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Virulence factors released by
extracellular vesicles from
Cryptococcus neoformans
Wenhao Xiao, Huiqiang Lu, Bowei Jiang, Yaqi Zheng,
Puwen Chen, Xiaotong Liu and Junyun Huang*

The First Clinical Medical College of Gannan Medical University, Ganzhou, China
Cryptococcus neoformans, a prominent opportunistic pathogen, is equipped

with unique mechanisms to evade host immune defenses, notably through its

capsule and the secretion of extracellular vesicles (EVs). Despite significant

understanding of its pathogenesis, the precise role of EVs in virulence and their

molecular components remain underexplored. This review synthesizes current

research on the virulence factors encapsulated within EVs of Cryptococcus,

highlighting their contribution to fungal survival and pathogenicity. By analyzing

the biochemical composition of these vesicles, we found the presence of

enzymes (e.g., Urease, laccase), toxins (e.g. Melanin), and genes (e.g. Ssa1)

associated with pathogenicity factors. Furthermore, we discuss the

implications of these findings for developing therapeutic interventions. This

work advances the field by providing a comprehensive overview of EV-

mediated mechanisms in Cryptococcus, offering new insights into potential

targets for antifungal strategies.
KEYWORDS

Cryptococcus neoformans, extracellular vesicles, virulence factors, mechanism,
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1 Introduction

Cryptococcus neoformans, as a popular subject of fungal research in recent years, holds

extremely important research value (Duarte and Rodrigues, 2024). The cryptococcal

meningitis it caused is particularly life-threatening for many immunocompromised

HIV-infected individuals and is also a burden on healthcare systems worldwide

(Rajasingham et al., 2017). Extracellular vesicles, as a heterogeneous cell-derived

membrane structure, are involved in the exchange of proteins, lipids, and genetic

material between cells (van Niel et al., 2018); in Cryptococcus neoformans, these vesicles

have been found to carry and transmit various virulence-related molecules, such as

enzymes, toxins, and immune regulatory factors. These factors have a destructive effect
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on host cells, promoting the colonization, invasion, and

dissemination of the pathogen. Recently, Rizzo et al. utilized cryo-

electron microscopy (cryo-EM) and cryo-electron tomography

(cryo-ET) to analyze the structure of native extracellular vesicles

(EVs) in Cryptococcus spp. Their findings revealed a novel

structural model for Cryptococcus, wherein the outer layer

comprises glucuronoxylomannan (GXM), and the inner lipid

bilayer is densely populated with proteins and encased within a

mannoprotein-rich fibrous matrix (Rizzo et al., 2021). Baker et al.

(2024) discovered that the melanin in Cryptococcus neoformans can

chelate calcium ions, limiting the availability of calcium for the

bivalent bridges between polysaccharide subunits required for

capsule formation.Under chelation, darkened cells shed a large

amount of polysaccharides and reduce their ability to integrate

secreted polysaccharides into the growing capsule. This change may

have profound negative impacts on the host’s immune response

(Baker et al., 2024). Chadwick et al. (2024) also discovered through

genomic sequencing and other methods that wild strains of

Cryptococcus neoformans adapt to the CO2 levels within the host

based on the combined effects of multiple genetic loci. They

proposed new insights into how current antifungal drugs induce

the evolution of Cryptococcus neoformans, suggesting that future

drugs could be developed with consideration of the CO2 levels

within the host as a guide for enhancing the tolerance of

Cryptococcus neoformans (Chadwick et al., 2024). A deep

understanding of the release mechanisms of extracellular vesicles
Frontiers in Cellular and Infection Microbiology 02
in Cryptococcus neoformans and the virulence factors they carry is

of great significance for developing new therapeutic strategies

against cryptococcosis.
2 Biogenesis of extracellular vesicles
and immune response after
macrophage phagocytosis

2.1 Biogenesis and types of extracellular
vesicles

Extracellular vesicles (EVs) are small membrane-bound

particles released by cells into the extracellular environment.These

vesicles play a crucial role in intercellular communication,

transporting proteins, lipids, and nucleic acids. Extracellular

vesicles secreted by mammals can be broadly classified into

several categories, including exosomes, microvesicles, and

apoptotic bodies, each differing in size, biogenesis, and function

(See Figure 1) (Piffer et al., 2021; Reis et al., 2021). (1) Exosomes:

Exosomes typically have a diameter ranging from 30 to 150

nanometers, and their formation process involves the endosome

formed after endocytosis.The small vesicular structures formed

inside the endosome are called multivesicular bodies (MVBs).

The vesicles contained within these MVBs are released into the
FIGURE 1

Production of extracellular vesicles. Bounded by the dotted line, Figure 1 shows two different biogenesis pathways for extracellular vesicles. On the
left (1) Early endosomes are formed by endocytosis. (2) Rab27a is involved in the docking of plasma membranes with MVBs. (3) Exosomes are
released after the MVB fuses with the plasma membrane. (4) Lysosome is involved in the degradation of goods within the MVB. On the right: (5)
Microvesicles are formed by budding directly through the cell membrane.
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extracellular space by fusing with the cell membrane, becoming

exosomes.This process involves various proteins, such as the

ESCRT complex (Endosomal Sorting Complex Required for

Transport), Rab27a[(Plays a role in the docking of plasma

membranes with MVBs)],TSG101, and Alix, which help in the

scission of vesicles and the selective packaging of certain proteins,

RNA, and other molecules.(2) Microvesicles: The diameter of

microvesicles is typically between 100–1000 nanometers, and they

are formed directly through the outward budding and fission of the

cell membrane. During this process, the distribution of

phospholipids in the cell membrane changes, for example,

phosphatidylserine (PS) flips from the inner layer to the outer

layer of the cell membrane. This is regulated by phosphatidylserine

flippases and phosphatidylserine scramblases.Moreover, the

reorganization of the cytoskeleton also plays a crucial role in the

formation of microbodies.(3) Apoptotic bodies: Apoptotic bodies

are formed during the process of apoptosis and are usually larger

than 1000 nanometers. They contain cell debris, such as organelles,

DNA fragments, etc. During apoptosis, the nucleus and organelles

of the cell break apart, the cell membrane invaginates to form

bubble-like structures, and ultimately, the cell body ruptures to

form apoptotic bodies (Ostrowski et al., 2010; Maas et al., 2017;

Gurunathan et al., 2019; Popa and Stewart, 2021). Compared to

mammals, Fungal cells can produce extracellular vesicles (EVs)

through two distinct biogenesis pathways: endosomal-derived

exosomes and plasma membrane-derived ectosomes. Exosomes

originate from the endocytic pathway, while ectosomes are

generated through direct budding of the plasma membrane

(Rodrigues et al., 2015; Nenciarini and Cavalieri, 2023).
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2.2 Immune response after macrophage
phagocytosis

Macrophages are pivotal components of the immune system,

distinguished by their capacity to phagocytose pathogens and

eliminate cellular debris. During Cryptococcus infection,

macrophages rapidly recognize and internalize pathogen-secreted

extracellular vesicles (EVs) via endocytosis, a mechanism that

systemically regulates phagocyte functionality (Doherty and

McMahon, 2009; Oliveira et al. , 2010). Oliveira et al.

demonstrated that Cryptococcus neoformans-derived EVs activate

murine RAW 264.7 macrophages in a dose-dependent manner,

markedly stimulating nitric oxide (NO) synthesis, upregulating

cytokine secretion [including TNF-a(Tumour necrosis factor-

alpha), TGF-b(transforming growth factor-b), and IL-10

(Interleukin 10)], and enhancing both phagocytic and bactericidal

activities (See Figure 2). Complementarily (Oliveira et al., 2010),

Zhang et al. identified that EVs secreted by bone marrow-derived

macrophages (BMDMs) following C. neoformans engulfment—

termed BM-EVs—trigger immune-associated signaling pathways

in naïve BMDMs, inducing polarization toward the M1 phenotype

and ultimately reducing fungal burden in murine infection models

(Zhang et al., 2021).

The release of extracellular vesicles is not only a way for cells to

eliminate excess or harmful substances but also an important

means of intercellular communication. Through these vesicles,

cells can transmit biomolecules such as proteins, lipids, RNA,

and DNA, influencing the function and behavior of distant or

neighboring cells. Therefore, EVs are receiving increasing attention
FIGURE 2

Immune response after macrophage phagocytosis. (1) Macrophages engulf Cryptococcus neoformans. (2) Macrophages engulf extracellular vesicles.
(3) Macrophages release various cytokines (e.g., TNF-a, TGF-b, and IL-10).
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in biomedical research, particularly for their potential applications

in disease diagnosis, treatment, and regenerative medicine.

3 Extracellular vesicle-secreted
virulence factors of Cryptococcus
neoformans

According to sources, the definition of virulence factors is indeed

quite complex and lacks uniformity. Nevertheless, there is a general

consensus that virulence factors can be seen as substances or

elements within pathogens that may cause damage to the host

(Pirofski and Casadevall, 2015). These factors are not only the

weapons with which pathogens attack the host but also key tools

for their survival and transmission. The secretion of virulence

factors, particularly the attack on specific host cell sites,

demonstrates the complex interaction mechanisms between

pathogens and hosts (Casadevall and Pirofski, 2003). In specific

pathogens, such as Cryptococcus neoformans, the types of virulence

factors can be roughly divided into four categories based on their

functions and mechanisms of action. First are virulence proteins,

such as urease and phospholipase B, which promote pathogen

invasion and survival by disrupting the structure and function of

host cells. Second are capsule polysaccharides, like GXM and

GalGXM, which enhance the pathogen’s resistance by inhibiting
Frontiers in Cellular and Infection Microbiology 04
the host’s immune response. The third category is other biological

regulatory factors, such as glucosylceramide, which interfere with

normal cellular functions by regulating the host’s cell signaling

processes. Finally, there are biological pigments, such as melanin,

which not only protect pathogens from the host’s immune system

but may also directly participate in the destruction of cellular

structures (See Figure 3). When we narrow our research focus to

virulence factors secreted by extracellular vesicles, the number of

identifiable virulence substances decreases. These vesicles are tiny

packages released by pathogens into the host, containing various

molecules that can interfere with or disrupt host cell functions, and

Extracellular vesicles (EVs) exhibit increased hydrodynamic

diameter, higher concentrations of virulence factors, and enhanced

immunomodulatory activity in host organisms under nutrient-

limited conditions (Marina et al., 2020). Although the number of

known virulence factors of this type is currently limited, their role is

extremely critical because this secretion mechanism allows

pathogens to regulate host cell behavior from a distance without

direct contact. In summary, the study of virulence factors not only

helps us gain a deeper understanding of the interactions between

pathogens and hosts but also offers possibilities for developing new

therapeutic methods. By intervening and blocking specific virulence

factors, we can effectively weaken the pathogenicity of pathogens,

providing new strategies for treating various diseases caused

by pathogens.
FIGURE 3

Virulent substances in EVs. Figure 3 classifies the virulent substances in the EVs that appear in this paper. (1) Virulence proteins(e.g.,laccase, urease).
(2) Capsule (e.g.,GXM,GalXM). (3) Biopigments (e.g.,melanin). (4) Bioregulators (e.g., glucoceramide).
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3.1 Virulence proteins

3.1.1 Laccase
Laccase, as a multicopper oxidase, is widely present in various

organisms such as higher plants, insects, fungi, and bacteria

(Giardina et al., 2010). In Cryptococcus neoformans, laccase is not

only an important virulence factor related to the cell wall but also

participates in various biochemical processes, including the catalysis

of L-3,4-dihydroxyphenylalanine (l-DOPA), thereby contributing

to melanin synthesis.In addition, laccase also has multiple biological

functions, including protecting host cells from harsh environments,

toxic reactive oxygen and nitrogen species, phagocytic killing by

macrophages, immune system attacks, and antifungal compounds

(Nosanchuk and Casadevall, 2003; Eisenman et al., 2007; Coman

et al., 2013). Rodrigues et al. (2008) conducted a detailed

characterization of laccase activity in Cryptococcus neoformans

extracellular vesicles through proteomics and biochemical assays.

Research has found that these vesicles can effectively deliver

concentrated Cryptococcus protein virulence factors to the effector

cells and tissues of the host, thereby exerting their pathogenicity

(Rodrigues et al., 2008). Furthermore, Panepinto et al. (2009)

observed a complete absence of vesicles and the cessation of cell

wall laccase secretion by knocking down the RNAi expression of the

protein complex SEC6 involved in the fusion of extracellular

vesicles with membrane polarization. This change led to a

decrease in urease and extracellular polysaccharide levels in mice,

as well as a significant increase in mouse survival rates (Panepinto

et al., 2009). In the in vivo environment, laccase exhibits a melanin-

independent anti-macrophage phagocytosis effect. Laccases with

ferroxidase activity can reduce the formation of hydroxyl radicals in

macrophages and dominate the non-soluble exocytosis of

macrophages without the addition of melanin substrates (Liu

et al., 1999; Frazão et al., 2020). A study by Sabiiti et al. (2014)

further validated this with 65 clinical isolates, finding that

Cryptococcus strains with higher laccase activity showed higher

macrophage phagocytic uptake rates and lower Cryptococcus

clearance rates (Sabiiti et al., 2014). These research findings not

only enhance our understanding of the function of laccase in

Cryptococcus neoformans but also provide a potential biological

basis for developing new therapeutic strategies against this

pathogen. By targeting laccase and its associated extracellular

vesicle transport mechanisms, new antifungal treatment methods

may be developed, thereby effectively controlling or eliminating

infections caused by this pathogen.

3.1.2 HSP70
Heat shock proteins (Hsp) are a group of key stress-induced

proteins that are widely involved in protein folding, maturation,

and homeostasis maintenance (Kampinga et al., 2009). In various

organisms, Hsp plays a crucial role in cellular physiology and stress

response by promoting proper protein folding, degradation

processes, and preventing protein aggregation (Chan and

Groisman, 2024). In 2011, Antonio first reported Hsp70 protein

as a component of fungal extracellular vesicles (EVs) (De Maio,
Frontiers in Cellular and Infection Microbiology 05
2011). Subsequently, in 2021, Fabio and others further confirmed

the critical role of Hsp70 in the formation of all fungal EVs through

shotgun proteomics analysis (Parreira et al., 2021). In Cryptococcus

neoformans, cytoplasmic Hsp70 protein directly interacts with

DNA within the 5′-UAS region of the laccase gene to jointly

activate gene expression, promoting melanin production in the

serotype D strain JEC21. However, a study by Eastman et al. (2015)

indicated that in the serotype A strain H99, cytoplasmic Hsp70

protein does not regulate the expression of laccase associated with

melanin synthesis. Instead, it affects primary defense against

Cryptococcus infection by promoting non-protective early M2

activation of pulmonary macrophages, interfering with the innate

immune response, and maintaining the normal development of

adaptive immunity (Zhang et al., 2006; Eastman et al., 2015).

Moreover, mutants lacking the homologous gene of Hsp70 (Ssa1)

showed reduced virulence in mouse infection models, indicating

that the cytoplasmic Hsp70 protein produced by Ssa1 on the fungal

surface may be involved in inhibiting the production of nitric oxide

(NO) in macrophages, which is a key factor in the innate immunity

of pulmonary epithelial cells (Zhang et al., 2006; Silveira et al.,

2013). Hsp70 not only plays an important role in the survival and

pathogenic mechanisms of pathogens but also serves as a novel

immunogenic protein, making it a potential diagnostic marker or

vaccine target for cell and humoral responses in mice with

pulmonary cryptococcosis and cryptococcal meningitis (Kakeya

et al., 1997, 1999; Steen et al., 2003; Firacative et al., 2018). Based

on the role of Hsp70 in the virulence of Cryptococcus pathogens,

Elhassan et al. (2021) employed epitope-based immunoinformatics

methods to analyze homologous proteins of highly affine T cells and

B cells within the Hsp70 family proteins in the Immune Epitope

Database (IEDB), thereby designing a vaccine targeting highly

conserved Cryptococcus neoformans peptides (Elhassan et al.,

2021). These studies not only reveal the diverse roles of Hsp70 in

fungal biology but also provide important scientific evidence for the

development of new antifungal therapies.
3.1.3 Urease
Urease, as a nutritional enzyme, is widely present in various

bacterial pathogens and acts as a general virulence factor. This

enzyme hydrolyzes urea to produce ammonia, which is crucial for

various organisms, thereby playing a key role in the nitrogen cycle

within the organism. During the process of Cryptococcus

neoformans infection, the role of urease is particularly significant;

it not only interferes with the acidification of phagosomes but also

promotes the pathogen’s invasion into the host’s brain (Shi et al.,

2010; Fu et al., 2018). Studies have shown that after infecting the

host, Cryptococcus neoformans produces a large amount of urease, a

characteristic that has been used in the diagnosis of cryptococcosis

(Zimmer and Roberts, 1979). In-depth research has revealed the

close connection between urease and another key virulence factor in

Cryptococcus neoformans—melanin (Baker and Casadevall, 2023).

Urease is typically released into extracellular vesicles, where it

breaks down urea to produce ammonia, which then acts distally

as a gas through diffusion. Furthermore, the ammonia produced by
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urease activity increases the pH of the phagolysosome, thereby

promoting melanin formation. This pH-dependent mechanism not

only delays the yeast form replication of Cryptococcus neoformans

but also reduces damage to host macrophages and extends the

pathogen’s residence time within the cells. Further research

indicates that enhanced melanization supports the persistent

presence of Cryptococcus cells within phagosomes and promotes

widespread dissemination in the brain through a Trojan horse-like

strategy. Moreover, the accumulation of melanin in the cell wall

may act as a feedback mechanism, inhibiting urease production

associated with vesicles by reducing the release of urease in

extracellular vesicles (Rodrigues et al., 2008; Shi et al., 2010; Baker

and Casadevall, 2023). Urease also promotes non-lytic exocytosis by

influencing the adaptability of phagosomes in mammalian models,

while delaying intracellular replication and reducing damage to the

phagolysosomal membrane, thereby facilitating the spread of

Cryptococcus during its transport within macrophages (Fu et al.,

2018). When urease needs to be released into the extracellular space

in secretory vesicles, its release dosage depends on the activity of the

extracellular vesicles. Therefore, it can be inferred that extracellular

vesicles act as “transport bags” for urease, playing a key role in the

transmission and release of urease virulence (Yoneda and Doering,

2006; Rodrigues et al., 2008). It is evident that the urease released by

extracellular vesicles plays a decisive role in mediating the

pathogenicity of Cryptococcus neoformans. These findings not

only enhance our understanding of the pathogenic mechanisms

of Cryptococcus neoformans but also provide new perspectives for

therapeutic strategies targeting such pathogens.
3.2 Capsule polysaccharides

3.2.1 GXM
Glucuronoxylomannan (GXM) is a key component of the

Cryptococcus neoformans polysaccharide capsule, and it exerts

regulatory effects on the host immune system through various

mechanisms. GXM exhibits its immunomodulatory function by

inhibiting the secretion of pro-inflammatory cytokines by human

monocytes and restricting leukocyte migration. Additionally, GXM

achieves immune evasion by resisting macrophage phagocytosis,

further enhancing its survival ability within the host (Kozel et al.,

1988; Ellerbroek et al., 2004). Extracellular vesicles, as an important

immune-stimulating component of Cryptococcus neoformans, have

the ability to activate macrophage inflammatory responses. This

activation is mainly manifested in promoting the production of

tumor necrosis factor a (TNF-a) and interleukin 10 (IL-10),

thereby enhancing the antifungal activity of macrophages

(Oliveira et al., 2010). The main function of extracellular vesicles

is to facilitate the exchange of proteins, lipids, and genetic material

between cells. The study by Rodrigues et al. (2007) found that

extracellular vesicles produced by Cryptococcus neoformans contain

immunologically active lipids, which can encapsulate GXM and

release it into the extracellular environment through the cell wall

(Rodrigues et al., 2007). When macrophages ingest Cryptococcus
Frontiers in Cellular and Infection Microbiology 06
neoformans, the phagosome membrane may be damaged, leading to

a disruption of cytoplasmic continuity and the accumulation of

polysaccharide vesicles, further causing functional impairment of

macrophages and a decline in host immune function (Tucker and

Casadevall, 2002). Moreover, the accumulation of GXM from

different serotypes may inhibit the production of the protective

response factor nitric oxide (NO) induced by vesicles during

Cryptococcus neoformans infection (Rossi et al., 1999; Oliveira

et al., 2010). Oliveira et al. (2010) observed that the differences in

the composition of vesicles secreted by Cryptococcus neoformans

affect the ability of macrophages to produce cytokines and their

corresponding stimulatory responses (Oliveira et al., 2010). Further

research indicates that when macrophages phagocytose

extracellular vesicles containing GXM, GXM can inhibit the

response of CD4+ T lymphocytes through an IL-10-dependent

mechanism, thereby promoting the growth of yeast cells in vitro

(Mariano Andrade et al., 2003). Yauch et al. (2006) also found that

whether activated through antigen-presenting cells (APC) with

antigen or directly by mitogen, GXM can directly inhibit T

lymphocyte proliferation and reduce cellular immune responses

in mice and humans after T cells are absorbed by dendritic cells

(DC) (Yauch et al., 2006). The findings of the aforementioned study

have provided us with new insights into the role of GXM in host

immune regulation and have also offered potential targets for the

development of new therapies against cryptococcal infections.

3.2.2 GalXM
GalXM, as a minor component (approximately 10%) of

Cryptococcus neoformans capsular polysaccharide, has long been

overlooked. However, with the in-depth study of GXM

pathogenicity and the immune mechanisms of GalXM in the

body, GalXM has been found to potentially be a more effective

immunomodulatory factor than GXM (Pericolini et al., 2006; De

Jesus et al., 2007). The study by Pericolini et al. (2006) demonstrated

that GalXM can induce T cell apoptosis by recruiting and activating

death receptors and the key initiator caspase-8 in the extrinsic

apoptotic pathway, leading to DNA fragmentation and the

upregulation of surface molecules Fas/FasL that are involved in

inducing apoptosis. This mechanism leads to immune suppression

in the human body, indicating that GalXM plays a crucial role in

regulating the host immune response (Pericolini et al., 2006). The

study by Villena et al. (2008) further found that GalXM not only

induces the primary production of tumor necrosis factor TNF-a but

also induces higher levels of nitric oxide synthase (iNOS) and other

inflammatory factors such as NO in RAW macrophages. These

findings confirm that GalXM, compared to GXM, requires a lower

dose to upregulate Fas expression on the surface of macrophages

and induce their apoptosis, and it is more effective in enhancing the

survival rate of Cryptococcus neoformans within macrophages

(Villena et al., 2008). De Jesus et al. (2009) found the components

of GalXM in the isolated extracellular vesicle components during

their study and observed the accumulation of GalXM in budding

Cryptococcus neoformans cells using immunofluorescence labeling

techniques. These findings support the hypothesis that GalXM may
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mediate the colonization and invasion of Cryptococcus neoformans

through extracellular vesicles. Extracellular vesicles, as an important

molecular transport mechanism, may play a crucial role in the

pathogenicity of Cryptococcus neoformans (Rodrigues et al., 2007;

De Jesus et al., 2009). In summary, the aforementioned studies not

only reveal the complexity of GalXM in the interaction between

Cryptococcus neoformans and its host but also provide an important

scientific basis for the development of novel therapeutic strategies.
3.3 Biological regulatory factors

3.3.1 GlcCer
Glucosylceramide (GlcCer) is an antigenic sphingolipid found

on the surface of fungal cells and can induce an antibody response

in patients with cryptococcosis or in mice. In 2000, Rodrigues et al.

successfully localized GlcCer in Cryptococcus neoformans for the

first time, finding that it is primarily distributed in the cell wall and

plasma membrane, and is enriched at the budding sites of secretory

cells (Rodrigues et al., 2000). Rittershaus et al. (2006) used

recombinant PCR technology to knock down the gene encoding

GlcCer synthase (GCS), revealing a direct link between the

unsaturation of the sphingosine backbone in GlcCer and the

ability of Cryptococcus neoformans to establish virulence

(Rittershaus et al., 2006). Subsequently, Rodrigues et al. (2007)

conducted high-performance thin-layer chromatography (HPTLC)

lipid analysis on the vesicle lower phase after high-speed

centrifugation, further confirming the enrichment of GlcCer in

vesicle lipid extracts (Rodrigues et al., 2007). Based on this, Raj et al.

(2017) used genetic engineering techniques to alter the chemical

structure of GlcCer in Cryptococcus neoformans and performed

biophysical characterization of the purified GlcCer vesicles.The

study found that the unsaturation at carbon position 8 (C8) and

the methylation at carbon position 9 (C9) of the GlcCer sphingosine

backbone significantly increased the sensitivity of Cryptococcus

neoformans to membrane stressors, resulting in increased

membrane permeability and thereby inhibiting the growth of the

pathogen within host macrophages (Raj et al., 2017). Mor et al.

(2016), on the other hand, took a different approach by purifying

GlcCer from the non-pathogenic fungus Candida utilis and

injecting it into the peritoneal cavity of mice infected with

Cryptococcus neoformans. The experiment found that the purified

GlcCer could effectively enhance the mice’s resistance to lethal nasal

invasion by Cryptococcus neoformans, hindering the spread of the

fungus to the brain. This finding indicates that GlcCer not only

plays a crucial role in the virulence formation of Cryptococcus

neoformans but also shows its potential as a vaccine against

cryptococcosis (Mor et al., 2016). Whether it is the pathogenic

mechanism of GlcCer-containing vesicles or the study of vaccines, it

not only deepens our understanding of GlcCer’s role in the

pathogenic mechanism of Cryptococcus neoformans but also

highlights the potential value of GlcCer as a therapeutic target for

Cryptococcus neoformans. This provides important scientific

evidence for the development of new antifungal vaccines and

therapeutic strategies.
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3.4 Biological pigments

3.4.1 Melanin
Melanin is a brown or black hydrophobic high molecular weight

pigment with a negative charge, known to play a protective role in

various organisms. As early as 1995, Wang and colleagues’ research

first revealed that melanin can protect Cryptococcus neoformans yeast

cells from phagocytosis by macrophages (Wang et al., 1995).

Subsequently, further studies by Casadevall and others found that

melaninization in Cryptococcus neoformans not only enhances its

resistance to macrophages but also protects the cells from UV

radiation, oxidative stress, and extreme temperatures (Rosas and

Casadevall, 1997; Garcıá-Rivera and Casadevall, 2001). The presence

of laccase promotes the rapid conversion of the L-3,4-

dihydroxyphenylalanine (L-DOPA) substrate into melanin.

Eisenman (2009), in studying the mechanism of melanin synthesis,

observed vesicles similar in size to melanin particles depositing at the

bottom of the grid by co-incubating L-DOPA with purified

extracellular vesicles and applying quasi-elastic light scattering

(QELS).Based on these observations, Eisenman proposed a

hypothesis that the melanin synthesis in Cryptococcus neoformans

might primarily occur in extracellular vesicles (Eisenman et al., 2009).

Recent studies, such as the work by De Sousa et al. (2022), have

conducted dynamic light scattering (DLS) analysis on extracellular

vesicles from clinical isolates of 65 Cryptococcus neoformans strains,

finding a significant correlation between the ergosterol content in the

vesicles and visual melanization scores.In addition, they also found

that the number of vesicles is related to faster melanization and

greater capsule thickness in rich media (de Sousa et al., 2022). Baker’s

(2023) study further demonstrates the mutual regulatorymechanisms

between melanin and other virulence factors such as urease. Urease

increases pH by producing volatile ammonia, which affects

neighboring cells from a distance, thereby promoting melanization.

This interaction, in turn, reduces urease activity by inhibiting the

secretion of vesicles carrying the enzyme, resulting in fungal cells with

different characteristics and adaptations, thereby promoting the

survival and spread of cryptococcosis at various stages (Baker and

Casadevall, 2023). Overall, these studies reveal the complex role of

melanin in the pathogenic mechanisms of Cryptococcus neoformans

and highlight the importance of its synthesis in extracellular vesicles

for enhancing pathogen virulence and survival rates within the host.

(Table 1 summarizes the above).
4 The potential therapeutic
applications of virulence factors
secreted by extracellular vesicles of
Cryptococcus neoformans

Due to the overuse of antimicrobial drugs, an increasing

number of pathogenic bacteria have developed resistance to one

or more antimicrobial agents.This phenomenon poses a severe

challenge to traditional antimicrobial treatment strategies,

indicating an urgent need to develop new antifungal therapies. In
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the search for new treatment methods, one strategy is to target the

virulence factors of pathogens, rather than merely killing or

inhibiting the microorganisms themselves. This approach has the

potential advantages of expanding the microbial target library,

protecting the host’s endogenous microbiome, and exerting less

selective pressure, which may reduce the development of resistance

(Clatworthy et al., 2007). Fungal extracellular vesicles (EVs) are

complex structures that contain various components with

pathogenic and immunogenic properties, capable of triggering the

host’s immune response. Research on Cryptococcus neoformans

indicates that the virulence factors carried and secreted by its

extracellular vesicles, such as capsule polysaccharide (GXM),

extracellular enzymes, and melanin, are potential targets for

antifungal therapy (Gil-Bona et al., 2015).

In Cryptococcus neoformans, the biosynthesis of the capsule

polysaccharide GXM involves multiple enzymes and transport

proteins. We found that it is closely related to two enzymes: one

is GDP (guanosine diphosphate), which is coupled with mannose

through glycan biosynthesis reactions and has two transport

proteins, Gmt1 and Gmt2, that facilitate the in vitro transport of

GDP-mannose. Strains lacking both Gmt1 and Gmt2 exhibit

impaired capsule biosynthesis, protein glycosylation processes,

and reduced virulence. In humans and other mammalian hosts,

no form of GDP-mannose transport protein is expressed,

highlighting its potential as a target for antimicrobial therapy

(Wang et al., 2014). Another one is Cmt1 and its associated

enzymes. The lack of Cmt1 in mammalian and other animal

hosts eliminates its enzymatic activity, but does not prevent

capsule formation or loss of virulence. This suggests the presence

of other compensatory factors involved in the biosynthesis of GXM.

Although data have not yet confirmed its functional role in

Cryptococcus neoformans, it does not preclude its potential as a

target for future Cryptococcus treatment (Sommer et al., 2003).

In addition, melanin is also an attractive therapeutic target. In

animal model experiments, monoclonal antibodies targeting

melanin were able to extend the survival period of infected mice

and reduce fungal loads in different organs. This suggests that the
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passive immunization strategy using melanin monoclonal

antibodies may have therapeutic potential (Rosas et al., 2001).

Recent studies, such as those by Figueiredo et al. (2021), have

shown that the developed monoclonal antibody Mab targeting the

cell wall chitin oligomer not only increases the sensitivity of

Cryptococcus neoformans to the primary antifungal drug

amphotericin B but may also alter melanization by inducing the

disintegration of the cell wall matrix through binding to the surface

of the fungus (Nosanchuk et al., 2015; Figueiredo et al., 2021).

Emerging evidence highlights the significant therapeutic

potential and scientific relevance of Cryptococcus extracellular

vesicles (EVs). Colombo et al. demonstrated that enrichment of

glucuronoxylomannan (GXM)-containing EVs significantly delayed

mortality rates in Cryptococcus neoformans-infected Galleria

mellonella models (Colombo et al., 2019). Furthermore, Freitas

et al. systematically examined the immunomodulatory properties

of Cryptococcus EVs for therapeutic applications and assessed their

viability as novel vaccine candidates (Freitas et al., 2019).
5 Conclusion

The field of Cryptococcus neoformans treatment has undergone

a significant paradigm shift in response to escalating fungal drug

resistance. Contemporary research has moved beyond traditional

single-factor approaches to systematically investigate: (1) global

metabolic network regulation, and (2) cooperative resistance

mechanisms between virulence factors. This integrated approach

yields dual benefits: it establishes causal relationships between

metabolic adaptation and virulence regulation, informing novel

therapeutic strategies, while also enabling rational design of

combination therapies for resistant infections. Notably, the

conserved stress-response pathways discovered in C. neoformans

provide translational insights for managing other clinically

important fungi, including Aspergillus and Candida species.

These developments promise to enhance both cryptococcosis

treatment and broader antifungal drug development.
TABLE 1 Summary of extracellular vesicle virulence factors.

Numbering Virulence factors Function References

1 Laccase 1. Catalyzes the synthesis of melanin
2. Affect phagocytosis rate

(Liu et al., 1999; Eisenman et al., 2007; Frazão et al., 2020)

2 HSP70 1. Promote macrophage M2 activation
2. Inhibit NO production

(Silveira et al., 2013; Eastman et al., 2015)

3 Urease 1.Reduce lysosomal membrane damage
2.Helps invade brain parenchyma

(Shi et al., 2010; Fu et al., 2018)

4 GXM 1. Inhibit cytokine production
2. Damaged macrophages

(Tucker and Casadevall, 2002; Oliveira et al., 2010)

5 GalXM 1. Inducing T cell apoptosis
2. Induction of TNF-a production

(Pericolini et al., 2006; Villena et al., 2008)

6 GlcCer 1. Promote the development and growth of mycelium
2. Increase the permeability of the cell membrane

(Rittershaus et al., 2006; Raj et al., 2017)

7 Melanin 1. Prevent the oxidative burst of phagocytes (Wang et al., 1995)
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