bacteria. Data are available via ProteomeXchange with identifier PXD034144 and via the NCBI Gene Expression Omnibus (GEO) and under accession number GSE168570.