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Babesiosis, a zoonotic parasitic disease caused by Babesia protozoa, poses

significant infection risks across mammalian species. Clinical manifestations in

vertebrate hosts range from spontaneous abortion to fatal outcomes, with

immunocompromised individuals potentially transmitting the pathogen

through blood products or transplanted organs, thereby amplifying

epidemiological risks. Effective disease management carries substantial public

health implications for livestock production, companion animal welfare, and

food safety in endemic regions. In global endemic zones, conventional

diagnostic approaches combine morphological identification of Babesia spp.

with complementary serological assays. Contemporary molecular diagnostics,

particularly nucleic acid amplification techniques, have emerged as valuable

adjunctive tools. A critical challenge in veterinary practice involves persistent

subclinical carriers among treated livestock populations, necessitating precise

parasite speciation for effective transmission control. This review synthesizes

recent advancements in babesiosis detection methodologies, with particular

emphasis on their implementation in clinical microbiology laboratories. This

article introduces the latest progress in Babesiosis detection technology and its

application in clinical microbiology laboratories, to provide a theoretical and

practical basis for the comprehensive prevention and control of Babesiosis.
KEYWORDS

Babesia, diagnostic techniques, serological detection, molecular biology,
research advances
1 Introduction

Babesiosis, caused by apicomplexan parasites of the genus Babesia, represents the

second most prevalent blood-borne parasitic disease in vertebrates after trypanosomiasis

(Penzhorn, 2006; Cook and Puri, 2024). Since Victor Babes’ seminal description of bovine

babesiosis in Romania (1888), over 100 Babesia spp.have been taxonomically identified.

The primary transmission vector remains ticks, with secondary routes including

erythrocyte transfusion, transplacental transmission, and organ transplantation
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(Wudhikarn et al., 2011; Obeta et al., 2020; Handel et al., 2021;

Kumar et al., 2021). Babesiosis is most prevalent in rodents,

carnivores, and cattle, and it is considered relatively rare for the

general public to be infected with babesiosis (Dvoraková and

Dvorácková, 2007; Jerzak et al., 2023). Clinically significant

species are categorized by erythrocytic trophozoite dimensions:

Small-form Babesia (1.0-2.5 mm): Includes pathogenic species

Babesia gibsoni (B. gibsoni) and Babesia microti (B.microti);

Large-form Babesia (2.5-5.0 mm): Encompasses Babesia bovis

(B.bovis), Babesia caballi (B.caballi), Babesia canis(B. canis) and

Babesia bigemina (B.bigemina) (Panti-May and Rodrıǵuez-Vivas,

2020). Epidemiologically critical zoonotic strains include B. microti,

B. duncani, and B. divergens. Regional distribution patterns reveal:

Pastoral areas: B.bovis, B. bigemina, and B. caballi; Companion

animals: B. canis and B.gibsoni; Wild animals: B. microti. As obligate

vertebrate pathogens, Babesia infections pose substantial challenges

to both public health systems and veterinary management practices.
2 Epidemiologically significant
babesiosis

Six Babesia spp. with confirmed zoonotic transmission include

B.microti, B. duncani, B. divergens, B. motasi (KO-1 strain), B. crassa-

like agent, and B. venatorum, alongside two genetically distinct

pathogenic subtypes: B. divergens-like MO1 and B. microti-like

protozoa (Kumar et al., 2021). Human babesiosis exhibits distinct

geographic pathogen profiles: B. microti (asymptomatic to severe

cases) and B. duncani (high-fatality infections) predominate in the

Americas (Scott and Scott, 2018; Menis et al., 2021); B. divergens

causes acute disease in splenectomized patients across Europe

(Hunfeld et al., 2008); B. crassa-like and B.venatorum are
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hyperendemic in northeastern Asia (Jiang et al., 2015; Vannier and

Krause, 2015; Jia et al., 2018; Chen et al., 2019); while Africa and

Australia report indigenous strains (e.g., Egyptian variants) and

imported pathogens (e.g., South African lineages) (Fang et al., 2015;

Saleh et al., 2015; Kumar et al., 2021). Babesia spp. has a wide

distribution and a complex life cycle. These apicomplexans maintain

an obligate two-host lifecycle involving ixodid ticks (definitive hosts)

and vertebrate reservoirs, with transmission dynamics diverging

between morphological groups. Small Babesia spp. (B.microti clade)

propagate through a rodent-tick-rodent cycle: larval ticks acquire

parasites from infected rodents, transmit them during nymphal

feeding, and reinfect new rodent hosts. Large Babesia spp.

(B.divergens group) follow a ruminant-tick-ruminant cycle, where

adult female ticks transmit parasites to grazing hosts, perpetuating

through subsequent tick generations (Karbowiak et al., 2018). Sexual

reproduction occurs exclusively within tick vectors, complemented

by asexual replication in vertebrate hosts, as illustrated in Figure 1.
3 Clinical manifestations and
pathogenic mechanisms

After the invasion of host erythrocytes by Babesia, multiple

systemic pathological reactions are triggered by destroying the

morphology of erythrocytes and inhibiting the oxygen-carrying

function and hematopoietic ability. Clinical manifestations range

from characteristic presentations—including hemolytic anemia,

icterus, pyrexia, and respiratory distress—to potentially fatal

complications such as splenic rupture and infarction. Notably,

emerging evidence documents atypical immunopathological

sequelae encompassing acute phase responses and secondary

hemophagocytic lymphohistiocytosis (sHLH) (Milanović et al.,
FIGURE 1

Detailed information on sexual and asexual reproduction of Babesia spp. Image created from the platform - Researchers' House license code
exported ID:IWUAS50a2a.
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2020; Mojtahed et al., 2020; Santos et al., 2020; Jacobs et al., 2025).

Babesia infection elicits host-specific pathophysiological responses

across mammalian species. Rodent models demonstrate B. microti-

induced hematological alterations characterized by accelerated

coagulation kinetics and thrombotic predisposition, with

gestational infections provoking placental vascular pathology

through collagen deposition and erythrocyte-endothelial adhesion

(Jasik et al., 2024). Bovine infections by B. bovis or B. bigemina

clinically manifest as cerebral hyperemia, inappetence, lactation

suppression, and hemoglobinuria crisis (Sivakumar et al., 2018).

Canine cases present complex systemic involvement beyond febrile

episodes and anorexia, progressing to renal impairment, pancreatic

inflammation, and acute respiratory failure (“pulmonary shock”), with

persistent subclinical carriage observed post-treatment (Muench et al.,

2023; Antognoni et al., 2025). immunocompromised hosts,

particularly splenectomized individuals, exhibit exacerbated disease

trajectories confirming immune status-dependent pathogenesis

(Mojtahed et al., 2020; Torianyk, 2021b; Kakoullis et al., 2025).

Various species of Babesia have been reported to further exacerbate

the risk of multi-organ dysfunction by activating the endogenous

coagulation system and inducing immunopathologic responses (Welzl

et al., 2001; Okła et al., 2014; Preena et al., 2021).
4 Detection of important babesiosis

In addition to the internationally recognized gold standard

microscopic examination, detection techniques for babesiosis also

rely on molecular diagnosis, genotyping, and serological methods.

While molecular techniques, particularly nucleic acid amplification

testing (NAAT), enable precise mapping of Babesia spp. distribution,

population genetics, and co-infection epidemiology, their field utility

remains constrained by instrumentation dependency and technical

complexity. Conversely, seroepidemiological profiling captures

immune response patterns across endemic regions, offering critical

insights into antigenic variation mechanisms, albeit challenged by

cross-reactivity with related apicomplexans, false-negative results

during seroconversion windows, and prolonged antibody

persistence (>12 months post-clearance). According to the

diagnostic recommendations summarized in the analysis of the

IDSA Guidelines for the Diagnosis and Management of Babesiosis,

confirmation of a diagnosis of babesiosis requires a combination of

peripheral blood smear microscopy (the gold standard) and PCR

testing, and antibody testing alone is not recommended because

antibodies may persist for more than 1 year after clearance of the

infection (Krause et al., 2021).
FIGURE 3

Microscopic examination of low-density Babesia parasitemia in
blood smear.
4.1 Blood smear microscopy and emerging
binding techniques

A common method of detecting Babesia is to collect blood from

terminal capillaries such as ear tips and tail tips to prepare blood

smears, which are observed using a light microscope and the

morphology of the parasite’s body (length of cleistothecia, etc.) is
Frontiers in Cellular and Infection Microbiology 03
measured (Figures 2, 3). In the acute infection phase, when the

erythrocyte staining rate is high, only thin smears are required,

conversely, thick smears prove essential during subclinical stages or

post-acute phases when low parasitemia (<0.1%) challenges

detection sensitivity (Alvarez et al., 2019; Dos Santos et al., 2021).

While this method offers rapid field applicability, diagnostic

accuracy suffers from morphological ambiguities between Babesia

subspecies and Plasmodium spp., particularly in early infections

lacking overt clinical manifestations. Notably, asymptomatic

carriers often evade microscopic diagnosis despite harboring

latent infections, with necropsy studies revealing striking tissue-

specific parasitemia disparities—cerebral capillaries in B. bovis-

infected hosts demonstrate 90-fold higher parasite burdens

compared to peripheral blood (Everitt et al., 1986). One study

successfully used cerebellar samples obtained from the foramen
FIGURE 2

Microscopic examination of blood smears.
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magnum of the occipital bone to achieve microscopic detection of

persistently infected cattle (Hadani et al., 1982).

In recent years, recent advancements in diagnostic hematology

integrate digital microscopy with artificial intelligence (AI) to

revolutionize Babesia detection, exemplified by predictive models

utilizing hematology analyzer parameters (ADVIA) for Babesia

canis (B. canis) identification (Pijnacker et al., 2022). One study

used a dual-model comparison strategy, i.e., constructing a

conventional statistical model (CS) and a machine learning model

(ML) based on data from infected cases diagnosed by blood smear or

PCR, respectively. The results showed platelet count (PLT), mean

platelet volume (MPV), and percentage of unstained cells (LUC%) as

key predictors. The CS model achieved 84.6% sensitivity and 97.7%

specificity (LR+ 36.78), while the ML model optimized via tree-based

algorithms demonstrated perfect sensitivity (100%) with 95.7%

specificity (LR+ 23.2). Algorithm-triggered alerts increase

microscopic detection probability 37-fold versus routine screening,

demonstrating scalable laboratory implementation. Complementing

these developments, AI-augmented digital microscopy (IAAI) enables

automated parasite speciation and parasitemia quantification,

significantly reducing false-negative rates through computational

erythrocyte analysis. This synergistic diagnostic ecosystem combines

ML-driven prescreening with IAAI confirmation, leveraging routine

hematological data for early infection alerts—particularly valuable

during low parasitemia phases or microscopy oversights. While ML

models enhance sensitivity through nonlinear multiparameter

analysis, CS frameworks provide high-specificity decision support,

collectively optimizing diagnostic workflows from initial suspicion to

pathogen characterization (Durant et al., 2021).
4.2 Experimental inoculation and parasite
culture

Experimental inoculation and heterologous diagnostic approaches

have historically served as fundamental methodologies in Babesia

research, tracing back to Victor Babes’ seminal application of Koch’s

postulates through disease recapitulation in inoculated rabbits.

Contemporary models employ species-specific vertebrate systems to

mirror natural infection dynamics: B. microti pathogenesis is

frequently studied in vole (Microtus) reservoirs, while B. bovis and

B. bigemina isolation protocols typically utilize splenectomized bovine

hosts via infected blood transfusion. The B. divergens-gerbil

(Meriones) model has proven particularly valuable for investigating

human-relevant pathogenesis. These controlled inoculation systems

not only fulfill classical etiological criteria but also enable precise

dissection of parasite-host interactions across zoonotic spectra (Krause

et al., 1996; Gorenflot et al., 1998; Zintl et al., 2003; Holman et al.,

2005). Experimental inoculation is an alternative diagnostic option for

cases of hypoparasitemia, which occupied an important place in

clinical practice until the advent of molecular biology tests (Krause

et al., 1994). The Mongolian gerbil (Meriones unguiculatus) has

emerged as a pivotal experimental model for Babesia divergens

research, exhibiting acute and frequently lethal symptomatology

distinct from bovine-hosted infections (Dkhil et al., 2014). Torianyk,
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Inna I et al. (Torianyk, 2021a) recent methodological innovations

employ dual-host systems—combining Syrian hamsters (Mesocricetus

auratus), gerbils, and murine models—to establish in vivo cultivation

platforms through immune modulation. Host susceptibility

stratification enables targeted propagation: hamsters maintain B.

microti reservoirs while gerbils and mice sustain B. divergens

cultures. Immunocompromised animal models coupled with

multimodal diagnostics (clinical metrics: weight loss, motor

dysfunction; laboratory confirmation: fluorescence microscopy/PCR)

enhance Babesia detection sensitivity through standardized protocols,

achieving parasitological confirmation at submicroscopic thresholds.

This integrated approach not only facilitates pathogen isolation but

also elucidates complication mechanisms, particularly erythrocyte

adhesion-mediated vasculopathies and cytokine dysregulation.

Transfecting Babesiosis into animals helps understand the immune

mechanisms that clear or worsen the infection and the pathological

processes leading to complications. While constrained by prolonged

incubation periods (>7 days) and molecular confirmation

requirements, these models provide unparalleled resolution for

studying hypoparasitemic states and immune evasion strategies,

establishing a critical methodological framework for both basic

parasitology and translational therapeutic development.

The SCID murine model exhibits unique diagnostic utility in

Babesia research through engineered erythrocyte replacement

protocols. Immunocompromised mice receiving bovine red blood

cell (BoRBC) transfusions alongside anti-murine erythrocyte

monoclonal antibody treatment achieve rapid circulatory RBC

substitution, creating a humanized hematological niche.

Splenectomized SCID hosts inoculated with grazing calf-derived

Babesia spp. develop marked parasitemia accompanied by

pathognomonic manifestations including hemoglobinuria,

hemolytic crisis, and neurological sequelae, enabling reliable

pathogen isolation (Tsuji et al., 1995).
4.3 Immunological testing

Immunodiagnostic approaches constitute a critical pillar in

comprehensive babesiosis management, enabling precise infection

staging through serological antibody profiling, pathogen antigen

detection, and immune complex characterization. Serological

surveillance proves most effective during convalescent phases with

established antibody responses, whereas antigenic assays are

indispensable for early infection diagnosis before seroconversion or

chronic carrier state identification. These immunological tools

synergistically enhance blood product safety through donor

screening protocols, significantly mitigating transfusion-mediated

transmission risks. In clinical practice, integrated diagnostic

algorithms combining antigen testing with PCR amplification

demonstrate particular utility for confirming subclinical infections

and hypoparasitemic cases, with subsequent microscopic verification

ensuring diagnostic rigor. This multimodal strategy effectively bridges

the diagnostic window period while addressing the inherent limitations

of individual methodologies, thereby optimizing both epidemiological

surveillance accuracy and therapeutic intervention timelines.
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Pathogen-specific antigens serve as critical diagnostic

biomarkers across infectious diseases, yet systematic antigen

detection frameworks remain underdeveloped for babesiosis

despite identification of multiple candidate targets. Take B.

microti for example: Pioneering work by Lodes et al. first

characterized B. microti’s immunodominant antigens through

serological screening, establishing foundational targets for assay

development (Lodes et al., 2000); Subsequent investigations by

Homer’s team comprehensively validated the immunogenicity of

novel antigenic candidates, advancing diagnostic reagent prototypes

(Homer et al., 2003); Breakthrough research from Cornillot’s group

identified the secreted antigen BmBAHCS1, demonstrating early

IgM seroconversion at 4 days post-infection followed by IgG

responses by day 8—a temporal profile enabling acute-phase

detection (Cornillot et al., 2016). These cumulative discoveries

highlight the evolving antigenic landscape while underscoring the

need for standardized multi-antigen panels to address diagnostic

window limitations and interspecies variability in Babesia infections.

Recent advancements integrating genomic screening with

transcriptomic profiling have revolutionized Babesia antigen

discovery, enabling systematic identification of immunodominant

targets spanning secreted and membrane-anchored proteins. While

serological antibodies remain pivotal biomarkers for exposure history,

their diagnostic utility is constrained during early infection windows

prior to seroconversion, complicating differentiation between active

and resolved infections. In the early 1970s, experiments were

conducted to establish indirect immunofluorescence assays (IFA) for

antibody detection in animal models (Cox and Turner, 1970;

Goldman et al., 1972; Leeflang and Perié, 1972), although antibodies

can be effectively detected, there are limitations such as lack of early

sensitivity, today only indirect fluorescent antibody assays (IFAs) are

commercially available to detect antibodies against Babesia divergens

in humans (Jian et al., 2010; Cheng et al., 2018; Wang et al., 2020a;

Tijani et al., 2024). To contemporary enzyme-linked immunosorbent

assay (ELISA) platforms. Early ELISA iterations utilized crude Babesia

spp.-infected host lysates, progressively transitioning to recombinant

antigen systems (Meeusen et al., 1985; Houghton et al., 2002; Loa et al.,

2004; Luo et al., 2011). Recently, breakthrough innovations now

achieve 100% diagnostic sensitivity through multiplex antigen panels

combining BmMCFRP1, BmSERA1, BmPibS, and BmBAHCS1

(Verma et al., 2020). Antigen-capture ELISA (e.g., Babesia duncani

antigen capture assays (BdACAs)) further enhances specificity by

targeting secretory antigens (BdV234, BdV38), achieving detection

thresholds of 115 infected erythrocytes/mL while circumventing PCR

false positives from residual DNA (Chand et al., 2024). These

integrated approaches bridge critical diagnostic gaps, enabling

precise infection staging from acute parasitemia to chronic

carrier states.

Serodiagnostic innovations continue to evolve species-specific

strategies for Babesia detection across host systems. In bovine

babesiosis, a recombinant chimeric antigen (rMABbo) ELISA

integrating B. bovis MSA-2c, RAP-1, and HSP20 epitopes achieves

95.9% sensitivity and 94.3% specificity, outperforming conventional

single-antigen assays (Jaramillo Ortiz et al., 2018). Equine diagnostics

benefit from multiplex antigen cocktails combining B. caballi rBC134f
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and rBC48t, advancing detection windows to 4 days post-infection

through stage-specific epitope targeting (El-Sayed et al., 2023). Human

diagnostics leverage peptide array technology to screen B. microti

MSP2 and SA-1 antigenic motifs, demonstrating conserved

immunoreactivity that minimizes false negatives from genetic

variability, even in Anaplasma phagocytophilum co-infection

scenarios (Tagliafierro et al., 2022). Despite these advances,

serological limitations persist: IFA’s subjective interpretation and

unstandardized reagents yield elevated false positives for B. divergens

(Pokhil et al., 2020); while RAP-1 conservation between B. bovis and B.

bigemina induces cross-reactivity (Jaramillo Ortiz et al., 2018).

Notably, B. microti IFA exhibits superior specificity, with minimal

cross-reactivity to other Babesia spp. except at low antibody titers

(Chisholm et al., 1978). These findings underscore the necessity for

standardized antigen panels and automated interpretation systems to

harmonize diagnostic accuracy across zoonotic spectra.

Immunodiagnostic approaches for babesiosis demonstrate

variable utility across infection stages and host systems.

Complement fixation tests (CFT) targeting Babesia bovis-specific

IgM antibodies show diagnostic value in acute infections but fail to

detect chronic carriers due to transient complement-binding

immunoglobulin responses (Mahoney, 1967; Ogunremi et al., 2007,

2008); Comparatively, indirect fluorescent antibody tests (IFAT)

exhibit superior practicality through earlier seroconversion detection

(3–5 days post-infection), reduced operational complexity

(complement-independent), and lower costs (≈33% of CFT

expenses), while maintaining >92% accuracy for B. bovis and B.

bigemina identification (Kumar et al., 2003); Emerging rapid

diagnostics like immunochromatographic tests (ICT) and automated

fluorescence immunoassays (AFIA) enable high-throughput

screening, though require geographic validation across diverse

epidemiologic contexts (Moritz et al., 2017; Stuart Tayebwa et al.,

2020; Andrade et al., 2024; Jongejan et al., 2024); The monoclonal

antibody capture assay (mGPAC) offers precise diagnostic capabilities

by targeting parasite-secreted antigens such as BmGPI12, specifically

distinguishing active Babesia microti infections from prior exposures.

This method demonstrates absolute specificity for B. microti without

cross-reactivity to related species like B. divergens or B. duncani,

making it particularly valuable for immunocompromised and elderly

patient populations (Gagnon et al., 2022), With a detection limit of 7.3

pg/μl - 20 pg/μl, mGPAC surpasses both real-time PCR and

microscopy in sensitivity and specificity for identifying active B.

microti infections (Thekkiniath et al., 2018; Wilhelmsson et al., 2020;

Montero et al., 2023), Its unique ability to differentiate current

parasitemia from historical immune responses addresses critical

diagnostic challenges in vulnerable cohorts, while maintaining

rigorous species discrimination crucial for accurate clinical

management; While traditional methods such as rapid

conglutination tests (RCT) show strong concordance with ELISA/

IFAT (k=0.89) and favorable performance metrics (90.9% sensitivity,

97.6% specificity), their exclusion from World Organisation for

Animal Health (OIE)-certified protocols stems from unstandardized

procedures and inadequate quality control frameworks (Kappmeyer

et al., 1999). Despite technological advancements, most serologic assays

remain excluded from international diagnostic guidelines due to
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1575227
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Jia et al. 10.3389/fcimb.2025.1575227
insufficient standardization. IFA persists as the serological gold

standard, particularly valuable for transfusion-transmission

investigations (Herwaldt et al., 2011; Moritz et al., 2016). Crucially,

immunodiagnostics should complement—not replace—direct

detection methods (microscopy/PCR), given their limitations in early

infection windows (<5 days post-exposure) and immunocompromised

hosts, coupled with prolonged antibody persistence post-cure (Vannier

and Krause, 2012; Sanchez et al., 2016). This diagnostic synergy ensures

accurate infection confirmation while addressing the temporal and

immunological constraints inherent to antibody-based detection.
4.4 Molecular biology testing

Recent advances in molecular biology and immunological

methods have enabled the development of nucleic acid probe

assays for Babesia spp. identification. These assays employ

primers and probes targeting conserved variable regions of

parasite genes, allowing qualitative detection of parasite DNA in

host blood samples. Complementing this approach, fluorescence in

situ hybridization (FISH) technology specifically targets the 18S

ribosomal RNA (rRNA) of Babesia spp. using labeled DNA probes,

with positive hybridization signals visualized as green fluorescence

under microscopy (Shah et al., 2020). The streamlined FISH

protocol involves blood sample preparation with smear fixation

reagents, followed by a 30-minute hybridization at 37°C and

fluorescence detection, completing the entire diagnostic process

within two hours (Shah and Ramasamy, 2022). This cost-effective

platform requires minimal equipment, as conventional light

microscopes can be adapted for fluorescence detection by

installing LED light sources instead of specialized fluorescence

microscopes. Unlike DNA-based PCR methods, FISH

demonstrates superior performance by distinguishing viable from

non-viable parasites while avoiding interference from PCR

inhibitors in blood samples. The current assay panel covers

zoonotic species (B. microti, B. duncani, B. divergens) and

veterinary pathogens (B. bovis, B. bigemina in cattle, B. caballi in

horses), with a detection limit of 57–58 parasites/mL. Notably, the
technology maintains specificity even during co-infections with

Plasmodium species or Lyme disease spirochetes. When combined

with indirect fluorescent antibody (IFA) testing, this rRNA-targeted

FISH approach enhances screening efficiency in endemic regions

and shows particular promise for resource-limited settings due to its

minimal infrastructure requirements and elimination of nucleic

acid amplification steps.

Reverse line hybridization (RLB) has emerged as a robust

platform for detecting tick-borne Babesia spp., exemplified by

integrated systems like the Tekenscanner that enable rapid

confirmation of host infections through species-specific probes

(Stoltsz et al., 2020; Byaruhanga et al., 2023; Hoxha et al., 2025).

Parallel advancements include Tick - Borne Disease Capture

Sequencing (TBDCapSeq), a high-throughput probe technology

capable of simultaneous genomic detection for 11 tick-borne

pathogens across 50 samples per run. This method demonstrates

exceptional sensitivity (1–10 genome copies), outperforming ultra-
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high-throughput sequencing (UHTS) by 25 to >10,000-fold and

surpassing qPCR detection limits, making it particularly effective

for large-scale surveillance. While its dual barcoding system reduces

per-sample costs, TBDCapSeq requires optimized protocols for

low-parasitemia specimens (e.g., increased blood volumes or

sequencing depth) and faces limitations in detecting novel

pathogens due to probe dependency on known sequences. Cross-

reactivity risks from conserved rRNA gene regions further

necessitate complementary genetic analyses for species

confirmation (Jain et al., 2021).

These technological advancements position FISH as a rapid,

cost-effective clinical/veterinary tool for detecting viable parasites,

while TBDCapSeq and RLB provide high-throughput surveillance

solutions. Future development should focus on probe specificity

enhancements and integrated diagnostic workflows combining

multiple techniques to address current limitations in pathogen

coverage and analytical specificity.

Polymerase chain reaction (PCR) has established itself as a

cornerstone technology for detecting Babesia infections and cryptic

carrier states, driven by its exceptional specificity and sensitivity.

Continuous methodological refinements have expanded its utility

across diverse strains, including B. caballi, B. microti, B. bovis, and

B. bigemina. Early conventional PCR systems (1990s) targeted

conserved regions such as the 18S rRNA gene’s V4 domain in B.

bovis, achieving detection limits of 10–100 organisms/mL (Fahrimal

et al., 1992; Xu et al., 2018). The advent of reverse transcription PCR

(RT-PCR) in the 2000s enabled transcriptional-level analyses,

including B. bovis MSA-2c antigenic gene expression and B.

bigemina rap-1 family transcriptional networks, while boosting

sensitivity tenfold to 10 organisms/mL for low-parasitemia

detection (Suarez et al., 2003; Wilkowsky et al., 2003; Colasante

et al., 2024). Modern advancements center on real-time quantitative

PCR (qPCR), exemplified by multiplex assays targeting the sbp4

gene for B. caballi genotyping (Type A/B/C) with 5 copies/mL
sensitivity (Giglioti et al., 2018); and extraction-free protocols

enabling direct Anaplasma/Babesia/Ehrlichia triplex screening

from diluted blood (43 copies/mL detection limit, 98% agreement

with microscopy) (Patiño et al., 2024), Optimized qPCR achieves

remarkable sensitivity for B. bigemina (1.5 infected RBCs/mL),
surpassing microscopy by 100-fold (Stoltsz et al., 2020).

Optimized nested PCR (nPCR) (Nicolaiewsky et al., 2001; Tian

et al., 2015; Faria et al., 2017; Kumar et al., 2022) while nested PCR

(nPCR) enhances B. bovis apocytochrome b gene detection to 2

parasites/0.5 mL blood – a 1,000-fold improvement over blood

smears (Bhat et al., 2017; Radzijevskaja et al., 2018; Hong et al.,

2019; Swei et al., 2019; Cai et al., 2024). Despite these advances,

nPCR carries risks of underdetection in low-load samples and

cross-species reactivity. Emerging approaches, such as genotype-

specific qPCR (100% detection probability, 95% CI) (Venter et al.,

2024). and semi-nested PCR coupled with SacII digestion

(sensitivity to 0.00000012% parasitemia for B. orientalis) (Liu

et al., 2007). Iterative optimizations in multiplex design, probe

engineering, and workflow portability have collectively elevated

PCR’s diagnostic precision for hypoparasitemia, mixed infections,

and strain differentiation, solidifying its role in modern parasitology.
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4.5 Isothermal amplification technology

Loop-mediated isothermal amplification (LAMP) has emerged

as a transformative nucleic acid amplification technique, enabling

rapid, equipment-independent detection of Babesia spp. under

constant temperature conditions. This method excels in identifying

early-stage infections (e.g., feline hosts), chronic cases (canines), and

low-level or persistent parasitemia in diverse hosts including sheep,

goats, and yaks (Guan et al., 2008; He et al., 2009; Mandal et al., 2015).

Demonstrating superior analytical performance, LAMP achieves 100-

fold greater sensitivity than PCR-agarose gel electrophoresis (PCR-

AGE), 10-fold improvement over nested PCR (nPCR), and enhanced

reliability compared to modified semi-nested PCR in baseline

controls (Yang et al., 2016; Arnuphapprasert et al., 2023). Its

detection threshold reaches 50 fg per reaction for B. motasi (Hong

et al., 2019); with additional applications in species differentiation,

such as distinguishing bovine Babesia from Theileria parasites (Tian

et al., 2015). Recent innovations have expanded LAMP’s utility

through hybrid platforms: LAMP-lateral flow dipstick (LAMP-

LFD) integrates chromatographic strips for visual readouts,

achieving 100-fold higher positivity rates than conventional PCR

while maintaining absolute specificity for Babesia DNA,

Complementary modifications like LAMP-LED and LAMP-UV

incorporate portable light sources for result visualization,

demonstrating 10-fold greater sensitivity than PCR-AGE for bovine

babesiosis detection with 100% specificity (Yang et al., 2016; Schmidt

et al., 2017). These advancements position LAMP as a field-

deployable alternative to PCR, offering equivalent rapidity and

sensitivity while eliminating the need for sophisticated

thermocycling equipment.

Isothermal amplification technologies including recombinase

polymerase amplification (RPA), recombinase-aid amplification

(RAA), and cross-priming amplification (CPA) have demonstrated

significant potential for field-deployable diagnostics of Babesia spp (Lei

et al., 2020). RPA leverages recombinase-mediated strand invasion to

amplify target sequences at low temperatures (37–42°C), achieving

rapid detection thresholds of 22.5 copies/mL within 30 minutes when

paired with lateral flow strips. Innovations like the rpaBab264-primer-

based RPA-LFD system enable B. vogeli detection at 40°C in 10

minutes with comparable accuracy to conventional PCR. For B.

orientalis, RPA targeting the mitochondrial COXI gene achieves 0.25

parasites/mL sensitivity in 15 minutes at 37°C—40-fold more sensitive

than standard PCR—while maintaining specificity against

apicomplexan relatives and host DNA (An et al., 2021; Nie et al.,

2021; Onchan et al., 2022). RAA shares mechanistic similarities with

RPA but operates at reduced costs, detecting 10 copies/reaction in 20

minutes (Lin et al., 2022). CPA distinguishes itself through cross-

priming multiplex amplification, exemplified by a B. duncani-specific

assay achieving 0.98 pg/mL sensitivity (~20 parasites/mL) at 59°C within

60 minutes via vertical flow strip visualization (CPA-VF), with 98.7%

accuracy and a per-test cost of $0.20. Further optimizations yield CPA-

VF sensitivities of 50 fg/reaction for B. motasi (5-fold superior to

qPCR) and 320 fg/reaction for B. bovis, demonstrating field

performance equivalent to PCR without cross-reactivity to co-

circulating bovine pathogens (Wang et al., 2020b; Nian et al., 2024).
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These platforms collectively address critical needs for rapid, low-

resource Babesia detection, balancing high sensitivity, cost-

effectiveness, and operational simplicity. TBDCapSeq demonstrates

unparalleled analytical sensitivity (1–10 genome copies), surpassing

qPCR, RPA, nested PCR (nPCR), FISH, and conventional PCR in

detection limits. Isothermal amplification methods (LAMP, RPA,

CPA) collectively outperform conventional PCR in both sensitivity

and operational simplicity. Regarding processing speed, RPA

achieves results within 10–30 minutes—the fastest among

compared techniques—followed by FISH (2 hours), qPCR (~1

hour), and LAMP (~1 hour). Equipment needs vary substantially:

FISH requires only a modified light microscope with LED

illumination (lowest cost), while LAMP and RPA depend on basic

thermostatic devices. qPCR necessitates fluorescence quantification

instruments, and TBDCapSeq relies on high-throughput sequencers.

For clinical settings prioritizing rapidity and ease-of-use, FISH,

LAMP, and RPA are optimal due to their minimal infrastructure

demands and short turnaround times. Large-scale surveillance

programs benefit from high-throughput platforms like

TBDCapSeq, RLB, and multiplex qPCR. In scenarios requiring

ultra-sensitive detection of low-parasitemia samples, nPCR and

TBDCapSeq emerge as preferred choices, leveraging their

enhanced limits of detection.
4.6 New technical applications for Babesia
diagnostics

4.6.1 High-throughput sequencing tool
(Haemabiome)

The Haemabiome high-throughput sequencing platform

represents a paradigm shift in Babesia diagnostics, employing dual-

stage PCR amplification of conserved 16S/18S rDNA regions coupled

with barcoding and Illumina MiSeq sequencing. This approach

enables comprehensive pathogen identification through alignment

with the SILVA ribosomal RNA database project (SILVA) reference

database, achieving high-resolution detection of Babesia spp.

alongside co-circulating genera such as Theileria. By integrating

multi-pathogen detection capability with exceptional sensitivity, the

system addresses the critical limitations of traditional single-target

assays. Its capacity to resolve mixed infections and uncover genetic

diversity within parasite populations positions Haemabiome as a

powerful tool for epidemiological surveillance and complex clinical

case analysis, particularly in regions endemic to multiple tick-borne

pathogens (Yalcindag et al., 2024). Emerging omics technologies are

revolutionizing Babesia diagnostics and pathogenesis research

through multi-dimensional analytical approaches. Label-based

high-throughput quantitative proteomics (HQP) employs tandem

mass tagging (TMT) with LC-MS/MS to profile serum/urine

proteomes, revealing early renal injury biomarkers like NGAL and

L-FABP in canine babesiosis through integrated KEGG/GO pathway

analysis (Bilić et al., 2023). Metagenomic next-generation sequencing

(mNGS) provides hypothesis-free pathogen detection across diverse

specimens (whole blood, plasma, urine), recently proving

instrumental in diagnosing Babesia-induced hemolytic anemia
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from sputum samples—a case initially misattributed to Epstein-Barr

virus complications (Lu et al., 2024). Metagenomic next-generation

sequencing (mNGS) provides hypothesis-free pathogen detection

across diverse specimens (whole blood, plasma, urine), recently

proving instrumental in diagnosing Babesia-induced hemolytic

anemia from sputum samples—a case initially misattributed to

Epstein-Barr virus complications (Gyarmati et al., 2016; Schmidt

et al., 2017; Vijayvargiya et al., 2019; Lu et al., 2024). At the cellular

level, single-cell RNA sequencing (scRNA-seq) enables unprecedented

resolution of Babesia’s asexual replication cycle through pseudotime

gene expression mapping (Rezvani et al., 2022). Singh et al. (2023)

complementing genomic advances exemplified by B. duncani’s fully

sequenced genome with detailed epigenomic/transcriptomic

annotations. Comparative multi-omics leveraging Plasmodium

models reveal divergent drug sensitivity mechanisms between these

apicomplexans, informing targeted therapeutic development (Si et al.,

2023). Whole genome sequencing facilitates phylogenetic

reconstruction and gene family evolution analysis, distinguishing

Babesia lineages while identifying host-specific invasion

determinants and virulence factors (Wang et al., 2022). Integrated

genomic-proteomic workflows further enable rational vaccine

antigen discovery through computational epitope prediction and

functional validation (Liu et al., 2023).

4.6.2 Microfluidics and biomedical engineering
technology

Microfluidic platforms leveraging insulator-based dielectrophoresis

(iDEP) offer a transformative approach for rapid Babesia detection by

exploiting dielectric property differences between infected and healthy

erythrocytes. Infection-induced structural alterations in red blood cell

membranes—such as ridge formation—modify their polarization

characteristics, enabling iDEP systems to separate parasitized cells via

dielectrophoretic (DEP) forces in non-uniform electric fields. Validated

through GFP labeling and Diff-Quik staining in B. bovis models, this

technology processes 1 mL samples in <1 minute, concentrating 0.1%

parasitemia specimens to 70% purity while achieving >98% healthy cell

recovery at optimized voltages. With a sensitivity threshold of 0.1%

parasitemia (5,000 parasites/mL), iDEP outperforms conventional

microscopy but remains less sensitive than PCR (1–5 parasites/mL)
(Adekanmbi et al., 2016). The platform employs a single-shell model to

quantify infection-induced erythrocyte heterogeneity (e.g., membrane

deformation, cellular swelling) through S-curve fitting, combining

operational simplicity with analytical reliability. By eliminating time-

consuming microscopy and complex nucleic acid amplification, iDEP

significantly enhances transfusion screening efficiency and reduces

babesiosis transmission risks. While currently validated for bovine B.

bovis, adaptation to human pathogens like B. microti represents a

critical next step for clinical translation (Oladokun et al., 2023).

4.6.3 Biomarker tests
Emerging urinary biomarker assays and nanotechnology platforms

are advancing early detection of Babesia-associated complications in

veterinary medicine. The uNGAL/uKIM-1 test quantifies urinary

neutrophil gelatinase-associated lipocalin and kidney injury molecule-

1 levels, demonstrating superior sensitivity for identifying acute kidney
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injury (AKI) in canine babesiosis compared to traditional renal

markers. In dogs meeting International Renal Interest Society (IRIS)

AKI criteria (serum creatinine elevation >0.3 mg/dL within 48 hours),

uNGAL and uKIM-1 levels showed significant elevation (P<0.001) even

at IRIS grade I, proving particularly effective for detecting renal damage

during non-azotemic stages (Asma Idress et al., 2024).

Complementing these biomarker approaches, nanoparticle-

mass spectrometry (NanoCage-MS) employs engineered

nanocages to capture B. microti-specific urinary proteins for

subsequent mass spectrometric identification, enabling parasite

detection through targeted proteomic signatures (Magni et al.,

2020). While both technologies show promise for early clinical

intervention—with uNGAL/uKIM-1 enhancing AKI management

and NanoCage-MS providing direct pathogen detection—their

veterinary application requires further validation through large-

scale, multi-etiology studies to confirm diagnostic accuracy across

diverse infection scenarios.

4.6.4 Genome and gene editing technologies
Next-generation sequencing platforms and CRISPR-based

systems are driving transformative advances in Babesia genomics

and diagnostics. Oxford Nanopore Technology (ONT) excels in

resolving complex genomic architectures, while Illumina short-read

sequencing provides high-fidelity assembly—complementary

approaches that revealed B. duncani’s compact genome size and

distinct phylogenetic lineage from B. microti and Theileria species

(Wang et al., 2022). Targeted amplicon deep sequencing (TADS),

though limited in parasite studies by host DNA interference and

genetic diversity challenges, has been adapted through nested

universal parasite detection (nested UPDx) to achieve qPCR-

comparable sensitivity for discriminating Babesia from Plasmodium

and Trypanosoma in blood samples (Flaherty et al., 2021).

CRISPR-Cas systems have emerged as precision tools for

apicomplexan genome engineering, with Hakimi et al. pioneering

CRISPR-Cas9 applications in B. bovis for epitope tagging and gene

replacement via Cas9/hDHFR plasmid systems (Hakimi et al., 2019).

The compact CRISPR-Cas12a platform enables rapid field diagnostics

through recombinase polymerase amplification (RPA) integration,

detecting Babesia spp. via lateral flow strips in <2 hours with high

specificity (Muriuki et al., 2024). Cas12 is a smaller nuclease that is

easier to deliver to smaller parasites and has the potential for AAV-

mediated delivery, providing an advantage for editing the

apicomplexan genome (Webi et al., 2024). Due to the lack of RNAi

inducible genes, RNAi has limitations in some apicomplexes, and

Cas13, which targets RNA, offers new opportunities to study gene

expression and regulation, but there is no Cas13 applied to Babesia.

These synergistic technologies—spanning long-read genomics,

enhanced amplicon sequencing, and programmable nucleases—

collectively accelerate functional genomics and field-deployable

diagnostics for babesiosis management.

4.6.5 Automated testing equipment and mass
spectrometry

The Sysmex XN-31m automated hematology analyzer,

originally developed for human malaria detection, has been
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successfully adapted for equine babesiosis diagnosis through

fluorescence flow cytometry. This system identifies Babesia-

infected red blood cells (iRBCs) by detecting parasite-specific

fluorescent signatures, augmented by machine learning algorithms

for pattern recognition. Capable of real-time parasitemia

quantification, it reduces treatment decision times during acute

infections while minimizing manual interpretation errors through

automation (Ochi et al., 2024). With a limit of detection (LoD)

surpassing conventional microscopy (>100 iRBCs/mL), the platform
excels in high-throughput screening scenarios. Integrated multi-

parameter analysis simultaneously evaluates routine hematological

indices (red cell counts, hemoglobin levels), enhancing

diagnostic comprehensiveness.

Complementing this approach, matrix-assisted laser desorption/

ionization time-of-flight mass spectrometry (MALDI-TOF MS)

enables direct pathogen identification from clinical specimens,

recently extended to arthropod vectors (Ixodes, Rhipicephalus,

Amblyomma ticks) and parasitic protozoa (Sánchez-Juanes et al.,

2022). In canine babesiosis, the technology detects a unique 51–52

kDa serum protein biomarker absent in healthy dogs, demonstrating

high specificity for B. canis diagnosis (Dzięgiel et al., 2016). While

proven effective in malaria-endemic regions, broader Babesia

applications require optimization of species-specific proteomic

databases and standardized data protocols. Together, these

automated systems bridge clinical and vector surveillance needs,

offering scalable solutions for endemic disease management

through rapid, operator-independent diagnostics.

4.6.6 Flow Cytometry Combined with Artificial
Intelligence

Emerging synergies between fluorescence technologies and

artificial intelligence are advancing Babesia diagnostics through

automated fluorescence flow cytometry (FLC), which enables direct

parasite quantification from venous blood samples (Vanderboom et al.,

2024). Current implementations require development of specialized

machine learning (ML) algorithms to overcome the absence of

dedicated analytical software, facilitating automated parasite

recognition and quantification. The integration of fluorescence in situ

hybridization (FISH) with flow cytometry presents a promising

frontier, combining FISH’s species-specific detection capabilities with

the high-throughput automation offlow systems to enhance both speed

and analytical precision (Shah and Ramasamy, 2022). This hybrid

approach could leverage optical enhancements to improve sensitivity

while maintaining specificity, addressing critical gaps in rapid

babesiosis screening. Future implementations may incorporate

advanced imaging flow cytometry to simultaneously analyze

morphological and molecular markers, enabling real-time parasite

characterization. Such innovations position FLC-AI systems as

transformative tools for clinical laboratories, offering scalable

solutions that reduce operator dependency while improving

diagnostic accuracy in both acute and surveillance settings.

4.6.7 Other innovative technologies
Vibrational spectroscopy techniques are advancing Babesia

diagnostics by capturing molecular fingerprints of host-parasite
Frontiers in Cellular and Infection Microbiology 09
interactions across multiple scales. At single-cell resolution, atomic

force microscopy-infrared spectroscopy (AFM-IR) enables nanoscale

chemical imaging of infected erythrocytes, while confocal Raman

microscopy maps molecular alterations during intracellular

invasion. For population-level analysis, attenuated total

reflectance Fourier transform infrared spectroscopy (ATR-FTIR)

coupled with partial least squares discriminant analysis (PLS-DA)

achieves 92.0% sensitivity and 91.7% specificity in <2 minutes post-

sample processing. Rüther et al. optimized this approach for B. bovis

through hemoglobin-depletion protocols and spectral signature

modeling, enabling scalable detection from individual cells to

clinical samples (Rüther et al., 2020).

Complementing these biochemical analyses, the TFinder deep

learning system revolutionizes field diagnostics through automated

Babesia quantification in bovine blood smears. This CNN-based

platform, trained on 2,871 infected erythrocyte images, integrates

multi-scale feature fusion and adaptive thresholding to achieve

98.0% sensitivity and 96.9% accuracy in qualitative diagnosis, with

quantitative analysis reaching 99.7% specificity. By eliminating

manual interpretation errors, TFinder detects parasitemia as low as

0.005%—20-fold below microscopy thresholds—while accelerating

analysis 5–8-fold compared to conventional methods. Validated

against 750 clinical samples, this first AI-driven solution for bovine

tick fever meets medical device certification standards, with ongoing

development focused on multi-pathogen detection models and cross-

border field validation (Trindade et al., 2025). Together, these

technologies exemplify the convergence of molecular phenotyping

and artificial intelligence in transforming parasitic disease diagnostics.
5 Conclusion

We have compiled a list of important testing methods covered

in the text (Table 1 in the Attachments). Accurate species-specific

diagnosis is fundamental for effectively preventing and controlling

blood-borne parasitic infections. While microscopy remains the

most accessible first-line tool due to low cost and rapid results, its

clinical utility is constrained by limited sensitivity (particularly in

low-parasitemia cases) and operator-dependent interpretation.

Immunoassays address throughput limitations of conventional

methods but require well-characterized species-specific antigens,

with current platforms facing challenges of undefined antigen

targets and cross-reactivity (Table 2). Serological approaches

detect circulating antibodies yet suffer from persistent antibody

retention post-recovery and false negatives in chronic carriers,

compounded by reduced specificity when using crude antigen

preparations. In contrast, nucleic acid amplification techniques

(NAATs) offer superior sensitivity and speciation capacity,

enabling discrimination between morphologically similar species

like Babesia spp. and Plasmodium spp. Modern molecular advances

now permit high-throughput screening and asymptomatic carrier

identification – critical capabilities for endemic region surveillance.

Current diagnostic integration strategies recommend: Primary

screening: ELISA/ICT for clinical samples; Confirmatory testing:

In vivo culture with microscopic examination/IFAT; Low-
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quantification (e.g., sbp4-
based multiplex detection)

B. bovis,
B. bigemina

Absolute quantification, genotyping
(A/B/C types), high-throughput

High equipment
cost, requires
standard
curve establishment

No specific
sensitivity
data provide

Nested PCR (nPCR) Two-round amplification
for enhanced specificity

B. microti Extreme sensitivity Complex operation,
contamination risk,
cross-
reactivity potential

3 fg/mL

LAMP Technology Isothermal amplification
(suitable for field use)
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sp.
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design, prone to
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amplification
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et al., 2023)
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(Singh
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transfusion
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et al., 2016)
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(Asma Idress
et al., 2024)
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Principle Species

RPA/RAA Recombinase-mediated
amplification (37–42°C)

RPA: B.
orientalis; RAA:
B. microti

Extremely rapid (10-30min), portable Requires primer
specificity
optimization,
slightly higher cost

RPA:
mL; R

CPA Cross-priming
amplification with vertical
flow strip detection

B. motasi Ultra-sensitive, low cost (0.2
USD/test)

Longer reaction time
(60min), requires
temperature control

50 fg

Haemabiome Two-round PCR targeting
16S/18S rDNA regions
with barcode tags and
MiSeq sequencing

B.bigemin,
B. bovis

Simultaneous multi-genus detection
(Theileria/Babesia), high sensitivity

Requires known
pathogen
database support

500 r
for T
Babe

High-Throughput
Quantitative Proteomics

(TMT-LC-MS/MS)

TMT-labeled serum/urine
proteins analyzed by LC-
MS/MS and bioinformatics

B. canis Identification of NGAL/L-FABP as
potential early biomarkers for
renal injury

Requires mass
spectrometry and
bioinformatics
expertise

No sp
limit

Metagenomic Next-
Generation

Sequencing (mNGS)

Direct nucleic acid
detection without
predefined targets

B. microti Simultaneous detection of bacteria/
viruses/fungi/protozoa, novel
pathogen discovery

Potential low
sensitivity for rare
pathogens, complex
data analysis

SMR
for p

Single-Cell Transcriptomics
(scRNA-seq)

Gene expression profiling
of individual cells for
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lifecycle analysis
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Reveals gene expression dynamics
during asexual reproduction

High cost,
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(iDEP) Microfluidics

Separation of infected/
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dielectric properties using
non-uniform electric fields

B. bovis Rapid (<1min), low cost, mL-scale
sample processing, 0.1%
parasitemia sensitivity

Requires adaptation
to human pathogens
(e.g.,B. microti)
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Urine Biomarker Detection
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NGAL/KIM-1 levels for
acute kidney injury
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standardized
reference ranges
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mass spectrometry

B. microti Specific detection of parasite
protein biomarkers

Requires further
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mplex Single-copy gene
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Not Applicable Genome structural
research,
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(Wang
et al., 2022)

served No specific
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et al., 2021)
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ed

10² DNA copies/mL No cross-reactivity
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Gene function
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rapid diagnosis
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et al., 2024)
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Acute infection
rapid diagnosis
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sample detection
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91.7% specificity
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et al., 2020)
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98.0% qualitative
sensitivity, 98.9%
quantitative
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Principle Species

Long-Read Sequencing
(ONT) + Short-
Read Sequencing

Hybrid assembly
combining ONT for
complex regions and
Illumina for high accuracy

B. duncani Resolves genome features (size/
evolution), supports
comparative genomics

High cost, co
data analysis

Targeted Amplicon Deep
Sequencing (TADS)

Nested UPDx reduces host
DNA interference for
improved parasite
DNA detection

B.microti,
B.divergens,
B.duncani,
B.divergens-like
variant MO1

Detection limit comparable to qPCR,
multi-species differentiation

Relies on con
locus design

CRISPR-Cas RNA-guided genome
editing (Cas9/Cas12a)

B.bigemina Precise gene editing, supports point
mutations/gene replacement and
rapid detection (combined with RPA)

Cas13 applica
not yet realiz

Sysmex XN-31m
Automated

Hematology Analyzer

Fluorescence flow
cytometry with machine
learning for infected RBC
feature recognition

B.caballi Real-time detection, better low-
parasitemia sensitivity
than microscopy

Requires spec
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sample adapt
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Matrix-Assisted Laser
Desorption/Ionization
Time-of-Flight Mass
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TOF MS)

Detection of specific serum
protein fragments (e.g., 51-
52 kDa)

B.canis High specificity/sensitivity, supports
tick species identification

Requires opti
Babesia
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Automated Fluorescence
Flow Cytometry (FLC)

Direct detection of Babesia
in venous blood using
machine learning analysis

B.microti Rapid quantitative detection Requires ded
software
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Vibrational Spectroscopy
(AFM-IR/Confocal Raman/

ATR-FTIR)

Chemical fingerprinting of
single cells/populations
with PLS-DA analysis

B. bovis Multi-scale detection (single cell to
population), <2min analysis time

Requires
hemoglobin
removal
pretreatment

TFinder AI System
(Deep Learning)

Improved CNN
architecture with multi-
scale feature fusion and
adaptive thresholding

Babesia spp. Automated detection/quantification
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Requires mul
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parasitemia cases: LAMP-assisted detection; Comprehensive

analysis: PCR-based methods covering all parasitic life stages. In

vitro culture systems serve dual purposes: pathogen isolation and

supporting vaccine development through antigen characterization

and drug susceptibility profiling. To minimize diagnostic errors,

parallel testing with complementary assays is strongly advised.

Future directions should focus on: Functional genomics of

Babesia virulence factors through comparative interspecies

transcriptomics; Multi-omics integration (proteomic/metabolomic)

to elucidate gene expression networks governing life cycle

progression; Next-generation assay development targeting

differentially expressed biomarkers.
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