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Background: Bloodstream infections (BSI) are a leading cause of sepsis and death 
in intensive care unit (ICU). Traditional severity scores, including the Sequential 
Organ Failure Assessment (SOFA), Acute Physiology Score III (APSIII), and 
Simplified Acute Physiology Score II (SAPS II), exhibit limitations in effectively 
predicting mortality among BSI patients, primarily due to their reliance on a 
narrow range of clinical variables. This study aimed to develop and validate a 
comprehensive nomogram model for 28-day all-cause mortality prediction in 
BSI patients. 

Methods: A retrospective cohort study was conducted using data from 3,615 
patients with positive blood cultures from the MIMIC-IV database, divided into 
training (n=2,532) and validation (n=1,083) cohorts. Through a two-step variable 
selection process combining LASSO regression and Boruta algorithm, we 
identified 12 predictive variables from 58 initial clinical parameters. The model’s 
performance was evaluated using AUROC, net reclassification improvement 
(NRI), integrated discrimination improvement (IDI), and decision curve 
analysis (DCA). 

Results: The nomogram demonstrated superior discrimination (AUROC: 0.760 
vs. 0.671, P<0.001 for SOFA; 0.760 vs. 0.705, P<0.001 for APSIII; 0.760 vs. 0.707, 
P<0.001 for SAPS II) in the training cohort, with consistent performance in the 
validation cohort (AUROC: 0.742). Key predictors identified in our model 
included the need for mechanical ventilation, the presence of malignancy, 
platelet count, and scores on the Glasgow Coma Scale (GCS). The model 
showed significant improvements in NRI and IDI, with consistent net benefit 
across a wide range of threshold probabilities in DCA. 
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Conclusions: This study developed and validated a predictive model for 28-day 
mortality in BSI patients that demonstrated superior performance compared to 
traditional severity scores. By integrating clinical, laboratory, and treatment-

related variables, the model provides a more comprehensive approach to risk 
stratification. These findings highlight its potential for improving early 
identification of high-risk patients and guiding clinical decision-making, though 
further prospective validation is needed to confirm its generalizability. 
KEYWORDS 

bloodstream infections, predictive model, nomogram, 28-day all-cause mortality, 
sepsis, intensive care unit, MIMIC-IV database 
Introduction 

Bloodstream infections (BSI) are a major precipitant of sepsis 
and a significant contributor to mortality in intensive care unit 
(ICU) worldwide (Wittekamp et al., 2018; Grumaz et al., 2020). 
Patients with BSI face a heightened risk of adverse outcomes, 
making early identification and targeted management essential for 
improving survival rates (Zengin Canalp and Bayraktar, 2021). 
Traditional severity scores, including the Sequential Organ Failure 
Assessment (SOFA), Acute Physiology Score III (APSIII), and 
Simplified Acute Physiology Score II (SAPS II), are commonly 
employed to evaluate the severity of illness in patients with sepsis. 
However, these scores have limitations in accurately predicting 
mortality, particularly in patients with BSI, as they rely on a limited 
set of clinical variables and may not fully capture the unique 
pathophysiology of BSI-related sepsis. 

Sepsis, characterized by a dysregulated immune response to 
infection, often leads to life-threatening organ dysfunction (Singer 
et al., 2016; Cecconi et al., 2018; Meyer and Prescott, 2024), with BSI 
being a common and severe precipitant. The rising incidence of 
sepsis, particularly cases involving BSI, underscores the need for 
more precise risk stratification tools. Current predictive models 
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often fail to account for the distinct clinical and laboratory profiles 
of BSI-related sepsis, highlighting the importance of a more 
comprehensive approach. Traditional severity scores may not 
capture the full spectrum of sepsis pathophysiology, especially in 
the context of BSI (Tian et al., 2016). 

Using data from the Medical Information Mart for Intensive Care 
(MIMIC) database (Johnson et al., 2023), this study aims to develop 
and validate a predictive model for 28-day all-cause mortality in 
patients with positive blood cultures. By incorporating 
multidimensional patient data, we seek to enhance the accuracy of 
mortality  prediction in this  high-risk population. The proposed model 
has the potential to serve as a valuable clinical tool, enabling early 
identification of high-risk BSI patients and facilitating targeted 
interventions to improve outcomes. 
Materials and methods 

Data source 

The data utilized in this study were extracted from the Medical 
Information Mart for Intensive Care IV (MIMIC-IV) version 3.0 
database. This openly accessible repository contains comprehensive 
medical information from the ICU of the Massachusetts Institute of 
Technology Beth Israel Deaconess Medical Center (Johnson et al., 
2023), covering patient stays between 2008 and 2022. Permission to 
use the database was obtained (Certificate No.: 56161429). 
Study population 

The study population comprised adult patients (≥18 years) 
admitted to the ICU for the first time with positive blood 
cultures, hospital stays exceeding 24 hours, and complete data on 
key variables. Patients younger than 18 years, those with hospital 
stays shorter than 24 hours, those with missing data on key 
variables, and those not admitted to the ICU for the first time 
were excluded (Figure 1). 
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Study methods 

A total of 58 variables were acquired using SQL (Wu et al., 2021), 
encompassing baseline data (age, gender, race, BMI, hypertension, 
diabetes mellitus, malignant tumor, CKD, cirrhosis, heart failure, 
myocardial infarction, hyperlipidemia, COPD), vital signs (heart 
rate, systolic blood pressure, diastolic blood pressure, mean arterial 
pressure, respiratory rate, pulse oximetry, temperature), laboratory 
tests (GCS, white blood cell count, red blood cell count, platelet count, 
hemoglobin, RDW, albumin, sodium, potassium, chloride, glucose, 
pH, partial pressure of carbon dioxide, partial pressure of oxygen, 
lactate, prothrombin time, PTT, international normalized ratio, total 
bilirubin, alanine aminotransferase, aspartate aminotransferase, BUN, 
creatinine), infection and treatment (microorganism, CRRT, MV, 
vasopressor, midazolam, dexmedetomidine, propofol), outcome 
measures (length of stay in hospital, length of stay in ICU, in-
hospital mortality, ICU mortality), and severity scores (SOFA, 
APSIII, SAPS II, Charlson Comorbidity Index). 
Frontiers in Cellular and Infection Microbiology 03 
Statistical methods 

Data splitting and imputation 
For variables with less than 30% missing values, multiple 

imputations were performed using a regression model. This 
method was chosen based on the understanding that maintaining 
a threshold of 30% for missing data helps ensure that imputation 
methods yield valid and reliable results, thereby minimizing the risk 
of bias. The imputation process involved iteratively predicting and 
filling in missing values for each variable, resulting in five complete 
datasets. One of these datasets was then randomly selected for the 
final analysis (Zhang, 2016; El Badisy et al., 2024). The research 
subjects were then randomly assigned into a training set (70%) and 
a validation set (30%). 

Variable selection 
The variable selection process was conducted on the training set to 

ensure the robustness and accuracy of the predictive model. Initially, 
FIGURE 1 

Overall study flowchart. 
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LASSO regression was employed to identify significant predictive 
factors. The optimal value of the regularization parameter l was 
determined through 10-fold cross-validation using the 1-standard 
error (1-SE) criterion, which helps prevent overfitting by selecting a 
simpler model that retains predictive power. This approach enhances 
the model’s interpretability and stability, ensuring that only the most 
meaningful variables are included. Variables with coefficients 
significantly different from zero (considering the applied penalty) 
were shortlisted (Hu et al., 2021). Subsequently, the Boruta algorithm 
was applied to further refine the variable selection process. This 
algorithm compares the importance of each variable with that of a 
randomly permuted copy of itself, ensuring that only those variables 
demonstrating significantly higher importance than their randomized 
counterparts are selected. In this process, only the “confirmed” 
variables from Boruta were retained, providing a robust measure of 
significance (Kursa and Rudnicki, 2010). The final model variables 
were determined by taking the intersection of the variables selected by 
both the LASSO and Boruta methods, ensuring that only the most 
significant and robust predictors, which comprehensively reflect 
patient outcomes, were included. 

Collinearity assessment 
To evaluate the presence of multicollinearity among the selected 

variables, the Variance Inflation Factor (VIF) was computed. 
Variables with a VIF value exceeding 5 were excluded from the 
model to mitigate the adverse effects of multicollinearity on the 
regression analysis (Vatcheva et al., 2016). 
Model construction 
A nomogram was developed using the selected variables to 

predict 28-day all-cause mortality for patients with BSI. The 
nomogram incorporated a comprehensive set of demographic 
characteristics and clinical variables, including age, albumin 
levels, BUN, use of CRRT, GCS, lactate levels, mechanical 
ventilation status, presence of a malignant tumor, PTT, platelet 
count, RDW, and vasopressor use. Each variable was assigned a 
point value based on its relative contribution to the prediction of 
mortality risk, allowing for a quantitative assessment of individual 
patient risk. 
 

Model evaluation 
The discriminative ability of the nomogram and the SOFA score 

was evaluated by assessing the area under the receiver operating 
characteristic curve (AUROC). The performance improvement of the 
nomogram compared to the SOFA score, APSIII score, and SAPS II 
was assessed using the Integrated Discrimination Improvement (IDI) 
and the Net Reclassification Improvement (NRI). Calibration curves 
and the Hosmer-Lemeshow test were utilized to evaluate the 
calibration of the nomogram. The net clinical benefit was

determined through the decision curve analysis (DCA) curve. 
Frontiers in Cellular and Infection Microbiology 04
Model interpretation 
To quantify the importance of each variable in the model, the 

SHAP (SHapley Additive exPlanations) method was employed. 
SHAP values provide a measure of the contribution of each 
feature to the prediction, allowing for the interpretation of the 
model’s output in terms of the impact of individual variables 
(Garriga et al., 2022). 

Data analysis 
The data distribution was analyzed using the Shapiro–Wilk test. 

Continuous data were represented as mean ± standard deviation or 
median (interquartile range, IQR), while categorical variables were 
presented as frequencies and ratios (%). Non-parametric tests 
(Mann–Whitney U test or Kruskal-Wallis test) were employed for 
non-normally distributed or heteroscedastic data. Pearson’s chi-
square test was used to compare categorical data. All statistical 
analyses were carried out using R software, utilizing various 
packages including tableone, mice, rms, pROC, dca, and rdma. 
Results 

Baseline characteristics 

We included 3,615 patients with positive blood cultures, 2,532 in 
the training cohort and 1,083 in the validation cohort. In the training 
cohort, 71.8% of patients survived, while 28.2% died. Non-survivors 
were older (median age 69.0 years [IQR, 59.0-79.0] vs 64.0 years 
[IQR, 52.0-74.0]; P<0.001) and had higher prevalence of myocardial 
infarction (11.5% vs 7.8%; P=.004), congestive heart failure (35.2% vs 
28.7%; P=0.001), chronic obstructive pulmonary disease (10.3% vs 
7.2%; P=0.009), malignant tumor (20.3% vs 12.1%; P<0.001), chronic 
kidney disease (29.7% vs 19.2%; P<0.001), and cirrhosis (16.2% vs 
10.1%; P<0.001). Initial vital signs and laboratory findings showed 
that non-survivors had lower systolic blood pressure (114.0 mm Hg 
[IQR, 98.0-132.0] vs 117.0 mm Hg [IQR, 101.0-138.0]; P=0.001) and 
temperature (36.78°C [IQR, 36.44-37.17] vs 36.89°C [IQR, 36.56­
37.33]; P<0.001), and higher levels of lactate (2.8 mmol/L [IQR, 1.7­
4.9] vs 1.8 mmol/L [IQR, 1.2-2.8]; P<0.001), creatinine (1.8 mg/dL 
[IQR, 1.1-3.2] vs 1.2 mg/dL [IQR, 0.8-2.1]; P<0.001), and BUN (39 
mg/dL [IQR, 24-63] vs 25 mg/dL [IQR, 16-41]; P<0.001). Similar 
patterns were observed in the validation cohort (Table 1). 
Model development and variable selection 

Through a two-step variable selection process combining 
LASSO regression and Boruta algorithm, we identified 12 
predictive variables from the initial set of clinical parameters. 
LASSO regression initially selected 14 variables (Figures 2A, B), 
while Boruta algorithm confirmed 30 important features 
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TABLE 1 Baseline characteristics and comparison of training and validation cohorts. 

Training cohort (N=2532) Validation cohort (N=1083) 
P 

on-survival (N=288) P 

71.00 (61.00, 79.00) <0.001 0.730 

27.39 (23.13, 33.07) 0.024 0.551 

0.591 0.818 

178 (61.8%) 

110 (38.2%) 

0.648 0.832 

176 (61.1%) 

31 (10.8%) 

9 (3.1%) 

15 (5.2%) 

57 (19.8%) 

0.550 0.986 

260 (90.3%) 

28 (9.7%) 

0.089 0.181 

182 (63.2%) 

106 (36.8%) 

0.949 0.500 

263 (91.3%) 

25 (8.7%) 

0.612 0.169 

177 (61.5%) 

111 (38.5%) 

0.031 0.702 

234 (81.2%) 

(Continued) 
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Characteristics 
Survival (N=1817) Non-survival (N=715) P Survival (N=795) N

Age (years) 64.00 (52.00, 74.00) 69.00 (59.00, 79.00) <0.001 64.00 (53.00, 73.00) 

BMI 28.40 (24.04, 33.52) 27.40 (23.75, 33.33) 0.040 28.92 (24.53, 33.69) 

Gender, n (%) 0.965 

Male 1091 (60.0%) 430 (60.1%) 477 (60.0%) 

Female 726 (40.0%) 285 (39.9%) 318 (40.0%) 

Race, n (%) 0.013 

White 1173 (64.6%) 443 (62.0%) 495 (62.3%) 

Black 223 (12.3%) 70 (9.8%) 104 (13.1%) 

Asin 59 (3.2%) 18 (2.5%) 28 (3.5%) 

Hispanic or Latino 75 (4.1%) 34 (4.8%) 35 (4.4%) 

Others 287 (15.8%) 150 (21.0%) 133 (16.7%) 

Comorbidities 

Myocardial infarct, n (%) 0.004 

No 1675 (92.2%) 633 (88.5%) 727 (91.4%) 

Yes 142 (7.8%) 82 (11.5%) 68 (8.6%) 

Congestive heart failure, n (%) 0.001 

No 1296 (71.3%) 463 (64.8%) 546 (68.7%) 

Yes 521 (28.7%) 252 (35.2%) 249 (31.3%) 

COPD, n (%) 0.009 

No 1686 (92.8%) 641 (89.7%) 725 (91.2%) 

Yes 131 (7.2%) 74 (10.3%) 70 (8.8%) 

Diabetes Mellitus, n (%) 0.495 

No 1190 (65.5%) 458 (64.1%) 502 (63.1%) 

Yes 627 (34.5%) 257 (35.9%) 293 (36.9%) 

Malignant tumor, n (%) <0.001 

No 1598 (87.9%) 570 (79.7%) 688 (86.5%) 
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TABLE 1 Continued 

Training cohort (N=2532) Validation cohort (N=1083) 
P 

on-survival (N=288) P 

54 (18.8%) 

0.011 0.712 

207 (71.9%) 

81 (28.1%) 

0.677 0.778 

187 (64.9%) 

101 (35.1%) 

<0.001 0.069 

229 (79.5%) 

59 (20.5%) 

0.256 0.477 

194 (67.4%) 

94 (32.6%) 

0.422 0.790 

186 (64.6%) 

8 (2.8%) 

74 (25.7%) 

19 (6.6%) 

1 (0.3%) 

95.00 (80.00, 114.00) 0.616 0.780 

112.00 (97.25, 134.75) 0.023 0.882 

62.00 (53.00, 79.00) 0.099 0.169 

76.50 (65.00, 90.75) 0.130 0.504 

21.00 (17.00, 26.00) 0.011 0.757 

(Continued) 
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Characteristics 
Survival (N=1817) Non-survival (N=715) P Survival (N=795) N

Comorbidities 

Yes 219 (12.1%) 145 (20.3%) 107 (13.5%) 

CKD, n (%) <0.001 

No 1468 (80.8%) 503 (70.3%) 630 (79.2%) 

Yes 349 (19.2%) 212 (29.7%) 165 (20.8%) 

Hypertension, n (%) 0.015 

No 1163 (64.0%) 494 (69.1%) 527 (66.3%) 

Yes 654 (36.0%) 221 (30.9%) 268 (33.7%) 

Cirrhosis, n (%) <0.001 

No 1633 (89.9%) 599 (83.8%) 702 (88.3%) 

Yes 184 (10.1%) 116 (16.2%) 93 (11.7%) 

Hyperlipidemia, n (%) 0.510 

No 1257 (69.2%) 485 (67.8%) 564 (70.9%) 

Yes 560 (30.8%) 230 (32.2%) 231 (29.1%) 

Microorganism, n (%) 0.317 

Gram-positive cocci 1151 (63.3%) 441 (61.7%) 501 (63.0%) 

Gram-positive rods 85 (4.7%) 27 (3.8%) 32 (4.0%) 

Gram-negative rods 427 (23.5%) 194 (27.1%) 198 (24.9%) 

Gram-negative cocci 150 (8.3%) 52 (7.3%) 64 (8.1%) 

Fungi 4 (0.2%) 1 (0.1%) 0 (0.0%) 

First day vital signs (IQR) 

Heart rate (min-1) 95.00 (80.00, 111.00) 96.00 (81.00, 111.00) 0.393 95.00 (80.00, 111.00) 

Sbp (mmHg) 117.00 (101.00, 138.00) 114.00 (98.00, 132.00) 0.001 117.00 (101.00, 137.00) 

Dbp (mmHg) 67.00 (56.00, 79.00) 65.00 (53.00, 78.00) 0.034 65.00 (54.00, 79.00) 

Mbp (mmHg) 79.00 (68.00, 92.00) 77.00 (66.00, 91.00) 0.010 79.00 (68.00, 93.00) 

RR (min-1) 20.00 (16.00, 25.00) 21.00 (17.00, 25.00) 0.014 20.00 (16.00, 24.00) 
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TABLE 1 Continued 

Training cohort (N=2532) Validation cohort (N=1083) 
P 

on-survival (N=288) P 

36.72 (36.39, 37.21) <0.001 0.757 

97.00 (95.00, 100.00) 0.494 0.159 

9.65 (8.30, 11.40) 0.016 0.474 

157.00 (92.25, 233.75) <0.001 0.553 

12.20 (7.95, 17.48) 0.996 0.160 

3.23 (2.73, 3.82) 0.001 0.360 

15.95 (14.60, 17.88) <0.001 0.487 

2.60 (2.20, 3.10) <0.001 0.293 

1.60 (1.00, 2.80) <0.001 0.147 

35.50 (21.00, 54.00) <0.001 0.131 

102.00 (98.00, 108.00) 0.348 0.707 

138.00 (134.00, 141.00) 0.797 0.379 

4.20 (3.70, 4.90) 0.021 0.420 

0.95 (0.50, 2.27) 0.004 0.082 

139.00 (109.00, 198.75) 0.152 0.984 

1.60 (1.30, 2.00) <0.001 0.830 

17.10 (13.90, 22.40) <0.001 0.952 

35.60 (28.90, 46.65) <0.001 0.880 

2.40 (1.50, 3.87) <0.001 0.056 

7.37 (7.28, 7.42) 0.040 0.836 

73.50 (47.25, 121.75) 0.019 0.686 

38.00 (32.00, 45.00) 0.037 0.102 

32.00 (16.25, 68.50) 0.309 0.307 

53.00 (28.00, 127.25) <0.001 0.358 
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Characteristics 
Survival (N=1817) Non-survival (N=715) P Survival (N=795) N

First day vital signs (IQR) 

Temperature (°C) 36.89 (36.56, 37.33) 36.78 (36.44, 37.17) <0.001 36.89 (36.56, 37.33) 

SpO2 (%) 98.00 (95.00, 100.00) 97.00 (94.00, 99.00) <0.001 98.00 (95.00, 100.00) 

First day laboratory tests (IQR) 

Hemoglobin (g/dL) 10.10 (8.45, 11.80) 9.60 (8.10, 11.10) <0.001 10.10 (8.60, 11.80) 

Platelets (K/uL) 182.00 (117.00, 254.00) 160.00 (88.00, 236.00) <0.001 183.00 (121.00, 259.00) 

WBC (K/uL) 11.60 (7.70, 16.50) 11.90 (7.50, 18.00) 0.351 11.90 (8.00, 17.80) 

RBC (m/uL) 3.39 (2.87, 4.00) 3.19 (2.67, 3.82) <0.001 3.43 (2.90, 3.98) 

RDW (%) 15.00 (13.70, 16.70) 16.00 (14.60, 18.40) <0.001 15.00 (13.80, 16.90) 

Albumin (g/dL) 2.80 (2.40, 3.30) 2.70 (2.20, 3.10) <0.001 2.80 (2.40, 3.20) 

Creatinine (mg/dL) 1.10 (0.80, 1.80) 1.40 (0.90, 2.50) <0.001 1.10 (0.80, 2.00) 

BUN (mg/dL) 22.00 (14.00, 37.00) 31.00 (19.00, 54.00) <0.001 22.00 (14.00, 40.00) 

Chloride (mmol/L) 104.00 (99.00, 108.00) 102.00 (98.00, 107.00) <0.001 103.00 (99.00, 108.00) 

Sodium (mmol/L) 138.00 (135.00, 141.00) 137.00 (133.00, 141.00) 0.022 138.00 (134.00, 141.00) 

Potassium (mmol/L) 4.10 (3.70, 4.60) 4.20 (3.70, 4.80) <0.001 4.10 (3.70, 4.60) 

Bilirubin total (mg/dL) 0.70 (0.40, 1.50) 0.90 (0.50, 2.40) <0.001 0.70 (0.40, 1.60) 

Glucose (mg/dL) 132.00 (106.00, 175.00) 131.00 (106.00, 185.00) 0.514 132.00 (107.00, 182.00) 

INR 1.30 (1.20, 1.70) 1.50 (1.20, 2.10) <0.001 1.30 (1.20, 1.60) 

PT (S) 14.80 (13.10, 18.10) 16.10 (13.50, 22.30) <0.001 14.80 (13.00, 17.60) 

PTT (S) 31.20 (27.30, 38.80) 35.70 (29.40, 49.10) <0.001 31.20 (27.90, 38.80) 

Lactate (mmol/L) 1.70 (1.10, 2.70) 2.20 (1.50, 3.80) <0.001 1.80 (1.20, 2.70) 

pH 7.38 (7.32, 7.43) 7.36 (7.27, 7.43) <0.001 7.38 (7.31, 7.44) 

PO2 (mmHg) 87.00 (52.00, 164.00) 79.00 (47.00, 131.00) <0.001 83.00 (49.00, 146.00) 

PCO2 (mmHg) 40.00 (34.00, 46.00) 40.00 (33.00, 47.00) 0.790 39.00 (34.00, 46.00) 

ALT (IU/L) 30.00 (17.00, 65.00) 32.00 (17.00, 81.00) 0.165 29.00 (16.00, 62.00) 

AST (IU/L) 41.00 (24.00, 89.00) 51.00 (28.00, 136.00) <0.001 40.00 (23.00, 82.00) 
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TABLE 1 Continued 

Training cohort (N=2532) Validation cohort (N=1083) 
P 

Non-survival (N=288) P 

0.142 0.921 

167 (58.0%) 

121 (42.0%) 

0.832 0.520 

267 (92.7%) 

21 (7.3%) 

0.015 0.186 

223 (77.4%) 

65 (22.6%) 

<0.001 0.959 

108 (37.5%) 

180 (62.5%) 

<0.001 0.890 

213 (74.0%) 

75 (26.0%) 

<0.001 0.272 

103 (35.8%) 

185 (64.2%) 

68.00 (54.00, 84.00) <0.001 0.180 

49.50 (40.00, 58.00) <0.001 0.076 

8.00 (6.00, 12.00) <0.001 0.020 

7.00 (5.00, 9.00) <0.001 0.040 

14.00 (12.00, 15.00) <0.001 0.351 
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Characteristics 
Survival (N=1817) Non-survival (N=715) P Survival (N=795) 

Sedative Medications 

Midazolam, n (%) <0.001 

No 1156 (63.6%) 399 (55.8%) 500 (62.9%) 

Yes 661 (36.4%) 316 (44.2%) 295 (37.1%) 

Propofol, n (%) 0.853 

No 1699 (93.5%) 670 (93.7%) 740 (93.1%) 

Yes 118 (6.5%) 45 (6.3%) 55 (6.9%) 

Dexmedetomidine, n (%) 0.246 

No 1334 (73.4%) 541 (75.7%) 556 (69.9%) 

Yes 483 (26.6%) 174 (24.3%) 239 (30.1%) 

Mechanical ventilationt, n (%) <0.001 

No 906 (49.9%) 263 (36.8%) 391 (49.2%) 

Yes 911 (50.1%) 452 (63.2%) 404 (50.8%) 

CRRT, n (%) <0.001 

No 1625 (89.4%) 519 (72.6%) 706 (88.8%) 

Yes 192 (10.6%) 196 (27.4%) 89 (11.2%) 

Vasopressor, n (%) <0.001 

No 1023 (56.3%) 276 (38.6%) 431 (54.2%) 

Yes 794 (43.7%) 439 (61.4%) 364 (45.8%) 

Severe Score (IQR) 

Acute Physiology Score III 50.00 (38.00, 64.00) 67.00 (51.00, 84.00) <0.001 51.00 (39.00, 65.00) 

Simplified Acute Physiology 
Score II 

38.00 (29.00, 47.00) 49.00 (38.00, 60.00) <0.001 39.00 (30.00, 48.00) 

SOFA score 5.00 (3.00, 8.00) 8.00 (5.00, 11.00) <0.001 6.00 (3.00, 9.00) 

Charlson Comorbidity Index 5.00 (3.00, 7.00) 7.00 (5.00, 9.00) <0.001 5.00 (3.00, 8.00) 

GCS 15.00 (13.00, 15.00) 14.00 (12.00, 15.00) <0.001 15.00 (14.00, 15.00) 
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(Figure 2C). The intersection of these methods yielded the final 12 
variables: age, albumin, BUN, CRRT, GCS, lactate, mechanical 
ventilation, malignant tumor, PTT, platelet count, RDW, and 
vasopressor use (Figure 2D). Multicollinearity assessment 
demonstrated variance inflation factor values below 2 (range, 
1.02-1.29) for all selected variables, indicating minimal 
collinearity. Based on these variables, we constructed a 
nomogram to predict 28-day all-cause mortality for patients with 
BSI (Figure 3). The nomogram incorporated both demographic 
characteristics and clinical variables, with point values assigned to 
each predictor based on their relative contribution to mortality risk. 
Predictive model performance 

The nomogram demonstrated superior discrimination 
(AUROC, 0.760 [95% CI, 0.740-0.781]) compared with SOFA 
(0.671 [0.648-0.694]), APSIII (0.705 [0.683-0.728]), and SAPS II 
(0.707 [0.685-0.729]) (all P<0.001) in the training cohort. In the 
validation cohort, the nomogram (AUROC, 0.742 [95% CI, 0.709­
0.775]) maintained significantly better discrimination than SOFA 
(0.681 [0.645-0.717], P=0.001) and SAPS II (0.701 [0.665-0.737], 
P=0.038), although the difference with APSIII (0.715 [0.680-0.750], 
P=0.129) did not reach statistical significance (Figure 4, Table 2). 
Calibration and model reclassification 

Calibration was assessed using the Hosmer-Lemeshow test and 
calibration curves. The Hosmer-Lemeshow test showed good 
calibration in both the training (c²=12.39, df=6, P=0.054) and 
validation cohorts (c²=11.576, df=6, P=0.072), indicating no 
significant deviation between predicted and observed outcomes. 
The calibration curves demonstrated good agreement between 
predicted and actual probabilities across the entire range of 
predicted risk (Figure 5). 

The nomogram showed significant improvements in risk 
reclassification compared with conventional scores. In the 
training cohort, categorical NRI values were 0.1422 (95% CI, 
0.097-0.1873) versus SOFA, 0.0943 (0.054-0.1346) versus APSIII, 
and 0.0758 (0.0375-0.114) versus SAPS II (all P<0.001). Continuous 
NRI values showed similar improvements: 0.5859 (0.5023-0.6683) 
versus SOFA, 0.442 (0.3574-0.5266) versus APSIII, and 0.4175 
(0.3325-0.5025) versus SAPS II (all P<0.001) (Table 2). Decision 
curve analysis demonstrated consistent net benefit across a wide 
range of threshold probabilities (0.08-0.92 in training; 0.10-0.84 in 
validation cohorts) (Figure 6). SHAP analysis identified mechanical 
ventilation, malignancy, platelet count, and GCS as the strongest 
predictors of mortality (Figure 7). 
Discussion 

In this cohort study of 3,615 patients with BSI, we developed 
and validated a predictive model for 28-day all-cause mortality that 
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demonstrated superior performance compared with conventional 
severity scores, such as SOFA, APSIII, and SAPS II. By integrating 
12 key clinical and laboratory variables spanning multiple 
pathophysiological domains, the model highlights the importance 
of a multidimensional approach to risk stratification in sepsis. These 
findings underscore the critical role of combining metabolic, 
neurological, and immunological indicators with therapeutic 
interventions to enhance prognostic accuracy. 

The superior performance of our model can be attributed to several 
factors. First, the inclusion of both laboratory and clinical variables 
provided a more comprehensive assessment of disease severity than 
traditional scoring systems. SHAP analysis revealed that mechanical 
ventilation, malignancy, and platelet count were among the strongest 
predictors, emphasizing the importance of combining intervention 
requirements, comorbidity burden, and physiological derangements 
to better capture mortality risk. Second, the model was robustly 
validated, demonstrating strong discriminative ability in both training 
and validation cohorts, supporting its potential generalizability across 
similar populations. The clinical utility of the model is further 
Frontiers in Cellular and Infection Microbiology 10 
underscored by its superior performance compared with 
conventional severity scores and its ability to improve risk 
stratification across the spectrum of disease severity. Metrics such as 
NRI and IDI demonstrated significant enhancements in risk prediction, 
while DCA confirmed consistent net benefit across  a  wide  range of

threshold probabilities. These results suggest the model could serve as a 
valuable tool for early risk stratification, guiding clinical decision-
making, and optimizing resource allocation in patients with BSI. 

The identified predictors align with current understanding of 
sepsis pathophysiology. Neurological dysfunction, represented by 
the GCS, emerged as a key determinant of mortality. Lower GCS 
scores, indicative of sepsis-associated encephalopathy (SAE) (Jin 
et al., 2024), were strongly associated with poor outcomes (Bourhy 
et al., 2022; Fang et al., 2022; Zou et al., 2022), consistent with prior 
studies highlighting the prognostic significance of neurological 
status in sepsis. Elevated lactate levels, a marker of tissue 
hypoperfusion and metabolic dysfunction, were similarly 
predictive of mortality. Lactate and lactate clearance in acute 
cardiac care patients, Occurrence and adverse effect on outcome 
FIGURE 2 

Process and results of variable selection. (A) Selection of tuning parameter (lambda) in LASSO regression using minimum criteria (left dotted line) and 
1-SE criteria (right dotted line). (B) Coefficient distribution created from the log(lambda) sequence. In this study, predictor variables were selected 
based on the 1-SE criterion (right dotted line), resulting in 14 nonzero coefficients. (C) Importance scores of predictor variables calculated by the 
Boruta algorithm. The vertical axis represents the importance score in Z-score form, while the horizontal axis lists all predictor variables. (D) Feature 
selection results showing key variables identified by both Boruta algorithm (orange) and LASSO regression (blue). The final selected variables 
represent the intersection of both methods, providing high-confidence predictors for the model.LASSO indicates least absolute shrinkage and 
selection operator; SE, standard error. 
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of hyperlactatemia in the critically ill (Khosravani et al., 2009; 
Attana et al., 2012; Wright et al., 2022), reinforcing their 
established role as a key indicator of disease severity. Other 
laboratory predictors, including hypoalbuminemia, elevated BUN, 
thrombocytopenia, and prolonged PTT, reflect the systemic 
derangements characteristic of sepsis. These findings align with 
known mechanisms where hypoalbuminemia signals systemic 
Frontiers in Cellular and Infection Microbiology 11 
inflammation and malnutrition (Furukawa et al., 2019; Mahmud 
et al., 2021), elevated BUN reflects renal dysfunction (Hu et al., 
2021; Harazim et al., 2023; Li et al., 2024), and thrombocytopenia 
and coagulopathy are markers of disseminated intravascular 
coagulation (DIC) and severe systemic inflammation (Valladolid 
et al., 2020; Harmon et al., 2021; Jahn et al., 2022). Notably, the 
prolonged PTT underscores coagulopathic changes, acting as an 
FIGURE 3 

Nomogram for predicting the outcome. Nomogram for estimating the probability of the outcome based on selected clinical variables. Each variable 
contributes points that sum to a total score, which corresponds to the predicted probability on the bottom scale. *p < 0.05; **p < 0.01; ***p < 0.001. 
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indicator of the severity of coagulopathy in sepsis and its correlation 
with poorer clinical outcomes (Guo et al., 2022). Furthermore, the 
inclusion of RDW enriches this discussion. Elevated RDW levels 
suggest increased inflammation and oxidative stress within the 
body, positioning RDW as a significant prognostic marker 
that indicates a heightened risk of mortality in patients with 
sepsis (Crook et al., 2022; Wu et al., 2022). Collectively, these 
variables offer a more nuanced understanding of the complex 
pathophysiology of sepsis and its implications for mortality risk, 
emphasizing the necessity of monitoring these parameters in 
clinical practice. 

The inclusion of therapeutic interventions as predictors— 
mechanical ventilation, continuous renal replacement therapy, 
Frontiers in Cellular and Infection Microbiology 12 
and vasopressor use—merits particular attention. While these 
variables may partly reflect disease severity, their independent 
contribution to the model suggests they capture unique aspects of 
the clinical trajectory not fully represented by physiological 
parameters alone (Baghdadi et al., 2020; Evans et al., 2021; 
Bhavani et al., 2022). The SHAP analysis highlighted the 
substantial impact of these interventions on the model’s 
predictions, suggesting that treatment-related variables may serve 
as critical markers of disease progression and prognosis. However, 
careful interpretation is needed to distinguish between markers of 
severity and potentially modifiable risk factors. 

Comorbidities also played a significant role in mortality 
prediction. Malignancy, in particular, emerged as a strong 
FIGURE 4 

ROC curves for predicting 28-day mortality in patients with bloodstream infections. (A) Training Cohort and (B) Validation Cohort compare the 
performance of the Nomogram, SOFA, APSIII, and SAPSII scores. The Nomogram demonstrates superior predictive ability in both cohorts. 
TABLE 2 Comparison of the performance of four models in predicting 28-day all-cause mortality in patients with positive blood cultures. 

Predict 
Model 

AUROC P value NRI (Categorical) P value NRI (Continuous) P value IDI P value 

Training 
set 

Nomogram 0.760 

SOFA 0.671 <0.001 0.1422 [0.097-0.1873] <0.001 0.5859 [0.5023-0.6683] <0.001 0.1017 [0.0869-0.1164] <0.001 

APSIII 0.705 <0.001 0.0943 [0.054-0.1346] <0.001 0.442 [0.3574-0.5266] <0.001 0.0735 [0.0581-0.089] <0.001 

SAPSII 0.707 <0.001 0.0758 [0.0375-0.114] <0.001 0.4175 [0.3325-0.5025] <0.001 0.07 [0.055-0.085] <0.001 

Validation 
set 

Nomogram 0.742 

SOFA 0.681 0.001 0.0809 [0.0041-0.1577] 0.039 0.4964 [0.3653-0.6275] <0.001 0.084 [0.0591-0.1089] <0.001 

APSIII 0.715 0.129 0.0772 [0.0139-0.1406] 0.017 0.3251 [0.192-0.4582] <0.001 0.0592 [0.0343-0.0841] <0.001 

SAPSII 0.701 0.038 0.0697 [0.0082-0.1312] 0.026 0.3721 [0.2391-0.5051] <0.001 0.0633 [0.0388-0.0878] <0.001 
front
The P-value was calculated by comparing the results of the nomogram with SOFA, APSIII, and SAPSII.
 
SOFA, Sequential Organ Failure Assessment. APSIII, Acute Physiology and Chronic Health Evaluation III. SAPSII, Simplified Acute Physiology Score II. AUROC, Area Under the ROC Curve.
 
NRI, Net Reclassification Improvement. IDI, Integrated Discrimination Improvement.
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predictor, likely reflecting the immunosuppressive effects of both 
the disease and its treatments (Danahy et al., 2019; Hensley et al., 
2019; Cooper et al., 2020). The SHAP analysis underscored the 
substantial contribution of malignancy to the model’s predictive 
power, highlighting the importance of accounting for comorbid 
conditions in risk stratification for BSI patients. 
Frontiers in Cellular and Infection Microbiology 13 
In our study, we compared our nomogram model with three 
traditional severity scores—SOFA, APSIII, and SAPS II—commonly 
used to assess critically ill patients but limited in predicting mortality in 
BSI (Vincent and Moreno, 2010).The SOFA score, while a cornerstone 
for evaluating organ dysfunction, relies on a narrow set of physiological 
parameters and excludes key factors like comorbidities, treatment 
FIGURE 6 

Decision curve analysis for predicting 28-day mortality in patients with bloodstream infections. (A) Training Cohort and (B) Validation Cohort 
compare the net benefit of the Nomogram, SOFA, APSIII, and SAPSII scores. The Nomogram shows higher clinical utility across a wider range of 
threshold probabilities in both cohorts. 
FIGURE 5 

Calibration curves for predicting 28-day mortality in patients with bloodstream infections. (A) Training Cohort and (B) Validation Cohort compare the 
predicted probabilities of the Nomogram, SOFA, APSIII, and SAPSII scores against the observed probabilities. The dashed line represents the ideal 
calibration (perfect agreement between predicted and observed probabilities). The Nomogram shows the closest alignment to the ideal line in both 
cohorts, indicating better calibration performance. 
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interventions, and laboratory markers, reducing its predictive accuracy 
for BSI-related mortality (Gershengorn et al., 2021). Similarly, APSIII 
and SAPS II, though incorporating more variables, fail to address the 
unique pathophysiology of BSI, omitting critical predictors such as 
mechanical ventilation, malignancy, platelet count, and lactate levels 
(Le Gall et al., 1993; Nassar et al., 2014). In contrast, our nomogram 
model adopts a multidimensional approach, integrating demographic, 
clinical, laboratory, and treatment variables to provide a more 
comprehensive assessment of disease severity. This holistic design 
captures the complex interplay of factors influencing mortality, 
significantly enhancing predictive accuracy and outperforming 
traditional scores. 

This study has several strengths. The use of a large, well-
characterized dataset and robust statistical methods for variable 
selection and model validation enhances the reliability and 
generalizability of the findings. By integrating diverse clinical and 
laboratory variables, the model achieves improved discriminatory 
power and clinical relevance compared with existing severity scores. 
Several limitations must be acknowledged. The retrospective design 
and reliance on data from a single healthcare system may limit the 
generalizability of our findings. Additionally, our model does not 
account for dynamic changes in variables over time, which could 
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enhance risk prediction. To address these limitations, future research 
should focus on validating the model prospectively across diverse 
populations and incorporating longitudinal data to improve 
predictive accuracy. Furthermore, studies should explore the causal 
relationships between key predictors and outcomes, identifying 
modifiable factors for targeted interventions. Incorporating serial 
measurements of critical variables, such as lactate and platelets, 
could enhance the model’s ability to capture the evolving clinical 
trajectory of sepsis, paving the way for more personalized approaches 
to risk assessment and management for patients with BSI. 
Conclusion 

This study developed and validated a predictive model for 28-day 
all-cause mortality in patients with BSI, demonstrating superior 
performance compared to traditional severity scores. By integrating 
clinical, laboratory, and treatment-related variables, the model provides 
a more comprehensive approach to risk stratification. These findings 
highlight its potential for improving early identification of high-risk 
patients and guiding clinical decision-making, though further 
prospective validation is needed to confirm its generalizability. 
FIGURE 7
 

SHAP analysis for predicting 28-day mortality in bloodstream infection patients. The beeswarm plot (A) shows the distribution of SHAP values for
 
each feature, with color intensity indicating feature values. The force plot (B) illustrates the contribution of individual features to a specific prediction,
 
showing how each feature affects the model’s output.
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