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Integrated analysis of
microbiome and host
transcriptome revealed
correlations between tissue
microbiota and tumor
progression in early-stage
papillary thyroid carcinoma
Xiuwen Tong1,2†, Xipei Chen1†, Chen Shen1†, Jiahao Pan1,
Xinyu Wang3*, Xinyun Xu1* and Sheng Liu3*

1Department of Thyroid and Breast Surgery, Second Affiliated Hospital of Naval Medical University,
Shanghai, China, 2Department of General Surgery, 928th Hospital of the PLA Joint Logistics Support
Force, Haikou, China, 3Department of Thyroid and Breast Surgery, Shanghai Fourth People's Hospital,
School of Medicine, Tongji University, Shanghai, China
Introduction: Emerging evidences suggest that microorganisms in the tumor

microenvironment play important roles in tumor occurrence and progression.

However, the microbial distribution in the papillary thyroid carcinoma (PTC)

tissue and its relationship with PTC are unclear.

Methods: We performed 16S rRNA amplicon sequencing and RNA-Seq to

characterize the tissue microbiome and transcriptome between the tumor and

paracancerous tissue, respectively. The association analysis between microbes

and host gene expression were conducted to screen the potential microbe-

gene/cell interactions.

Results: We found that the tumor tissues indeed harbored complex microbial

communities, which showed significant differences in microbial and functional

composition between the tumor and para-cancerous tissues. A set of differential

microbial genera were identified to be significantly associated with the clinical

factors, such as Planococcus enriched in tumor tissue, Limnobacter in T1a stage

and Cutibacterium in N1b stage. 793 differential expressed genes were also

identified, which are mainly enriched with functions related to cell-cell

communication and extracellular matrix. In terms of the immune cell

composition, 8 differential immune cell types were further identified,

suggesting a significant immune response in PTC. Finally, association analysis

identified 5 pairs of microbe-gene association and 1 pair of microbe-cell with

significance, which were all involved in the tumorigenesis and tumor progression

via inflammation-related pathways.
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Conclusions: In addition to characterizing the tissue microbiome and host gene

expression in PTC patients, we further explored the roles of microbe-gene/cell

interactions in PTC. The results provide candidate biomarkers for exploring the

molecular mechanisms of tissue microbiome in tumorigenesis and tumor

progression of PTC.
KEYWORDS

PTC, tissue microbiome, host gene expression, microbe-gene association, microbe-
cell association
1 Introduction

Thyroid carcinoma (TC) is one of the most frequent endocrine

malignancies, with a total of 586,202 thyroid cancer cases globally in

2020, ranking ninth in cancer incidence and fourth in all

malignancies among women, three times higher than men (Sung

et al., 2021). Differentiated thyroid carcinoma (DTC) accounts for

more than 95% of all thyroid cancers and can be further divided

into papillary thyroid carcinoma (PTC, 85%–90%), follicular

thyroid carcinoma (FTC, 5%–10%), and Hürthle cell carcinoma

(3%) (Pellegriti et al., 2013; Kure and Ohashi, 2021). The etiology

and pathophysiology of PTCs are unknown, and the only

recognized risk factor is ionizing radiation. However, there is

some evidence that other variables such as family history, obesity,

and environmental factors may enhance the chances of PTC

(Stonell et al., 2022). It has recently been established that

microbiome dysbiosis plays a significant role in the onset and

progression of cancers like gastric cancer and may even alter the

therapeutic response to chemotherapy and immunotherapy

(Helmink et al., 2019). Recent studies have found that intestinal

flora may play an anti-cancer or pro-cancer role in thyroid cancer

by affecting hormone synthesis, enzyme activity, and immune

response (Hu et al., 2024; Ludgate et al., 2024; Virili et al., 2024).

Dysregulation of the gut microbiome was linked to thyroid cancer

and thyroid nodules and corresponded with clinical indexes of

thyroid function, according to Zhang et al.’s study (Zhang et al.,

2019). As is well known, the thyroid gland develops from the

primitive intestine, and thyroid follicles share the same endoderm

as the mural cells and have some similar morphological and

functional characteristics (Cellini et al., 2017). Both gastric

mucosa and thyroid follicular cells concentrate and transport

iodine via The Na(+)/I(−) symporter (NIS) (Portulano et al.,

2014). It has also been found that intestinal flora may be involved

in the development of thyroid cancer through NIS regulation

(Samimi and Haghpanah, 2020). Lu et al. found that the diversity

and abundance of gut microbiome were significantly reduced in TC

patients and that imbalance of gut microbiome affects lipid

metabolism in thyroid cancer patients, thus promoting cancer

progression (Lu et al., 2022). Yu et al. performed a functional

predictive analysis of functional and metabolic changes in the gut
02
microbiome of TC patients and found that the microbiome

alterations observed in TC lead to a decline in aminoacyl-tRNA

biosynthesis, homologous recombination, mismatch repair, DNA

replication, and nucleotide excision repair, which in turn play an

important role in the development of TC (Yu et al., 2022).

Organs such as the thyroid and bladder were long thought to be

sterile, and the arrival of second-generation sequencing technology

has led to the discovery of a large microbiome residing in these

organs and the observation and analysis of the relationship between

the tumor microbiome and cancer (Alfano et al., 2016; Liu et al.,

2018; Dai et al., 2021). A study by Nejman et al. analyzed bacterial

lipopolysaccharide (LPS) and 16S rRNA sequencing results in seven

tumor types and found that bacteria within tumors were located

within cancer cells and immune cells and that bacterial composition

varied by tumor type (Nejman et al., 2020). Yuan et al. found a large

microbiome abundance in PTC tumor tissues, and tumor tissues of

PTC patients with T1–T2 stages and T3–T4 stages had unique

microbiome characteristics, with higher microbial alpha diversity in

T3–T4 stages than in T1–T2 stages (Yuan et al., 2022). Dai et al. also

found significant differences in microbial diversity between tumor

and peritumor tissues in PTC patients, and a higher abundance of

Sphingomonas was associated with lymph node metastasis (Dai

et al., 2021). In a word, the intra-tumor microbiota was closely

related to tumor development, including tumor aggressiveness and

lymph node metastasis. However, the distribution of tissue

microbiome and its effects on the host gene expression in the

early stage of PTC are unknown. Whether the tissue microbiome is

involved in tumorigenesis of PTC in the first place also remains

unclear. Besides, it is expected to identify specific microorganisms

that predict lymph node metastasis in the central region of patients

with clinically negative PTC, to guide the implementation of

prophylactic central neck lymph node dissection, to reduce

complications such as vocal cord paralysis and muscle twitching

associated with unnecessary prophylactic surgery, and to improve

the quality of life after surgery.

Therefore, we recruited 38 patients with early-stage PTC. The

tumor tissue and para-cancerous tissue samples were further

subjected to 16S rRNA amplicon sequencing and whole

transcriptome sequencing. We found that the tumor tissue indeed

harbored a complex microbial community, which showed
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significant differences in microbial composition and functional

composition between the tumor tissue and para-cancerous tissue

in PTC. The host gene expression and immune cell composition of

tumor tissue in PTC also showed similar results. A set of differential

microbial taxa and differential expressed genes were further

identified. On this basis, we finally identified five pairs of

microbe–gene association and one pair of microbe–cell with

significance, including the genus Planococcus, Xanthobacter, and

Blastcoccus; the genes GGCT, LOC102723808, EGFEM1P, PTGER1,

and MFAP2; and the cell type myeloid dendritic cell activated,

which were all involved in the tumorigenesis and tumor progression

via inflammation-related pathways. The results provide candidate

biomarkers that may potentially serve as the targets for exploring

the molecular mechanisms of tissue microbiome in tumorigenesis

and tumor progression of PTC.
2 Materials and methods

2.1 Patients and sample collection

This study included 38 patients with PTC who underwent

thyroidectomy at the Second Affiliated Hospital of Naval Medical

University from September 2023 to December 2023. All PTC

patients were newly diagnosed and evaluated by two pathologists

who confirmed the classic PTC. Paired tumor tissues and para-

cancerous tissues at least 1 cm from the tumor were gathered, frozen

right away, and then kept frozen at −80°C in the refrigerator. In

addition, sterile swabs were used to wipe sampling tools and

surfaces for environmental samples as the negative control.

Exclusion standards were as follows: (1) patients on antibiotics,

probiotics, radiotherapy, chemotherapy, and biological therapy in

the month before admission; (2) patients younger than 18 years old,

or older than 75 years old; (3) patients with other malignancies; (4)

patients who are pregnant or breastfeeding; and (5) patients with

BMI>30 (obesity criteria). This investigation followed the

Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) reporting guideline for cohort studies.

In compliance with the Helsinki Declaration, this study was

approved by the ethics committee of the Second Affiliated

Hospital of Naval Medical University. Written informed consent

was obtained from all participants. Moreover, we collected

clinicopathological information on patients’ sex, diagnosis, age,

recurrence risk, and pathology TNM stage. Recurrence risk was

determined based on the 2015 American Thyroid Association

(ATA) risk stratification system. TNM staging was determined

based on the 8th edition of the American Joint Committee on

Cancer staging system.
2.2 DNA extraction and 16S rRNA
sequencing

Total genomic DNA samples were extracted using the OMEGA

Soil DNA Kit (M5635-02) (Omega Bio-Tek, Norcross, GA, USA),
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following the manufacturer’s instructions, and stored at −20 °C prior

to further analysis. The quantity and quality of extracted DNAs were

measured using a NanoDrop NC2000 spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA) and agarose gel

electrophoresis, respectively. PCR amplification of the bacterial 16S

rRNA genes V3–V4 region was performed using the forward primer

338F (5’-ACTCCTACGGGAGGCAGCA-3’) and the reverse primer

806R (5’-GGACTACHVGGGTWTCTAAT-3’). Notably, the

electrophoresis profiles of two negative control samples showed no

discernible DNA amplification peaks between the low-molecular-

weight (LM, ~200 bp) and unknown-molecular-weight (UM, ~5000

bp) regions, suggesting the extremely low or absent microbial load in

the sampling environment (Supplementary Figure S1). Therefore, the

quality control samples were not further processed for library

construction and sequencing.

Sample-specific 7-bp barcodes were incorporated into the

primers for multiplex sequencing. The PCR components

contained 5 mL of buffer (5×), 0.25 mL of Fast Pfu DNA

Polymerase (5U per mL), 2 mL (2.5 mM) of dNTPs, 1 mL (10 mM)

of each forward and reverse primer, 1 mL of DNA template, and

14.75 mL of ddH2O thermal cycling consisted of initial denaturation

at 98 °C for 5 min, followed by 25 cycles consisting of denaturation

at 98 °C for 30 s, annealing at 53 °C for 30 s, and extension at 72 °C

for 45 s, with a final extension of 5 min at 72 °C. PCR amplicons

were purified with Vazyme VAHTSTM DNA Clean Beads

(Vazyme, Nanjing, China) and quantified using the Quant-iT

PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA).

After the individual quantification step, amplicons were pooled in

equal amounts, and pair-end 2*250 bp sequencing was performed

using the Illumina NovaSeq platform with NovaSeq 6000 SP

Reagent Kit at Genekinder Medicaltech (Shanghai) Co., Ltd, China.
2.3 Analysis of 16S rRNA sequencing data

The 16S rRNA sequencing data were analyzed using the R

package DADA2 (v1.16.0), phyloseq (v1.42.0), and microbiome

(v1.20.0) according to the official recommended tutorials. Briefly,

raw sequence data were first processed using the software cutadapt

(v1.18) to remove primer sequences (Martin, 2011), and were then

quality filtered, denoised, merged, chimer removed, and annotated

using the DADA2 package (Callahan et al., 2016). The microbial

reference database was the SILVA Release 132. The processed data

and sample information were stored in a phyloseq object. The

microbial taxa with fewer than 3 reads were regarded as false

positives and then discarded. The microbiome analysis, including

diversity analysis, composition analysis, and association analysis,

was performed using the package microbiome. LEfSe (linear

discriminant analysis effect size) was performed to detect

differentially abundant taxa across groups using the default

parameters. Microbial functions were predicted by PICRUSt2

(phylogenetic investigation of communities by reconstruction of

unobserved states) upon MetaCyc (https://metacyc.org/) (Douglas

et al., 2020). Modeling analysis was applied by discriminating the

samples from different groups using the R package tidyverse
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(v2.0.0), which includes a set of modeling and machine learning

packages. In this study, seven modeling methods were used:

decision tree, logistic regression, multi-layer perceptron (MLP),

naïve Bayes, nearest neighbor, random forest, and support vector

machine (SVM). The significance of differentiation of microbial

communities and other quantitative indexes among groups was

assessed by adonis2 (permutational multivariate analysis of variance

using distance matrices) and Wilcox rank-sum test. Finally, the

visualization of all the results was performed using the package

ggplot2 and other relevant packages.
2.4 RNA extraction and sequencing

Total RNA was isolated using the Trizol Reagent (Invitrogen

Life Technologies), after which the concentration, quality, and

integrity were determined using a NanoDrop spectrophotometer

(Thermo Scientific). Quality and integrity information is shown in

Supplementary Table S1. Three micrograms of RNA were used as

input material for the RNA sample preparations. Sequencing

libraries were generated according to the following steps. Firstly,

mRNA was purified from total RNA using poly-T oligo-attached

magnetic beads. Fragmentation was carried out using divalent

cations under elevated temperature in an Illumina proprietary

fragmentation buffer. First strand cDNA was synthesized using

random oligonucleotides and Super Script II. Second strand cDNA

synthesis was subsequently performed using DNA Polymerase I and

RNase H. Remaining overhangs were converted into blunt ends via

exonuclease/polymerase activities, and the enzymes were removed.

After adenylation of the 3′ ends of the DNA fragments, Illumina PE

adapter oligonucleotides were ligated to prepare for hybridization.

To select cDNA fragments of the preferred 400–500 bp in length,

the library fragments were purified using the AMPure XP system

(Beckman Coulter, Beverly, CA, USA). DNA fragments with ligated

adaptor molecules on both ends were selectively enriched using

Illumina PCR Primer Cocktail in a 15-cycle PCR reaction. Products

were purified (AMPure XP system) and quantified using the Agilent

high-sensitivity DNA assay on a Bioanalyzer 2100 system (Agilent).

The sequencing library was then sequenced on NovaSeq 6000

platform (Illumina) [Genekinder Medicaltech (Shanghai) Co.,

Ltd, China].
2.5 Analysis of RNA-seq data

The raw RNA-Seq data was subjected to the nf-core/rnaseq

pipeline for quality control, alignment, and gene expression

quantification (Ewels et al., 2020). The version of human

reference genome is GRCh38. The raw count matrix was then

analyzed by the R package DESeq2 to obtain the differentially

expressed genes with the thresholds: |log2FoldChange|>2 and

p.adjust <0.05. The package clusterProfiler was used to perform

functional enrichment analysis, including gene ontology term

enrichment analysis, reactome pathway term enrichment analysis,

and gene set enrichment analysis (Wu et al., 2021b). In addition,
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CIBERSORT was used for the immune cell analysis of the gene

expression data with TPM values (Newman et al., 2015). The

running parameters were set as follows: relative and absolute

modes together, LM22 signature gene file, 100 permutations, and

quantile normalization disabled.
2.6 Correlation analysis between
microbiome and transcriptome data

The correlation analysis was performed between tissue

microbiome abundance data at the different taxonomical level

and the gene expression data, with the Spearman rank correlation

metric performed using the package microbiome (version 1.20.0),

vegan (version 2.6-4), and psych (version 2.3.6). Only the significant

correlation pairs were kept. Among them, the pairs with significant

differential genus and genes were highlighted.
2.7 Data decontamination

To ensure the reliability of our microbial analyses, we

implemented stringent contamination controls: (1) PCR negative

controls (ddH2O) confirmed the absence of reagent contamination

(reads <1000; no amplification bands); (2) sterile sample collection

and environmental controls (validated by electrophoresis)

minimized exogenous DNA; (3) bioinformatics filtering excluded

taxa with ≤3 reads or unverified by the mbodymap database.

Importantly, Planococcus donghaensis—validated via FISH and

functional assays—exhibited pro-tumorigenic effects, supporting

its biological relevance beyond technical artifacts (Supplementary

Figure S2).
2.8 Statistics and reproducibility

All analyses were performed using R software v4.2.0 (https://

cran.r-project.org/). Wilcoxon rank-sum test was used to compare

the distributions of continuous measurements between two groups.

Differential gene expression, GSEA enrichment analyses, and

KEGG analyses were subjected to multiple testing adjustments

using the Benjamini–Hochberg False Discovery Rate method.

Unless otherwise noted, a p.adj-value <0.05 was considered

statistically significant.
3 Results

3.1 PTC tissue indeed harbors intratumoral
microbes

Although some studies reported the existence of abundant

microbes colonized in the TC tissues based on sequencing

methods, there is still a lack of traditional experimental evidence

to prove the existence of bacteria in TC tissue samples. Therefore,
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we stained the tumor and para-cancerous tissue of one PTC patient.

We performed immunohistochemistry (IHC) staining against

bacterial lipopolysaccharide (LPS), which is specific to detecting

Gram-negative bacteria (Figure 1a). With a universal probe against

bacterial 16S rRNA, we also adopted RNA fluorescence in situ

hybridization (FISH) for detecting bacterial RNA in PTC tissues

(Figure 1b). Positive 16S rRNA and LPS staining results were

observed, indicating the actual presence of bacteria in PTC.
3.2 Different microbial communities
between tumor and para-cancerous tissue
in PTC

In order to reveal the microbial composition of PTC tissue, 16S

rRNA amplicon sequencing was performed on the tumor and para-

cancerous tissues in 38 PTC patients. The detailed information is

listed in Table 1.

After quality control, a total of 861 genera and 43 phyla were

identified according to the phylogenetic taxonomical levels. The

three predominant phyla in each group were Proteobacteria,

Firmicutes, and Actinobacteria, altogether contributing up to

84.9% of the tissue microbial community on average (Figure 2a).

The average compositions of the microbial communities at the

genus level are shown in Figure 2b, of which Limnobacter,

Vulcaniibacterium, and Acinetobacter occupied the top 3. PCoA

plot evaluated by Bray–Curtis distances revealed a significant

distinction of tissue microbiota between para and tumor samples
Frontiers in Cellular and Infection Microbiology 05
in PTC (Figure 2c, adonis2 test, p-value=0.005, R2 = 0.038). A

similar result was observed in the predicted microbial pathway

distribution of tissue microbiota by PICRUSt2 (Figure 2d, adonis2

test, p-value=0.001, R2 = 0.14).

In order to compare the differences in microbial communities

between tumor and para-cancerous samples, diversity and

differential analysis were further conducted. The alpha diversity

(Shannon index, Figure 2e) and divergence level (Figure 2f) in para-

cancerous tissues were slightly higher than those in tumor tissues

without significance, suggesting a convergent tendency of

tissue microbiome after oncogenesis. Other diversity indices

including diversity_gini_simpson, evenness_camargo, and

rarity_rare_abundance presented similar results (Supplementary

Figure S3). Moreover, we identified 22 and 16 taxonomic units

significantly overrepresented in tumor and para-cancerous tissues,

respectively (Figure 2g). Clostridiales bacterium CHKCI001 was the

most enriched genus in tumor, which was one kind of

proinflammatory bacteria commonly located in the gut. It was

reported that Clostridiales had the cancer-promoting and

anticancer activities via different ways (Montalban-Arques et al.,

2021; Wu et al., 2021a). On the contrary, Cutibacterium was the

most enriched genus in para-cancerous tissue, which was reported

as a common member of skin microbiota. It was found to be

prevalent in thyroid cancer samples and to be associated with

immune suppression and poor prognosis in a subpopulation of

thyroid cancer (Trivedi et al., 2023).

Moreover, the differential enriched pathways between tumor

and para-cancerous tissues were also identified (Figure 2h). Among
FIGURE 1

Bacterial components are detected in human PTC tumor and para-cancerous tissues. (a) Immunohistochemistry (IHC) of lipopolysaccharide (LPS),
black arrows denoting bacteria in immunohistochemical staining. (b) 16S rRNA FISH showing bacterial invasion into PTC tumor and para-cancerous
tissues, scale bars for dimensional reference; white arrows identifying bacterial signals in FISH analysis.
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them, the pathways involved in pyruvate fermentation to isobutanol

(PWY-7111), L-isoleucine biosynthesis III (PWY-5103), and

superpathway of branched amino acid (BRANCHED_CHAIN_

AA_SYN_PWY), were the top 3 enriched pathways in tumor

tissues (Figure 2h), which were also reported to be enriched in

the GC samples compared to superficial gastritis and atrophic

gastritis (Huang et al., 2021). In contrast, an enrichment of

the synthesis pathways, including the reductive TCA cycle

pathway (P23-PWY), enterobacterial common antigen

biosynthesis (ECASYN-PWY), and isoprene biosynthesis II
Frontiers in Cellular and Infection Microbiology 06
(PWY- 7391) (Figure 2h), were found in para-cancerous

tissues. This demonstrates that the taxonomic differences

observed between tumor and normal tissues resulted in different

microbiome functionality.
3.3 The microbial communities vary as the
PTC progresses

It was reported that the tumor microbiome communities are

significantly associated with tumor invasion in patients with

resected PTC. Therefore, the general landscape of the tumor

microbiome composition was assessed with the clinical indexes in

this study. We found that T-stage and N-stage had significant effects

on the microbial compositions in the tumor microenvironment

(Figures 3a, b). Notably, the R2 values (proportion of variance

explained by categorical grouping) were higher in the two factors

compared to the factor sample type (tumor vs. normal). The factor

N-stage had the highest R2 values, while the T-stage had the most

obvious significance. These results suggest a continuous change in

the microbial communities as the PTC progresses.

The differential taxa in the two sets of comparison were further

identified. The differential genera with LDA > 4 are shown in Figure 3c,

d. Among them, Limnobacter was significantly enriched in T1a and

reduced in T1b stage. It was reported as one of the potential biomarkers

for hepatocellular carcinoma (Zheng et al., 2020) and lung cancer

(Zheng et al., 2023). Pseudomonas was the other genus with higher

abundance in T1a than that in T1b, which is consistent with previous

results in Yuan L’s study (Yuan et al., 2022).

We also found that the abundance of Cutibacterium and

Brevundimonas showed an increase as the N-stage increases. The

genus Cutibacterium was reported to be prevalent in thyroid cancer

samples and was found to be associated with immune suppression

and poor survival (Trivedi et al., 2023). Brevundimonas is a genus of

Gram-negative bacteria widely distributed in nature and is also an

opportunistic pathogen causing healthcare-associated infections

(Liu et al., 2021). However, its role in tumorigenesis needed

further and deep investigation. Furthermore, we developed

predictive models using multiple machine learning approaches

based on the microbial profiles. The results suggest that tissue-

associated microbiota may serve as potential biomarkers for tumor

classification and staging, demonstrating promising clinical

applicability (Supplementary Figure S4).
3.4 Global overview of PTC transcriptome

Since PTC patients demonstrated the presence of microbiota and

their associations with tumorigenesis and progression, we hypothesized

that changes in the PTC tumorigenesis transcriptome may be

correlated with the thyroid tissue microbiome. Therefore, the paired

tumor and para-cancerous tissues were subjected to RNA-Seq. The

principal component analysis (PCA) plots showed that the expression

profile of PTC tumor tissue samples was distinct from that of the para-

cancerous tissue samples (Figure 4a). After the standard transcriptome
TABLE 1 Clinical characteristics of the studied PTC patients.

Patient Characteristics
Total Number

(n=38)
Percent (%)

Sex

Male 11 28.9

Female 27 71.1

Age

Young (<55) 26 68.4

Old (≥55) 12 31.6

Lesions

Single 25 65.8

Multiple 13 34.2

Gland lobes

Unilateral 29 76.3

Both 9 23.7

Capsular invasion

Yes 14 36.8

No 24 63.2

T-stage

T1a 28 73.7

T1b 10 26.3

N-stage

N0 13 34.2

N1a 23 60.5

N1b 2 5.3

M-stage

M0 38 100

pTNM

I 31 81.6

II 7 18.4

ATA risk stratification

Low 36 94.7

Intermediate 2 5.3
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analysis, we identified 793 differentially expressed genes (DEGs), which

included 617 upregulated and 176 downregulated genes in tumor tissue

(Figure 4b). MMP13 was the most upregulated gene, which is a

member of the endopeptidase matrix metalloproteinase family and

involved in many normal physiological processes. A recent study

showed that MMP13 is often overexpressed across cancer and

predicts poor prognosis (Zhang et al., 2023). On the contrary, the

expression ofMYH2 had the most obvious downregulation, which was

proved as a marker in distinguishing head and neck squamous cell

carcinoma and lung squamous cell carcinoma (Vachani et al., 2007).

Pathway enrichment analysis showed that upregulated DEGs were

mainly enriched in cell extracellular related pathways (Figure 4c), such

as extracellular matrix organization and integrin cell surface

interactions, which play pivotal roles in cancer proliferation, survival,

and invasion. The downregulated DEGs were enriched in muscle

contraction and o2/co2 exchange in erythrocytes (Figure 4d).

Moreover, GSEA analysis of these DEGs showed enrichment of cell–

cell communication, cell junction organization, collagen degradation,

degradation of the extracellular matrix, and extracellular matrix

organization (Figure 4e).
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Besides, the immunological cell types in the tissue were

determined from the transcriptome data using the CIBERSORT

algorithm (Figure 4f). Among them, T cell CD4+ memory resting

took the dominant role in thyroid tissue and showed a significant

decrease in tumor compared to the para-cancerous tissue

(Figure 4g). NK cell resting also present the similar trend. The

other cell types with significant differences included T cell follicular

helper, Tregs, macrophage M0, macrophage M2, myeloid dendritic

cell resting, and myeloid dendritic cell activated, all of which

showed significant increases in tumor compared to those in

normal tissue. Among them, the M0 and M2 macrophages could

increase cancer invasion ability, and the Tregs could increase the

ability of the cancer cells to escape the immune system and foster

cancer progression (Lainé et al., 2021). In a word, increase in the six

types of cells within the tumor tissue implied their involvement in

pathogenesis and tumor progression.

Notably, there were also significant differences in different

clinical groups based on T-stage and N-stage (Supplementary

Figure S5), suggesting continuous changes as tumor progressed

from Stage I to II, although they were all early-stage PTC.
FIGURE 2

Profile of the intratumoral microbiome between tumor and para-cancerous tissue in PTC patients. (a, b) Top 10 phyla and genera of the microbiome
for the tumor and para-cancerous tissue. (c, d) PCoA analysis of microbial composition and predicted functional composition based on the Bray–
Curtis distance colored by sample type. (e, f) The comparison of alpha diversity estimated using Shannon index and divergence between tumor and
para-cancerous tissue in PTC. (g, h) LEfSe analysis identified the microbes and pathways whose abundances significantly differed between tumor
and para-cancerous tissue in PTC.
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3.5 PTC transcriptome profile influenced
by the tissue microbiota

Based on the above-described microbiota and transcriptome

data, Spearman’s correlation-based analysis was performed to

discover microbe-associated genes and to test whether host

transcriptional profiles in PTC could be partially influenced by

tissue microbiota. A total of 802 genera and 4896 genes were

identified, forming 29,659 genus–gene pairs. However, among

them, only two differential genera in abundance and five

differential expression genes mentioned above were filtered out

(Figure 5a). All the pairs showed positive correlations, and the

genus and genes were all enriched in the tumor tissues. The

strongest correlation pair was the genus Planococcus and

PTGER1, the former of which also showed positive correlation

with the other three genes, including MFAP2, EGFEM1P, and

LOC102723808. The detailed fitting relationships are presented in

Figures 5b–e. The genus Planococcus is a halophilic bacterium

known for the production of diverse secondary metabolites,

which was reported to be associated with the stomach neoplasms

according to the database GMrepo (Dai et al., 2022). Notably,

among the genes, MFAP2, encoding the Microfibril Associated

Protein 2, was reported to be involved in tumor cell invasion and

metastasis (Xu et al., 2022). The downregulation of MFAP2 could

inhibit BCPAP and TPC-1 cell migration and invasion and lymph
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node metastasis in thyroid papillary carcinoma (Dong et al., 2020).

EGFEM1P was also reported to be upregulated in papillary thyroid

tumors and thyroid cancer cells compared with normal adjacent

tissues, and promoted thyroid cancer progression by acting as an

miR-369-3p sponge and upregulation TCF4 (Yi et al., 2022).

Another pair was the genus Xanthobacter and gene GGCT

(Figure 5f). Xanthobacter was regarded an associative N2-fixing

bacterium and rarely reported in human body. However, the

correlated gene GGCT was reported to be highly expressed in

PTC tissue and cell lines and could promote cell proliferation and

migration by activating the MAPK/ERK pathway (Zhang

et al., 2022).
3.6 PTC immunological profile influenced
by the tissue microbiota

Considering the differences of immune cell compositions

between tumor and para-cancerous tissue in PTC, we further

sought to detect whether the tumor tissue microbiome influenced

the immune cells in tumor environment. The Spearman’s

correlation analysis was also performed between the microbial

and expression profiles. A total of eight genus and three cell types

were identified, forming eight genus–cell pairs. Among them, no

significant differential genus but one differential cell type (myeloid
FIGURE 3

Profile of the intratumoral microbiome in different clinical stages. (a, b) PCoA analysis of microbial composition based on the Bray–Curtis divergence
colored by T-stage and N-stage. (c, d) Bar plot of differential microbial taxa at the genus level between T-stage and N-stage.
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dendritic cell activated) was included. The genus Blastococcus was

positively related with the myeloid dendritic cell activated

(Figure 6). Blastococcus is Gram-positive, coccoid units, often

reproducing by budding and multiple fission, giving rise to a

variety of cell forms and aggregates, which mainly colonized

various nature environments. However, a recent study showed

that the genus Blastococcus could be transferred to the skin and

respiratory tract of humans after green space exposure (Selway

et al., 2020). Myeloid dendritic cells (mDCs) comprise a

heterogeneous population of professional antigen-presenting cells,

which are responsible for the capture, processing, and presentation

of antigens on their surface to T cells. mDCs recruitment into the

TME has been reported to depend on the CCR6/CCL20 axis, the

latter of which showed a significant increase of expression in tumor

tissues (logFC=3.5). In this way, a possible hypothesis might be that

the induction of Blastococcus would drive the tumor progression by

the increased expression of CCL20 and mDCs.
4 Discussion

In recent years, a series of studies have found that there are a

large number of microorganisms in tumor tissue and that some of

these microorganisms are involved in tumor initiation and

development (Xue et al., 2023). In this study, we explored the role
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of intratumoral microbiome composition in PTC and its association

with the host transcriptome. Overall, we observed a substantial

microbiota presence in the PTCs of all patients. And the microbial

communities between the tumor and para-cancerous tissues

showed significant differences. The tissue microbiome changed as

the tumor progressed. We also observed the significant differences

in transcriptome and immune cell composition between the tumor

tissue and para-cancerous tissue. A set of differential microbes,

differentially expressed genes, and differential immune cells were

then identified. And the influences of microbiota on the host gene

expression and immune cells were finally determined using the

Spearman’s rank correlation test. In a word, these results not only

validated the presence of bacteria in thyroid tissue but also

suggested the potential interactions of microbe–gene and

microbe–cell in tumorigenesis and tumor progression.

Growing studies have revealed the possible effects of

intratumoral microorganisms on the occurrence and development

of tumors. In this study, we also identified a set of significantly

differential microbes associated with tumor status. Among them, 11

genera, including Clostridiales bacterium CHKCI001, Fluviicola,

Subdoligranulum, Sporocytophaga, Flavobacterium, Azospirillum,

Nubsella, Kroppenstedtia, Methyloversatilis, Planococcus, and

Xanthobacter, were significantly enriched in tumor tissue, while 4

genera Hydrogenophilus, Enhydrobacter, Micrococcus, and

Cutibacterium were enriched in the para-cancerous tissues.
FIGURE 4

Profile of host gene expression between the tumor tissue and para-cancerous tissues in PTC. (a) PCA analysis of host transcriptome based on
similarities between samples. (b) Volcano plot of differential expressed genes in the tumor tissues. (c, d) Dot plot of enriched reactome pathways of
downregulated and upregulated DEGs. (e) GSEA analysis indicating ECM-related pathways that are differentially regulated. (f) Immune cell
composition of all PTC samples identified by the algorithm CIBERSORT. (g) Composition comparison of the immune cell types in the tumor and
para-cancerous tissues. Significance was labeled with stars (*): * p<0.05, ** p<0.01, **** p<0.0001, ns, not significant.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1571341
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tong et al. 10.3389/fcimb.2025.1571341
According to the curated database mbodymap (Jin et al., 2021), all

these genera were almost detected in human body and were mainly

prevalent in the lung and upper respiratory tract whether the

individual was sick or healthy. According to the database,

Fluviicola, Microcossus, and Cutibacterium were labeled as a

marker for ovarian neoplasms. Flavobacterium was also labeled as

a positive marker for endometrial neoplasms. Azospirillum,

Flavobacterium, and Cutibacterium were associated with

Alzheimer disease and cognitive dysfunctions. Micrococcus and

Planococcus were negatively related with atopic dermatitis. In a

word, these microbes are part of the human microbiome, and may

play an important role in the development of various diseases.

Though we discovered some specific microbial signatures in

PTC, little was known about the role and mechanisms of these

microbes on the pathogenesis and progression. We identified a set

of signatures of cell-associated bacteria and host-gene-associated

bacteria using the correlation analysis to derive potential causality

indirectly, which were then summarized as a microbe–gene–cell

interaction network (Supplementary Figure S6). We characterized

the tumor-enriched bacteria Planococcus and Xanthobacter as the
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potential PTC-promoting bacteria that affect the host transcriptome

of PTC. Planococcus, a halophilic bacterium, was known to produce

the biosurfactants, which could act as antibacterial, anticancer

activity (Waghmode et al., 2020). It was found to be enriched in

circulation and play a role in inflammation in systemic lupus

erythematosus (Cheng et al., 2023). As we known, PTC is

classified as an inflammation-driven cancer, and the immune

system is enhanced during the occurrence and development of

PTC. Its associated genes, which were highlighted in the above

results, were involved in various cancers, including PTC. Through

further literature research, we found that they all take roles in the

host inflammation response. PTGER1 is one of the four

prostaglandin receptors involved in biological processes such as

immunity, inflammation, and pain conduction (Tober et al., 2007).

MFAP2 had the anti-inflammation function, and increased levels of

MFAP2 expression were found to be a mechanism triggered to bind

excess TGF-beta to control inflammation. As for the lncRNA

EGFEM1P, it was reported that it promotes thyroid cancer

progression by acting as an miR−369−3p sponge and

upregulating TCF4 (Yi et al., 2022). However, the upregulation of
FIGURE 5

Correlations between the special bacterial taxa and host genes. (a) Heat map of the correlations between the two differential microbial genus and
five DEGs. The correlations were evaluated with the Spearman method. The correlation coefficients are shown in the legend, and p-values were all
less than 0.05. (b–f) Nonlinear fitting curve of the abundance of genus Phlanococcus and the expression of gene PTGER1, MFAP2, EGFEM1P,
LOC102723808, and GGCT. Each point in the figure stands for a sample. Blue indicates tumor tissue samples, and red represents the para-
cancerous tissue samples.
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miR-369-3p could suppress the LPS-induced inflammatory

response, reducing C/EBP-b, TNFa, and IL-6 production

(Scalavino et al., 2020). LOC102723808 was an uncharacterized

gene and not well known. In a recent study, it was reported to be

significantly upregulated in human lung organoids after SARS-

CoV-2 infection (Han et al., 2020). In a word, it could be

hypothesized that the colonization or increase of special microbes,

such as Planococcus, would induce a sustained inflammatory

response in the host that promotes the development of PTC.

In addition, the genus Xanthobacter and gene GGCT had a

significantly positive correlation. As we know, GGCT encodes the

Gamma-glutamylcyclotransferase, one of the major enzymes

involved in glutathione metabolism (Kageyama et al., 2015), and

was involved in the carcinogenesis and progression of PTC (Li et al.,

2022). Interestingly, Xanthobacter, an aerobic or facultative

anaerobic fermentation Gram-negative bacteria, could contribute

to the glutathione metabolism for harboring the relevant functional

genes (e.g., nbzAa, catA, CYC, pilA) (Chen et al., 2023). This

significant correlation pair suggested the important role of

glutathione homeostasis in the pathogenesis and progression of

PTC and potential therapeutics for PTC.

Our study has limitations. First, according to the TNM stage, all

of the PTC patients were in T1/N0-1/M0 stage, which was in the

early stage of PTC. Although there was no data on advanced

patients, this study provided an opportunity to reveal profiles and

changes in the microbiome and transcriptome in the early-stage

PTC. The results revealed that the microbiota exist in the tumor

microenvironment and are involved in the tumor occurrence and

progression in the early stage of PTC. Second, our study focused on

the correlations, not causality. As we know, studying causality is
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challenging in humans, especially the internal tissue of human

body. However, the identified microbial signatures and microbe–

host gene interactions provided a set of candidate targets for future

in vivo and in vitro researches. Relevant experimental exploration is

currently in progress in our team, and the results also provide

references for interested peers. Third, the sample size is not large

enough. On the one hand, we preliminarily confirmed the existence

of microorganisms through experimental methods (LPS staining).

On the other hand, the public databases (mbodymap and GMrepo)

and extensive literature research were used to confirm the

important and differential microbes.
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