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Tripartite motif (TRIM) proteins, defined by their conserved RBCC domain

architecture, play key roles in various cellular processes and virus-host

interactions. In this review, we focus on Class VI TRIM proteins, including

TRIM24, TRIM28, and TRIM33, highlighting the distinct functional attributes of

their RING, B-BOX1, B-BOX2, COILED COIL, PHD, and BRD domains in viral

infection. Through multiple sequence alignment, we delineate both the

conserved and divergent features within this subclass, underscoring the

uniqueness of Class VI TRIM protein. Additionally, we explore the post-

translational modifications (PTMs) of Class VI TRIM proteins including their

functional differences in modulating viral infection. Moreover, we examine the

C-VI TRIM protein complexes and their significant contributions to the antiviral

response. Furthermore, we discuss small molecule ligands targeting Class VI

TRIM domains, with a focus on druggable structural motifs. Understanding the

multi-domain features of TRIM proteins is crucial for developing effective antiviral

strategies and the therapeutic modulation of their activity.
KEYWORDS

TRIM28, TRIM24/TRIM28/TRIM33 complex, RBCC domain, C-VI TRIM PROTEINS,
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1 Introduction

Tripartite motif (TRIM) proteins are defined by a conserved N-terminal RBCC (RING

finger, B-box, coiled-coil) domain and a variable C-terminal region, classified into 11

subfamilies (C-I to C-XI) based on their C-terminal domain compositions (Short and Cox,

2006; Ozato et al., 2008). The RBCC domain comprises a RING finger domain, one or two B-

box domains, and a coiled-coil domain (Carthagena et al., 2009) (Figure 1A). The RING

domain, a specialized zinc finger, confers E3 ubiquitin ligase activity, while B-box domains, also

zinc-binding motifs, facilitate protein-protein interactions, though their precise roles remain

unclear (Massiah, 2019). The coiled-coil domain mediates anti-parallel homo-dimerization and

may enable hetero-oligomerization (Stevens et al., 2019). TRIM proteins are critical modulators

of signaling pathways in development and tumorigenesis (Herquel et al., 2011) and play dual
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roles in promoting or inhibiting viral infections through diverse

mechanisms (Vunjak and Versteeg, 2019).

Within the broad TRIM family, class VI (C-VI) TRIM proteins,

which belong to TIF1 (transcriptional intermediary factor 1) family

members, are particularly noteworthy for their complex domain

architecture. The C-VI TRIM proteins include TRIM24 (TIF1a),
TRIM28 (TIF1b, KAP1), and TRIM33 (TIF1g). These proteins

function as chromatin-associated transcriptional co-regulators,

driven by their C-terminal PHD (plant homeodomain) and BRD

(bromodomain) domains (Stevens et al., 2019) (Figure 1A). The

PHD domain, a zinc finger structure, coordinates zinc ions in a

cross-brace configuration, while BRD domains feature a conserved

four-a-helix bundle with variable loop regions for motif recognition

(Sanchez and Zhou, 2011).

C-VI TRIM proteins exhibit high domain conservation, with

TRIM24 showing significant similarity to TRIM33 across domains

(Figure 1B). Structural studies using NMR and X-ray crystallography

have resolved key domains, including the TRIM28 RBCC (PDB 6QAJ)

(Randolph et al., 2022), TRIM24 PHD-BROMO (PDB 4YAB) (Palmer

et al., 2016), and TRIM33 PHD-BROMO (PDB 7ZDD) (Sekirnik et al.,

2022). However, full-length structures remain elusive due to intrinsic

disorder in the linker region (Fonti et al., 2019; Randolph et al., 2022).

Recent AlphaFold models have provided insights into their full-length

structures, revealing distinct domain orientations (Varadi et al., 2024)

(Figures 1C, D). This review explores the unique roles of C-VI TRIM

proteins, focusing on their shared domain compositions and domain

functions during viral infection.
2 The uniqueness of class VI TRIM
proteins

Class VI TRIM proteins are uniquely characterized by their C-

terminal PHD-BRD motif, distinguishing them within the TRIM

family (Randolph et al., 2022). These tandem domains enable

recognition of specific histone modifications, such as methylated and

acetylated lysine residues, allowing them to function as epigenetic

readers (Sanchez and Zhou, 2011; Zaware and Zhou, 2019). TRIM24,

for instance, interacts with histone tails and nuclear receptors via its

LXXLL motif, regulating transcriptional programs critical for cell

proliferation (Walser et al., 2016; Tsai et al., 2022). TRIM28 acts as a

scaffold, recruiting repressive complexes through its PHD-BRD cassette

and PxVxL motif, facilitating heterochromatin formation and gene

silencing (Thiru et al., 2004; Mazurek et al., 2021). Similarly, TRIM33

binds H3K9me3 and K18ac, displacing HP1g to enhance

transcriptional activation (Xi et al., 2011). These proteins play pivotal

roles in chromatin remodeling, transcriptional regulation, and antiviral

responses (Rajsbaum et al., 2014).
3 The role of C-VI TRIM domains in
viral infection

Class VI TRIM proteins, including TRIM24, TRIM28, and

TRIM33, exhibit high conservation of amino acid residues across
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species, underscoring their structural and functional homology and

their critical roles in cellular processes, including antiviral and

proviral mechanisms (Shibata et al., 2011). While the broader

roles of TRIM proteins in host-virus interactions, ubiquitin ligase

activity, and antiviral innate immune signaling have been

extensively reviewed (van Gent et al., 2018; Hage and Rajsbaum,

2019; Giraldo et al., 2020; Shen et al., 2021), the specific

contributions of TRIM domains in viral infections remain less

explored. This section highlights the role of Class VI TRIM

protein domains, including the RBCC domain and individual

structural domains, in viral pathogenesis and summarizes the

findings in Table 1.
3.1 The influence of the RBCC domain in
virus infection

The RBCC domain comprising the RING, B-box, and coiled-

coil regions, plays a versatile role in viral infections, either

enhancing or inhibiting viral activity depending on the context.

For instance, TRIM28 restricts prototype foamy virus (PFV)

replication by promoting the ubiquitination and degradation of

the viral transactivator Tas via its RBCC domain. This interaction

suppresses PFV transcription and replication while maintaining

repressive H3K9me3 marks at viral LTR promoter regions,

facilitating viral latency (Yuan et al., 2021). Similarly, during

infections with RNA (VSV) and DNA (HSV-1) viruses, the

RBCC domain of TRIM28 is essential for binding TBK1 and

facilitating its K63-linked ubiquitination, which is critical for type

I interferon (IFN-I) activation. TRIM28 knockout cells exhibit

impaired IFN-I responses and increased viral susceptibility,

highlighting the RBCC domain’s importance in antiviral defense

(Hua et al., 2024). Additionally, the RBCC domain of TRIM33

interacts with the antiviral protein viperin_sv1 during Spring

viremia of carp virus (SVCV) infection, inducing its proteasomal

degradation. This process dampens the type-1 interferon response,

thereby enhancing SVCV replication (Gao et al., 2021).
3.2 The influence of the RING domain in
virus infection

The RING domain of TRIM proteins plays a pivotal role in viral

infections by mediating protein-protein interactions and facilitating

ubiquitination and SUMOylation processes (McAvera and Crawford,

2020). In the context of porcine epidemic diarrhea virus (PEDV), an

enteropathogenic coronavirus, the TRIM28 RING domain binds to

the viral nucleocapsid protein, triggering mitophagy and suppressing

the JAK/STAT1 signaling pathway, which is essential for antiviral

defense. Depletion of TRIM28 restores JAK/STAT1 signaling and

impairs PEDV replication, while its overexpression enhances viral

replication, underscoring its role in viral exploitation of host

mechanisms (Li et al., 2024). These findings suggest that targeting

TRIM28 could be a viable therapeutic strategy against PEDV.

Similarly, during Sendai virus (SeV) infection, TRIM28 suppresses
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RIG-I-like receptor (RLR) signaling by targeting MAVS for K48-

linked polyubiquitination, a process dependent on specific cysteine

residues in its RING domain. Additionally, TRIM28 acts as a SUMO

E3 ligase for IRF7, enhancing its SUMOylation and negatively

regulating type I interferon responses. Overexpression of TRIM28

inhibits IRF7 activity, while its knockdown enhances antiviral

defenses, highlighting its dual role in immune regulation (Liang

et al., 2011; Chen et al., 2023).

In Vesicular stomatitis virus (VSV) infection, the RING domain

of TRIM24 is essential for its antiviral function. TRIM24 promotes

K63-linked ubiquitination of TRAF3, facilitating its interaction with

MAVS and TBK1 to activate antiviral signaling. The

downregulation of TRIM24 by VSV-activated IRF3 compromises

type I interferon induction, increasing host susceptibility to

infection (Zhu et al., 2020). Furthermore, the RING domain of

TRIM33 is critical for its role in restricting HIV-1 replication.
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TRIM33 catalyzes the polyubiquitination of HIV-1 integrase (IN),

targeting it for proteasomal degradation and preventing proviral

DNA formation. Mutations in the RING domain, but not the PHD

domain, impair this function, emphasizing its importance as a

cellular restriction factor (Ali et al., 2019). Collectively, these

studies highlight the central role of TRIM RING domains in

modulating antiviral immune responses and viral replication,

offering potential targets for therapeutic intervention.
3.3 The influence of the BCC domain in
virus infection

The B-box and coiled-coil (CC) domains of TRIM proteins are

critical for the formation of higher-order assemblies and play

significant roles in viral infections, including those caused by
A

B C

D

FIGURE 1

Schematic and 3D representation of Class VI TRIM proteins. (A) The schematic representation of Class VI TRIM proteins for TRIM24, TRIM28, and
TRIM33, respectively. These proteins share a similar structural arrangement, indicative of conserved domain architecture. Among them, TRIM33 has
the highest molecular mass (1127 kDa), followed by TRIM24 (1050 kDa) and TRIM28 (835 kDa). The domains are color-coded as follows: Magenta
(RING), Blue (B-BOX1), Orange (B-BOX2), Red (COILED COIL), Green (PHD), and Purple (BROMO). (B) Multiple Sequence Alignment of Class VI TRIM
domains, including RING, B-BOX1, B-BOX2, COILED COIL, PHD, and BROMO domains. The alignment was performed using CLUSTAL Omega
software. Gaps in the sequences are indicated by dashes (—), with asterisks (*), colons (): and dots (.) representing identical residues, conserved
residues, and semi-conserved residues, respectively. The percent identity matrix for each TRIM domain comparison is displayed in the table. The
domains of TRIM24 and TRIM33 exhibit greater similarity to each other than to those of TRIM28. Nevertheless, all domains demonstrate high
conservation. The UniProt accession numbers for TRIM24, TRIM28, and TRIM33 are O15164, Q13263, and Q9UPN9, respectively. (C, D) The 3D
structures of C-VI RBCC (C) and PHD-BROMO (D) domains are superimposed depicting their similar structural orientation. The PDB accession
numbers and colour codes are Green-TRIM24 (PDB code: AF-O15164-F1-model_V4 residuals 47-425), Cyan-TRIM28 (PDB code: 6QAJ residuals
56-405), Magenta-TRIM33 (PDB code: AF-Q9UPN9-F1-model_V4 residuals 116-478) (C). Green-TRIM24 (PDB code: 3O34 residuals 823-1006),
Cyan-TRIM28 (PDB code: 2RO1 residuals 627-755), and Magenta-TRIM33 (PDB code: 3UN5 residuals 881-1056) (D).
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porcine reproductive and respiratory syndrome virus (PRRSV) and

SARS-CoV-2. In PRRSV, the envelope glycoprotein 4 (GP4) is

essential for producing infectious viral particles (Meulenberg et al.,

1997). TRIM28, through its B-box and CC domains, enhances

PRRSV GP4 expression by directly interacting with GP4,

inhibiting its K63-linked ubiquitination, preventing its

degradation, and stabilizing the protein to promote PRRSV

replication. This domain-specific function highlights TRIM28 as a

potential target for antiviral therapies against PRRSV (Cui et al.,

2023). Similarly, in SARS-CoV-2 which causes COVID-19 disease

(Wihandani et al., 2023), the CC domain of TRIM28 is crucial for

viral virulence. It facilitates the interaction between TRIM28 and

the SARS-CoV-2 nucleocapsid protein (SARS2-NP), enabling poly-

SUMOylation of SARS2-NP, which helps the virus evade host

innate immune responses. Depriving SARS2-NP of SUMOylation

increases IFN-b expression, reduces viral propagation, and lowers

mortality in mice (Ren et al., 2024). Additionally, the CC domain

mediates interactions with the Krüppel-associated box (KRAB)

domain of transcription regulators, allowing TRIM28 to suppress

transcription from viral promoters, further aiding viral immune

evasion (Rowe et al., 2010; Taka et al., 2022).
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3.4 The influence of the PHD-BRD in virus
infection

The PHD and BRD domains of TRIM proteins also play

pivotal roles in regulating antiviral immunity. The PHD

domain’s E3 ligase activity is essential for TRIM28’s self-

SUMOylation, which inhibits immune gene expression mediated

by IRF1, IRF3, and NF-kB during VSV infection. Full-length

TRIM28, containing the PHD domain, suppresses chromatin

accessibility of antiviral genes, while a truncated form lacking

this domain does not, underscoring its importance in regulating

antiviral immunity (Kuang et al., 2023). Conversely, the BRD of

TRIM28 is critical for degrading the HIV-1 Tat protein, thereby

repressing HIV-1 gene expression. TRIM28 interacts with Tat in

microglial cells, facilitating its degradation via the proteasome

pathway. Domain deletion studies reveal that while the RBCC

domain is dispensable for Tat degradation, the BRD and, to a

lesser extent, the PHD domain are essential for this process (Ait-

Ammar et al., 2021). These findings highlight the multifaceted

roles of TRIM domains in viral infections and their potential as

targets for therapeutic intervention.
TABLE 1 The table summarizing the role of C-VI TRIM domains in viral infection.

Member of
C-VI TRIM

Virus Domain
involved

Influence of the domain Reference

TRIM28 Prototype foamy virus (PFV) RBCC It destabilizes Tas, reducing its activation of viral promoters and repressing
PFV transcription and replication.

(Yuan
et al., 2021)

TRIM28 Vesicular stomatitis virus (VSV)
and Herpes simplex virus 1
(HSV-1)

RBCC It mediates TBK1 K63-linked ubiquitination and subsequent IFN-I induction,
thereby positively regulating the antiviral immune response.

(Hua
et al., 2024)

TRIM33 Spring Vremia of Carp
virus (SVCV)

RBCC It degrades viperin_sv1, suppressing the type-1 interferon response and
enhancing SVCV replication.

(Gao
et al., 2021)

TRIM28 Porcine epidemic diarrhea
virus (PEDV)

RING
domain

It interacts with the PEDV N protein to induce mitophagy, which suppresses
the JAK/STAT1 pathway and enhances viral replication.

(Li
et al., 2024)

TRIM28 Sendai virus RING
domain

It inhibits SeV-induced RLR signaling by facilitating the polyubiquitination
and proteasome-mediated degradation of MAVS.

(Chen
et al., 2023)

TRIM28 Sendai virus RING
domain

It promotes the SUMOylation of IRF7, reducing its activity and subsequently
decreasing IFN production during viral infections.

(Liang
et al., 2011)

TRIM24 Vesicular stomatitis virus (VSV)
and Herpes simplex virus 1
(HSV-1)

RING
domain

It promotes TRAF3 ubiquitination, leading to its interaction with MAVS and
TBK1, and activating antiviral signaling.

(Zhu
et al., 2020)

TRIM33 HIV-1 RING
domain

It drives poly-ubiquitination of HIV-1 integrase, marking it for proteasomal
degradation and inhibiting proviral DNA formation and HIV-1 replication.

(Ali
et al., 2019)

TRIM28 Porcine Reproductive and
Respiratory Syndrome
Virus (PRRSV)

BBOX + CC It prevents PRRSV GP4 degradation, enhancing GP4 expression and
supporting PRRSV replication.

(Cui
et al., 2023)

TRIM28 SARS-CoV-2 Coiled coil It facilitates the association of TRIM28 with SARS2-NP enabling the virus to
evade the host’s innate immune response.

(Ren
et al., 2024)

TRIM28 VSV PHD It suppresses antiviral gene transcription during VSV infection. (Kuang
et al., 2023)

TRIM28 HIV-1 BRD It suppresses HIV-1 gene expression. (Ait-Ammar
et al., 2021)
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4 Post-translational modifications of
C-VI TRIM proteins in viral infection

Despite their structural similarities, class VI TRIM proteins

exhibit functional diversity during viral infections, due to post-

translational modifications (PTMs), protein-protein interactions,

subcellular localization, and domain-specific activities. PTMs,

including SUMOylation, ubiquitination, and phosphorylation, are

particularly influential, modulating TRIM protein stability, activity,

and interactions, thereby shaping their roles in viral contexts.
4.1 SUMOylation

Although TRIM24 and TRIM33 SUMOylation have been

shown to influence chromatin interaction (Appikonda et al.,

2018) and TGFb signaling (Fattet et al., 2013), respectively, their

roles in viral infections remain underexplored. In contrast, TRIM28

SUMOylation has been extensively studied. It supports efficient

virus replication in influenza A by inhibiting innate immune

defences (Schmidt et al., 2019), maintains Epstein-Barr virus

latency by repressing lytic replication (Bentz et al., 2015), and

modulates adenovira l repl icat ion through chromatin

decondensation (Bürck et al., 2016). Furthermore, SUMOylation

enhances TRIM28’s recruitment to MMLV proviral DNA and

represses proviral gene expression (Bin et al., 2015).
4.2 Ubiquitination

Ubiquitination also plays a key role in maintaining TRIM24

stability through its interaction with TRIM28, preventing its

degradation and enhancing chromatin binding (Fong et al., 2018).

Additionally, during VSV infection, TRIM28 ubiquitination by

UBR5 inhibits its SUMOylation, enhancing antiviral responses

(Yang et al., 2024).
4.3 Phosphorylation

Phosphorylation is a well-known modification among class VI

TRIM proteins. For instance, the phosphorylation of TRIM24 at

serine 768 (S768), mediated by ATM in response to DNA damage,

leads to the destabilization and subsequent degradation of TRIM24

(Jain et al., 2014). Additionally, phosphorylation of TRIM24 at

Ser1043 facilitates its translocation from the nucleus to the cytosol

(Wei et al . , 2022). However, during viral infections,

phosphorylation is predominantly observed in TRIM28, with

fewer reports in TRIM33. Notably, TRIM33 undergoes both

phosphorylation and SUMOylation in response to EBV lytic

infection (Cf et al., 2023).

Phosphorylation of TRIM28 plays a crucial role in regulating

viral infections and their associated processes. For HIV, DNA-PK-

mediated phosphorylation at S824 is essential for facilitating

transcription by relieving paused RNA polymerase II at the HIV
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LTR, thus promoting viral replication (Zicari et al., 2020). During

Merkel cell polyomavirus infection, phosphorylation at S824

induces cellular senescence and G2 arrest, counteracting viral

genomic stress (Siebels et al., 2020). In adeno-associated virus

infections, this modification inactivates TRIM28’s repression of

the viral genome, aiding viral reactivation (Smith-Moore et al.,

2018). Similarly, during human cytomegalovirus infection, mTOR-

mediated phosphorylation suppresses TRIM28’s heterochromatin-

inducing activity, facilitating viral reactivation (Rauwel et al., 2015).

For highly pathogenic avian influenza virus infections,

phosphorylation at S473 enhances TRIM28’s ability to induce

cytokine production, boosting immune responses (Krischuns

et al., 2018). Additionally, during Kaposi’s sarcoma-associated

herpesvirus infection, MK2-mediated phosphorylation at S473

inactivates TRIM28, promoting STAT3 activation and inflammation

(King, 2013). In EBV infections, phosphorylation sustains the

expression of the viral lytic switch protein ZEBRA, facilitating

reactivation and increased virus production (Li et al., 2017; Li et al.,

2019). Lastly, in HSV-1 infections, TRIM28 phosphorylation relieves

its repression on lytic gene transcription, modulating the balance

between repression and activation (Tsai et al., 2022).
5 The TRIM24/TRIM28/TRIM33
complex in virus infection

The interaction among TRIM24, TRIM28, and TRIM33 forms a

functionally significant complex that critically regulates viral

infections and other cellular processes. Biochemical studies have

demonstrated that these proteins co-purify and interact through

their coiled-coil (CC) domains, which facilitate homo- and hetero-

dimerization (Herquel et al., 2011; Randolph et al., 2022). For

example, TRIM24 and TRIM28 frequently co-purify, with

TRIM33 acting as a key interacting partner, and their interaction

is essential for the repression of endogenous retroviruses (ERVs) in

embryonic stem cells (Margalit et al., 2020). Structural studies using

NMR and X-ray crystallography have revealed that the CC domains

of these proteins mediate their dimerization, which is critical for

their E3 ubiquitin ligase activity and chromatin-binding functions

(Reymond, 2001; Stevens et al., 2019; Fiorentini et al., 2020).

Additionally, the PHD-BRD cassette in TRIM24 and TRIM33

allows them to recognize specific histone modifications, such as

H3K9me3 and acetylated lysines, which is essential for their role in

chromatin remodeling and transcriptional regulation (Tsai et al.,

2010; Bardhan et al., 2023). The functional significance of this

complex is further highlighted by its role in antiviral defense. For

instance, the TRIM24/TRIM28/TRIM33 complex suppresses

Epstein-Barr virus (EBV) reactivation by repressing the lytic

switch gene BZLF1. Disruption of this complex by EBV leads to

the degradation of TRIM24 and modification of TRIM33,

underscoring the importance of their interaction in maintaining

viral latency (Cf et al., 2023). Moreover, the complex plays a role in

tumor suppression, as simultaneous inactivation of TRIM24 and

TRIM33 in mice leads to the development of hepatocellular

carcinoma (HCC), highlighting their cooperative function in
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regulating cellular processes beyond viral infection (Herquel et al.,

2011). These studies provide strong experimental evidence for the

formation and functional significance of the TRIM24/TRIM28/

TRIM33 complex, emphasizing its role in antiviral defense,

chromatin regulation, and tumor suppression.
6 Small molecule ligands targeting C-
VI TRIM protein domains in virus
infection

The TRIM family of proteins, characterized by their diverse

functional domains, play critical roles in cellular processes, with the

RING domain being particularly significant due to its E3 ubiquitin

ligase activity, which is essential for ubiquitination (Vunjak and

Versteeg, 2019). While ubiquitination is a key function, certain

TRIM proteins also exhibit ubiquitin-independent activities.

Therapeutic strategies targeting ubiquitin signaling have been

explored through the development of peptide-based inhibitors that

bind to the proteasome, thereby preventing the degradation of

ubiquitinated proteins (D’Amico et al., 2021). Proteasome

inhibitors are widely used as research tools to study the ubiquitin-

proteasome pathway (Hideshima and Anderson, 2012). Notably,

proteasome-targeting therapeutics, including TRIM protein

degraders, demonstrate considerable clinical promise; however,

significant challenges remain. Their broad-spectrum effects on

cellular processes can result in significant off-target effects and

toxicity. For example, gastrointestinal toxicity, a frequent and dose-

limiting adverse effect of proteasome inhibitors like bortezomib and

carfilzomib, also persists despite newer formulations, warranting

further mechanistic and translational investigation (Stansborough

and Gibson, 2017). Additionally, limited tissue penetration and

suboptimal bioavailability hinder their efficacy (Saraswat et al.,

2023). Moreover, resistance mechanisms such as enhanced drug

efflux can reduce the sustained effectiveness of these agents (Ming

et al., 2023; Zhong et al., 2024). Overcoming these barriers will

require refined molecular design, targeted delivery technologies, and

comprehensive preclinical validation.

The intricate multi-domain architecture and adapter-like

nature of TRIM proteins further complicate drug development

efforts (D’Amico et al., 2021). A deeper understanding of how

small molecule ligands interact with C-VI TRIM domains is

essential for identi fying druggable structural motifs .

Bromodomain (BRD)-containing proteins have gained attention

as a class of protein modules with therapeutic potential due to their

ligand-binding capabilities (Ferri et al., 2016). Despite containing

BRDs, TRIM proteins remain among the least studied targets in this

category (Sekirnik et al., 2022). Recent advancements include the

identification and optimization of N-benzyl-3,6-dimethylbenzo[d]

isoxazol-5-amines as TRIM24 BRD inhibitors, with compounds

11d and 11h demonstrating potent inhibitory activity and selectivity

in cancer cell proliferation assays (Hu et al., 2020). Notably, the

TRIM24 BRD inhibitor IACS-9571 has shown promise as a latency-

reversing agent for HIV-1, effectively reactivating proviral

expression without inducing global T cell activation (Horvath
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et al., 2023). Additionally, the development of NP SUMOylation

Interfering Peptides (NSIPs), particularly NSIP-III, has

demonstrated efficacy in disrupting TRIM28-SARS2-NP

interactions, inhibiting SARS2-NP SUMOylation, and impairing

viral RNA binding (Ren et al., 2024).

More recently, dTRIM24, a selective degrader of the

multidomain transcriptional regulator TRIM24, was shown to be

more effective than the bromodomain inhibitor IACS-9571 in

displacing TRIM24 from chromatin and modulating genome-

wide transcription at its target genes (Gechijian et al., 2018).

These findings not only establish TRIM24 as a transcriptional

dependency in leukemia but also highlight the potential of

domain-specific TRIM24-targeting molecules particularly

degraders to precisely interrogate TRIM protein functions. Such

approaches may be extended to study class VI TRIM proteins in the

context of viral infection, where domain-targeting could modulate

host-pathogen interactions or viral latency mechanisms.

Research into the histone H3 peptide binding profiles of

TRIM24 and TRIM33 has provided valuable insights into their

interactions with acetylated and methylated histone residues, laying

the groundwork for the development of selective TRIM ligands

(Sekirnik et al., 2022). These findings have implications for the

design of proteolysis-targeting chimeras (PROTACs) and highlight

the therapeutic potential of BRDs as ligandable protein modules. A

classification system based on BRD binding site characteristics has

been established to predict small molecule selectivity and refine

inhibitor optimization strategies (Vidler et al., 2012).
7 Discussion

Class VI TRIM proteins (TRIM24, TRIM28, and TRIM33) are

distinguished from other TRIM subfamilies by their unique C-

terminal PHD-BRD cassette, which enables them to function as

chromatin-associated transcriptional regulators (Sanchez and

Zhou, 2011; Zaware and Zhou, 2019). While other TRIM

subfamilies also contain the RBCC domain, Class VI TRIM

proteins are particularly adept at recognizing specific histone

modifications such as H3K9me3 and acetylated lysines as well as

modulating chromatin accessibility during viral infections (Tsai

et al., 2022; Bardhan et al., 2023). This ability to read the epigenetic

code allows Class VI TRIM proteins to regulate gene expression in

response to viral infection, a function that is less pronounced in

other TRIM subfamilies. Consequently, Class VI TRIM proteins

exert their antiviral or proviral effects through direct viral protein

targeting, epigenetic regulation and chromatin remodelling,

underscoring their unique contribution to antiviral defences.

Nonetheless, future research should leverage advanced

proteomics and CRISPR-based technologies to further dissect the

context-dependent roles of these proteins. For instance, mass

spectrometry-based PTM mapping could identify novel

modification sites on TRIM proteins, shedding light on how

PTMs regulate their antiviral or proviral functions (Doll and

Burlingame, 2015). Additionally, CRISPR-Cas9 could be

employed to generate domain-specific knockouts or point
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mutations, enabling precise studies of how individual domains

contribute to viral pathogenesis (Li et al., 2020). Furthermore, the

formation and regulation of TRIM protein complexes, such as

TRIM24/TRIM28/TRIM33, remain poorly understood. Proximity

labelling techniques like BioID or APEX could map these

complexes’ interactomes, revealing novel protein-protein

interactions and their roles in viral replication (Guo et al., 2023).

The development of selective small-molecule inhibitors targeting

TRIM domains, particularly the RING and BRD domains,

represents a promising therapeutic avenue. However, challenges

such as off-target effects and toxicity must be addressed through

structure-based drug design and virtual screening (Van Vleet et al.,

2019). Finally, the role of TRIM proteins in emerging viral

infections and their influence on host chromatin accessibility and

gene expression warrants further exploration. Single-cell omics and

in vivo models could provide insights into the physiological

relevance of TRIM proteins in host defence, paving the way for

novel antiviral therapies (Kirschenbaum et al., 2024). By addressing

these gaps, future research can deepen our understanding of TRIM

proteins’ roles in viral infections and inform the development of

targeted antiviral strategies.
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