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Comparative pan-genomic
analysis reveals pathogenic
mechanisms and genomic
plasticity in Vibrio
parahaemolyticus clinical
and environmental isolates
Peng Zhang, Xiaofang Wu, Lei Ji , Wei Yan, Liping Chen
and Fenfen Dong*

Microbiology Laboratory, Huzhou Center for Disease Control and Prevention, Huzhou,
Zhejiang, China
Introduction: Vibrio parahaemolyticus is a human pathogen capable of inducing

bacterial gastroenteritis. Clinical strains of V. parahaemolyticus are considered

pathogenic due to their possession of hemolysin and a type III secretion system

(T3SS). Some environmental isolates are also acquiring corresponding

virulence genes.

Methods: This study initially examines the infection characteristics of V.

parahaemolyticus, and subsequently employs pan-genomic analysis to identify

genes that exhibit significant differences in distribution between environmental

and clinical isolates, thereby revealing their potential impact on virulence.

Results and discussion: The epidemiological analysis of clinical isolates suggests

that infections of V. parahaemolyticus are more prevalent in warm seasons, with

O4:KUT serotype presenting more severe symptoms. OrthoFinder analysis

revealed that environmental isolates possess a higher number of core genes.

PEPPAN and KEGG analysis revealed that the 10 genes exclusively found in

clinical isolates were predominantly associated with virulence. Additionally, the

functions of genes differentially distributed in the environment were significantly

more diverse compared to those in clinical settings. Analysis of mobile genetic

elements suggested that environmental isolates harbor more mobile genetic

elements, implying a potential for an increased number of resistance genes. The

pathogenic characteristics of the strains examined in this study, genomic

diversity and variation in mobile genetic elements are highly significant for

deepening our understanding of the pathogenic mechanisms of V.

parahaemolyticus and for the development of strategies to prevent its infections.
KEYWORDS
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1 Introduction

Vibrio parahaemolyticus, commonly found in estuarine and

marine environments globally, is recognized as one of the most

prevalent foodborne pathogens (Letchumanan et al., 2014).

Consumption of raw or undercooked seafood can result in acute

gastroenteritis, wound infections, and septicemia (Newton et al.,

2012). While gastroenteritis may be self-limiting, infections can

progress to sepsis, posing a life-threatening risk for individuals with

a history of the disease (Letchumanan et al., 2014).

V. parahaemolyticus is classified through serotyping, which is

determined by the combination of somatic (O) and capsular (K)

antigens. Specifically, V. parahaemolyticus can be categorized into

13 O-antigen and 71 K-antigen types (Iguchi et al., 1995). In

February 1996, a food poisoning outbreak caused by a novel O3:

K6 serotype emerged in India, which rapidly spread and evolved

into a pandemic clone (Okuda et al., 1997). Following the 1996

outbreak of the O3:K6 strain, V. parahaemolyticus has increasingly

become one of the leading foodborne pathogens worldwide (Hara-

Kudo et al., 2012). The O4:KUT serotype first appeared in Zhejiang

Province in 2013 and quickly became the predominant serotype

that year (Zhu et al., 2020). Since 2017, V. parahaemolyticus O4:

KUT has remained the dominant serotype. However, in 2020, the

O10:K4 serotype was detected for the first time in Huzhou City,

eventually surpassing O3:K6 to become the new dominant serotype

(Zhang et al., 2022). Similar trends have been observed in other

regions, including Beijing (Huang et al., 2022b), Guangzhou (He

et al., 2022), and Guangxi (Huang et al., 2022a). Notably, Thailand

reported its first case of O10:K4 infection in 2021, isolated from an

inpatient with acute diarrhea, confirming the emergence of the O10:

K4 serotype in Southeast Asia (Okada et al., 2023).

V. parahaemolyticus is naturally prevalent in marine

environments. However, recent observations indicate a rise in the

incidence of V. parahaemolyticus in inland cities across China,

potentially attributable to the contamination of freshwater fish with

this bacterium (Lei et al., 2020). Over the past few years, V.

parahaemolyticus has been isolated from various freshwater food

sources, including crayfish, fish, shrimp, and sediments (Jiang et al.,

2020; Chen et al., 2021). The majority of V. parahaemolyticus

strains isolated from environmental sources are typically non-

pathogenic, in contrast to clinical isolates, which often represent

pathogenic clones. Pathogenic strains of V. parahaemolyticus are

known to harbor virulence factors, including the genes encoding

thermostable direct hemolysin (tdh) and tdh-related hemolysin

(trh), whereas most environmental isolates lack these virulence

genes (Martinez-Urtaza et al., 2008; Flores-Primo et al., 2014;

Haley et al., 2014; Letchumanan et al., 2015). Our previous

studies have demonstrated significant differences in the serotypes

and virulence genes between clinical and environmental isolates of

V. parahaemolyticus (Zhang et al., 2024).

The objective of this study is to explore the genomic

characteristics of pathogenic V. parahaemolyticus isolates from

both clinical and environmental sources, analyze the differences

and relationships between them, and elucidate the underlying

factors contributing to the pathogenicity of clinical isolates. We
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collected 69 clinical isolates from patients and 59 isolates from

environment. Employing pan-genomic approach, we identified

distinctive features among genomes categorized by host origin.

Our preliminary analysis has delineated genomic differences

between clinical and environmental isolates, shedding light on the

genetic basis of pathogenicity in clinical isolates.
2 Materials and methods

2.1 Bacterial isolate

The sequencing data have been deposited in the NCBI database

under the BioProject accession number PRJNA1071824. Detailed

information regarding the isolate has been presented in our previous

article (Zhang et al., 2024). Metadata including gender, patient age,

hospitalization status and main symptoms were collected. Mobile

genetic elements, including plasmids and insertion sequences (IS),

were identified using the online software MobileElementFinder

version 1.0.3, which is accessible at https://cge.food.dtu.dk/services/

MobileElementFinder/ (Johansson et al., 2021). PhiSpy (Akhter

et al., 2012) was used with its default parameters, employing GBK

files (GenBank files) annotated by PROKKA (Seemann, 2014) as

input to predict the presence of prophages. The histogram was

generated using KaleidaGraph version 4.5.0. Multi-categorical

alluvial diagrams were generated using RawGraphs 2.0 (Mauri

et al., 2017). Virulence factors were predicted from the assembled

genomes of each isolate using the Virulence Factor Database

(VFDB) VFanalyzer tool, available at http://www.mgc.ac.cn/cgi-

bin/VFs/v5/main.cgi?func=VFanalyzer. The heatmap was

generated using the “pheatmap” package in R software.
2.2 Comparative genomics and
phylogenetic analysis

The whole-genome DNA sequences from all samples were

converted into protein sequences using gffread version 0.12.7

(Pertea and Pertea, 2020). Subsequently, these protein sequences

were clustered with OrthoFinder version 2.5.5 (Emms and Kelly,

2019). The bar chart and associated plots were generated using

KaleidaGraph version 4.5.0.
2.3 Pangenome analysis

Assembled contigs’ FASTA files were initially annotated using

PROKKA (Seemann, 2014). For the pangenome analysis, PEPPAN

(Zhou et al., 2020) was employed with the default settings, utilizing

the GFF3 files annotated by PROKKA as inputs for the pipeline.

Subsequently, the PEPPAN_parser script was applied to generate

the final output. We comparatively analyzed each identified gene

from clinical and environmental sources. Statistical analysis was

performed using the chi-square test or Fisher’s exact test. Given the

extensive number of genes, we focused our analysis on those with a
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p-value less than 0.01, indicating significant differences in

distribution. To clarify the distribution patterns, we use the

following notation: C-Yes to indicate the presence of a gene in

clinical isolates, C-No to denote its absence in clinical isolates, E-

Yes to represent its presence in environmental isolates, and E-No to

signify its absence in environmental isolates. Those genes exhibiting

significant differences in distribution underwent COG (Cluster of

Orthologous Groups) annotation using the eggNOG 4.5 server

(Huerta-Cepas et al., 2016). Pathway analysis of enriched COG

classes was explored using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway database (Kanehisa and Goto, 2000).

The R packages “dotplot” and “clusterProfile” were used to analyze

and visualize the KEGG analysis. The R packages “ggplot “ and

“clusterProfile” were used to analyze and visualize the Gene

Ontology (GO) analysis.
2.4 Phylogenetic analysis

We constructed a phylogenetic tree using methods described in

previous literature (Zhang et al., 2024). A phylogenetic tree was

constructed based on 69 single nucleotide polymorphisms (SNPs)

identified among clinical isolates. Variant calling was performed

against the V. parahaemolyticus RIMD 2210633 (GCF_000196095.1)

genome using the Snippy pipeline (https://github.com/tseemann/

snippy). Core SNP alignment was generated using snippy-core

v.4.6.0, and recombinant regions were filtered out from the

alignment using Gubbins v.3.0.0 (Croucher et al., 2015). SNPs

were subsequently extracted from the alignment using SNP-sites

(Page et al., 2016). The core SNP alignment was used to infer a

phylogenetic tree with IQ-TREE, employing the maximum

likelihood method and the TVMe+ASC nucleotide substitution

model (Kalyaanamoorthy et al., 2017; Minh et al., 2020). Finally,

the tree was visualized using FigTree v.1.4.4. We employed the snp-

dists v0.8.2 software to convert FASTA format files into a matrix of

SNP distances.
2.5 Statistical analysis

Statistical processing was performed using either the chi-square

test or Fisher’s exact test in R software. The test selection depended

on sample size and occurrence frequency. Chi-square test was used

for samples ≥40 with frequencies ≥5. Fisher’s exact test was applied

for smaller samples or frequencies ≤5. The Odds Ratio (OR) was

used to assess the distribution patterns of each gene between clinical

and environmental isolates.
3 Results

3.1 Patient characteristics

To study the characteristics of patients infected with V.

parahaemolyticus, we collected metadata from 2020 to 2023 for
Frontiers in Cellular and Infection Microbiology 03
patients with diarrhea. The data included gender, age,

hospitalization status, main symptoms, and onset time, and was

gathered from a total of 9,413 patients. Among these patients

analyzed, the infection rates were 3.07% (151/4,911) in male

patients and 3.53% (159/4,502) in female patients. Statistical

analysis revealed no significant gender-based difference in V.

parahaemolyticus infection rates (p = 0.24). The age group most

affected was 18-40 years old, followed by those aged 41-65. The

majority of patients did not require hospitalization; however, 6% of

the patients needed hospital care. Hospitalized patients were found

across all age groups. The primary symptoms reported were nausea,

vomiting, abdominal pain, and diarrhea. In severe cases, patients

also experienced fever and dehydration (Figure 1A). We categorize

symptoms such as dehydration, fatigue, and fever as systemic and

more severe, while considering digestive system symptoms like

abdominal pain and diarrhea to be milder in comparison. We

compared the clinical characterizations among patients infected

with O10:K4, O3:K6, and O4:KUT serotypes and discovered that

the phenotype associated with O4:KUT was significantly more

severe than those associated with O10:K4 and O3:K6 (Figure 1B).

The months with the highest incidence of illness were May to

October (Figure 1A).
3.2 Evolution of clinical isolates and patient
symptoms analysis

To further investigate the pathogenicity of clinical isolates, we

utilized the sequenced isolates for additional analysis. Initially, we

constructed an evolutionary tree for the clinical isolates and

observed that a cluster of O4:KUT demonstrated increased

phylogenetic distance compared to other isolates (Figure 2;

Supplementary Table S1). This O4:KUT cluster was further

divided into two distinct branches (Figure 2). While there was

minor variation in the number of SNPs within each O4:KUT

branch, significant differences were observed between branches.

Additionally, substantial SNP differences exist between O4:KUT

and other serotypes (Supplementary Table S1). To gain a clearer

understanding of the patient’s clinical symptoms, we have

categorized them into four severity levels: level 1 for abdominal

pain and diarrhea, level 2 for abdominal pain, diarrhea, and

vomiting, level 3 for abdominal pain, diarrhea, vomiting, and

fever, and level 4 for the additional presence of thirst and fatigue.

We found that the majority of patients with severe symptoms

were infected with the O4:KUT serotype. The disease infection

was not associated with gender (Figure 2). To investigate the

underlying reasons for the more severe clinical symptoms

associated with the O4:KUT serotype compared to O3:K6 and

O10:K4, we predicted the virulence genes in these clinical isolates.

For clarity, we focused only on virulence genes that exhibited

differential distribution patterns across the isolates, excluding

those with uniform distribution. Our analysis revealed

differences in the distribution of six virulence genes, tcpA, wbfU,

wbfY and wecA were predominantly found in the O4:KUT

serotype (Figure 2).
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3.3 Orthologs identification

Next, we intended to investigate the genomic differences between

clinical and environmental isolates. To identify orthologous groups

within the coding genes of both clinical and environmental isolates, we

submitted 128 samples to OrthoFinder to identify orthologous groups.

Our objective was to ascertain the distribution of gene families among

these isolates. As shown in Figure 3A, the majority of non-core gene

families are not broadly distributed. Furthermore, we investigated the

differences in the distribution of these orthogroups between clinical

and environmental isolates. OrthoFinder identified 13,003 orthogroups

in both clinical and environmental isolates. We determined that

12.84% (1,670) of these orthologous groups were exclusively

present in all clinical isolates, while 29.81% (3,876) were exclusively

present in all environmental isolates. Furthermore, we observed

that 65.55% (8,523) of the orthologous groups were present in

at least two clinical isolates, while 53.91% (7,010) were found in

at least two environmental isolates. Additionally, 21.61% (2,810)

of the orthologous groups were unique to all clinical isolates, and

16.28% (2,117) were unique to all environmental isolates. In our

analysis of the 128 isolates, we identified core orthogroups

comprising 11.92% (1,550) of the total, unique orthogroups

accounting for 35.39% (4,602), and accessory orthogroups

representing 52.69% (6,851) (Figures 3B–D).
3.4 Pan-genomic analysis

Following our analysis, we sought to explore the differences

between clinical and environmental isolates at the individual gene

level. For this pan-genomic analysis, we employed the software
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PEPPAN. The PEPPAN output revealed a total of 15,783 genes

among all isolates. The strict core gene set, present in 100% of the

sequences, comprised 3,712 genes. Additionally, 83 genes were

identified as core genes present in 99%-100% of the sequences. The

soft core gene category, shared by 95%-99% of the isolates, included

102 genes. The accessory gene set, also known as the shell genes, which

are shared by 15% to less than 95% of the strains, contained 875 genes.

Conversely, the cloud genes, found in 0% to less than 15% of the

strains, numbered 11,011 in total (Supplementary Figure S1). A total of

1,677 genes showed statistically significant differences in their

distribution patterns between clinical and environmental isolates

(Supplementary Table S2). Figure 4 displays the distribution of 259

genes with distinct names. Among the 259 genes identified, 120 were

found predominantly in clinical isolates, while 139 were primarily

detected in environmental isolates (Supplementary Table S3). We

found that 10 genes were exclusively distributed in clinical isolates,

and these genes were identified as atpB, sctC, yscU, ISVsa5, ISVch8,

ssaV, yopJ, spaP, pdeL and tdh2. Among the 1677 genes examined, only

464 genes corresponded to the KO (KEGG Orthology) numbers. Of

these, 226 genes showed a distribution bias toward clinical isolates,

while 238 genes were more prevalent in environmental isolates

(Supplementary Table S4). The KEGG results indicate that clinical

isolates exhibit differentially enriched pathways, including transcription

factors and bacterial secretion systems, compared to environmental

isolates. In contrast, environmental isolates show distinct pathway

enrichment, glycosyltransferases and lipopolysaccharide biosynthesis

proteins, relative to clinical isolates (Figure 5A, B). We further analyzed

the differentially distributed genes by mapping them to the COG

database. Among these, only 40 genes could be mapped to COG

categories, with 18 genes showing a bias toward clinical isolates and 22

genes exhibiting a preference for environmental isolates
FIGURE 1

Characteristics of clinical patients. (A) The gender, age, hospitalization status, time of onset and main symptoms of the patients are represented in a
multi-categorical alluvial diagram. (B) Bar chart showing symptom variations among different serotypes.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1574627
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1574627
FIGURE 2

Phylogenetic tree of clinical isolates. A phylogenetic tree depicting the genetic relationships among 69 clinical isolates, adjacent columns on the
right detail serotypes, symptom profiles, gender, age of patients and virulence genes for each isolate. patients were categorized into four severity
levels based on clinical manifestations: level 1 for abdominal pain and diarrhea, level 2 for abdominal pain, diarrhea, and vomiting, level 3 for
abdominal pain, diarrhea, vomiting, and fever, and level 4 for the additional presence of thirst and fatigue. In the heatmap, the presence of virulence
genes is indicated by red, while their absence is represented by blue.
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(Supplementary Table S5). However, no significant differences were

observed in the COG functional annotations of these genes between

clinical and environmental isolates (Figures 5C, D).
3.5 Mobile genetic element analysis

The pan-genomic results indicate significant genetic differences

between clinical isolates and environmental isolates. Consequently,

we characterized the genome plasticity by evaluating mobile gene

elements (MGEs). Many MGEs also carry accessory genes. The

benefits of accessory gene carriage can be seen in the success of

integrons, elements first identified onMGEs that appear adapted for

the acquisition, assembly, and expression of accessory genes
Frontiers in Cellular and Infection Microbiology 06
(Partridge et al., 2009; Lacotte et al., 2017). In this study, we

identified insertion sequences and prophages within the isolates.

Clinical isolates contained one, three, or four insertion sequences,

with over half carrying four such sequences (Figure 6A).

Environmental isolates harbored between 0 to 6 insertion

sequences (Figure 6B). Specifically, four insertion sequences—

namely ISVvu6, ISVpa1, ISVpa2, and ISVal1—were identified in

clinical isolates. In contrast, environmental isolates exhibited 11

different insertion sequences, with ISVvu5 being the most

frequently detected (Figure 6C).

Regarding prophages, 17% of clinical isolates were found to

carry the pp1 prophage, whereas approximately 19% of

environmental isolates contained pp1. Additionally, 2% of the

isolates carried both pp1 and the pp2 prophage (Figure 6D).
FIGURE 3

Overall orthogroup statistics and comparison. (A) Bar plot showing the number of orthologous clusters. (B–D) Summary of core, unique, and
accessory orthogroups in the genomes of clinical (B), environmental (C) and all isolates (D). The numbers indicate the total counts and percentages
of each orthogroup category.
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4 Discussion

This study found that the age group with the highest infection

rate of V. parahaemolyticus was between 18 to 40 years old

(Figure 1), which was consistent with previous research (Wang
Frontiers in Cellular and Infection Microbiology 07
et al., 2021). Individuals over the age of 66 had a lower risk of

infection, aligning with previous research findings (Gong et al.,

2018; Wang et al., 2021). The diversity in age distribution may

reflect natural changes in host immunity (Simon et al., 2015) and

alterations in dietary habits associated with aging. Additionally, the
FIGURE 5

KEGG pathway analysis depicting the distribution of genes from Figure 4 among clinical (A) and environmental strains (B). The COG (Clusters of
Orthologous Groups) classification and distribution of genes in clinical (C) and environmental strains (D).
FIGURE 4

Heatmap displaying the pan-genome genes across 128 strains. Strain labels were located at the bottom, and pan-genome gene clusters were
indicated on the left. The presence of genes was indicated by red color, while absence was denoted by blue.
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primary symptoms reported by patients treated in Huzhou First

People’s Hospital include abdominal pain, diarrhea, nausea, and

vomiting. In severe cases, systemic symptoms such as fever and

thirst occur, which is consistent with other research findings (Qi

et al., 2016). However, the incidence of fever and dehydration is

relatively low (Figure 1). Furthermore, we found that most patients

infected with the O4:KUT serotype exhibit more severe clinical

manifestations (Figures 1, 2). TCP, composed of tcpA, is a toxin-
Frontiers in Cellular and Infection Microbiology 08
coregulated pilus that mediates the intestinal colonization of V.

cholerae (Taylor et al., 1987). wbfU was identified in clinical,

shrimp-pathogenic strains but were absent in non-pathogens

(Xue et al., 2023). The presence of tcpA and wbfU may enhance

the virulence of O4:KUT serotype, although the underlying

molecular mechanisms require further investigation. Additionally,

the regulatory roles of wbfY and wecA in bacterial pathogenicity

remain to be elucidated. This serotype first appeared in Zhejiang
FIGURE 6

The histogram delineates the distribution of mobile genetic elements between clinical and environmental isolates. The proportion of different
numbers of mobile gene elements in clinical (A) and environmental (B) isolates. (C) Comparative distribution of insertion sequence types within
clinical and environmental isolates. (D) Proportional distribution of distinct prophage between clinical and environmental isolates.
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province in 2013 and was the most dominant that year (Zhu et al.,

2020). According to our long-term monitoring results, V.

parahaemolyticus O4:KUT has been a local dominant serotype

since 2017 (Zhang et al., 2022). Our previous research has

identified at least five ST types within the O4:KUT serotype

(Zhang et al., 2024). Nearly all O4:KUT isolates in this study are

associated with more severe symptoms (Figure 2). In 2021, the

positive strains of V. parahaemolyticus in Huzhou were almost

exclusively O10:K4, leading to a relative decrease in other serotypes,

including O4:KUT. Moreover, the number of infections from May

to October each year between 2020 and 2023 was significantly

higher than that from November to April (Figure 1). This

pattern aligns with previous research (Lu et al., 2020), which

suggests that warmer seasons are more conducive to contracting

V. parahaemolyticus.

Using the Orthofinder software, we detected a total of 13,003

orthogroups and found that environmental isolates had a higher

proportion of orthogroups belonging to the core orthogroups than

clinical isolates. A smaller proportion belonged to unique

orthogroups (Figure 3). Bacteria frequently encounter numerous

environmental abiotic stresses (heat, cold, osmotic, salt, oxidation,

pH, and radiation) and biotic stresses (antimicrobial compounds

and microbial toxins) in their natural life cycle (Beales, 2004), and a

greater number of core orthogroups may be necessary for survival

under such complex environmental pressures. The PEPPAN

software analysis revealed 15,783 genes among these 128 isolates,

which exceeds the pan-genome size reported in previous studies

(Meparambu Prabhakaran et al., 2022). This increase is attributed

to the higher number of V. parahaemolyticus isolates included in

this study, suggesting that the pan-genomic gene count rises with an

increase in the quantity of isolates. However, the difference in the

number of core genes, 3,712, compared to previous studies is

relatively small, indicating that the core genome is relatively

stable. On average, V. parahaemolyticus possesses 4,630 genes

(Meparambu Prabhakaran et al., 2022), with core genes

constituting over 80% of this total. We found atpB, sctC, yscU,

ISVsa5, ISVch8, ssaV, yopJ, spaP, pdeL and tdh2 were exclusively

distributed in clinical isolates (Figure 4). YscU, SctC, SsaV, YopJ are

secreted proteins or effector proteins associated with the type III

secretion system (Login and Wolf-Watz, 2015; Ma and Ma, 2016;

Yu et al., 2018), while SpaP is involved in bacterial adhesion (Ma

et al., 1991). PdeL is a cyclic di-GMP phosphodiesterase. The

bacterial second messenger, c-di-GMP, regulates the formation,

movement, cell cycle progression, development, and virulence of

bacterial biofilms (Hengge, 2016). Thermostable direct hemolysin

(TDH) is a proteinaceous toxin that is considered a major virulence

factor associated with the ability of V. parahaemolyticus strains to

cause foodborne gastroenteritis (Shimohata and Takahashi, 2010;

Letchumanan et al., 2014). The tdh2 gene exhibits 97.2% homology

with tdh1 and has been identified as primarily responsible for the

phenotypic expression of hemolytic activity (Bhowmik et al., 2014).

Therefore, most of these genes, which are exclusively found in

clinical isolates, are associated with virulence.

KEGG pathway enrichment analyses have shown differences

between clinical isolates and environmental isolates. Both clinical
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and environmental isolates share secretion system, transporters,

prokaryotic defense system, bacterial motility proteins and biofilm

formation (Figure 5). The protein secretion system is crucial for

bacterial growth and is involved in a variety of processes. Almost all

bacteria possess some secretion systems that secrete various

substrates (Green and Mecsas, 2016). The KEGG annotation

results indicate that clinical and environmental isolates protect

themselves through prokaryotic defense systems. These

prokaryotic defense systems can be classified into two broad

groups, differing in their modes of action. The first group consists

of defense systems that operate on the principle of self-non-self

discrimination, with DNA typically being the target of

discriminatory recognition; these mechanisms can be considered

as forms of prokaryotic immunity (Makarova et al., 2013).

Additionally, within this group is the DNA phosphorothioation

system (known as the DND system), which marks DNA through

phosphorothioation and degrades unmodified DNA (He et al.,

2007; Liang et al., 2007; Xu et al., 2010). The ability of Vibrio spp.

to adapt to and survive within eukaryotic hosts, as well as to endure

varying aquatic environmental conditions, is largely attributed to

their capacity to form biofilms (Yildiz and Visick, 2009; Lutz et al.,

2013). A biofilm is a structured community of bacterial cells

embedded within a self-produced matrix of extracellular

polymeric substances (EPS). This matrix facilitates nutrient

acquisition and provides a protective barrier against the

penetration of antimicrobial agents (Hathroubi et al., 2017).

Previous studies showed that the flagellar motility plays an

important role in the formation of biofilm in the life cycle of

vibrios (Echazarreta and Klose, 2019). Lipopolysaccharide

biosynthesis is one pathway that is enriched in environmental

isolates. Lipopolysaccharide (LPS) is a type of glycolipid found in

the outer leaflet of the outer membrane (OM) of Gram-negative

bacteria (Muhlradt and Golecki, 1975; Kamio and Nikaido, 1976).

The presence of LPS on the cell surface enhances the barrier

function of the OM, which renders many antibiotics ineffective

that are typically used to treat infections caused by Gram-positive

pathogens (Nikaido, 2003). Numerous transcription factors

orchestrate the spatiotemporal regulation of virulence factors in

Vibrio vulnificus, integrating diverse environmental cues such as

nutrient availability, bacterial cell density, and the presence of

antimicrobial agents (Choi and Choi, 2022). Previous study

suggested that transcription factor CytR plays an important role

in V. cholerae pathogenesis (Das et al., 2020). Therefore, the

regulatory pathways mediated by transcription factors in clinical

isolates, as opposed to environmental isolates, may play a critical

role in determining their pathogenicity. Furthermore, a significant

number of genes remain unmatched to KO numbers, and further

research is needed to elucidate the enriched pathways associated

with these genes.

Previous studies have shown that among these 128 isolates,

environmental isolates carry a more diverse array of resistance genes

compared to clinical isolates (Zhang et al., 2024). The majority of

AMR-encoding genes in V. parahaemolyticus are primarily acquired

through horizontal gene transfer (HGT) (Pazhani et al., 2021). This

study indicates that a greater variety of mobile genetic elements can be
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1574627
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1574627
detected in environmental isolates, and a higher proportion of these

isolates harbor prophages (Figure 6). Insertion sequence (IS) elements

are a class of small mobile genetic elements that are ubiquitously

distributed across the genomes of most bacterial species.

Accumulating evidence indicates that IS elements play a significant

role in mediating insertion mutations, facilitating genome

rearrangements, promoting the dissemination of antibiotic

resistance genes and virulence factors both within and between

species, and modulating the expression of neighboring genes

(Mahillon and Chandler, 1998). Previous studies have demonstrated

that ISVpa2 exhibits the ability to insert at multiple genomic sites.

Furthermore, ISVpa2 has been shown to induce genetic

rearrangements, including insertional inactivation of target genes

and adjacent deletions. Additionally, ISVpa2 can be horizontally

transferred among species within the genus Vibrio (Kamruzzaman

and Nishibuchi, 2008). The transfer of MGEs between different

bacteria is facilitated by HGT. As a major force in microbial

evolution, HGT enables the acquisition of novel functions on a large

scale and allows for rapid adaptation to new niches (Wiedenbeck

and Cohan, 2011). Previous research has shown that HGT can

significantly drive adaptation in food systems and other

environments managed by humans (Rossi et al., 2014; Akanni et al.,

2015). Previous studies have revealed that ISVal1 facilitates the

HGT of prophages, plasmids, and genomic islands among

V. parahaemolyticus populations in response to adverse

environmental conditions and selective pressures. Additionally,

ISVal1 has been shown to mediate the formation of MGEs

associated with antibiotic resistance (Fu et al., 2021). ISVsa3 has

been identified as being strongly associated with MDR in Salmonella

(Lewis et al., 2023). ISVsa5 has been shown to play a crucial role in

modulating the expression of blaCTX-M in E. coli (Black et al., 2024).

Further investigation is required to elucidate the roles and

mechanisms of other mobile genetic elements (MGEs). Therefore,

we hypothesize that the elevated concentration of mobile genetic

elements (MGEs) in environmental isolates contributes to enhanced

environmental adaptation.

In summary, statistical analysis of patients treated at the First

People’s Hospital of our city over recent years has revealed that the

primary population affected byV. parahaemolyticus is aged 18-40, with

a higher infection rate observed during warmer seasons. Analysis of

infection characteristics revealed that patients infected with the O4:

KUT serotype exhibited more severe symptoms. Although clinical

isolates had a smaller number of serotypes, their core orthogroups still

accounted for a smaller proportion compared to environmental

isolates. Pan-genomic analysis results indicated that there was a

significant difference in gene expression between clinical and

environmental isolates, which may be attributed to the higher

presence of mobile genetic elements (MGEs) in environmental isolates.
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