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Exploring the evolutionary
journey of the lumpy skin disease
virus through the phylogenetic
and phylo-geo network analysis
Manjunatha Reddy Gundallahalli Bayyappa1*†,
Manoj Kumar Goud Pyatla2†, Sai Mounica Pabbineedi1,
Narasimha Tanuj Gunturu2, Sai Manohar Peela2,
Sudeep Nagaraj1, Sunil Tadakod1, Ravi Kumar Gandham2*

and Baldev Raj Gulati1

1Capripoxvirus Lab, Veterinary Pathology, Indian Council of Agricultural Research (ICAR)-National
Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India,
2Animal Biotechnology Division, Indian Council of Agricultural Research (ICAR)-National Bureau of
Animal Genetic Resources, Karnal, Haryana, India
Introduction: Lumpy Skin Disease Virus (LSDV), an emerging pathogen from the

Capripoxvirus genus, continues to challenge global livestock health with its

expanding host range and genetic adaptability.

Materials and methods: In this study, we report the first isolation and whole

genome sequencing of LSDV from Bos frontalis, a semi-domesticated bovine

species native to Northeast India, along with the assembly of an isolate

from cattle.

Results: Time to the Most Recent Common Ancestor (TMRCA) estimates support

a relatively recent common origin for Indian strains, pointing to ongoing virus

circulation and regional adaptation. The maximum likelihood phylogenetic tree

of the whole genome and G protein-coupled chemokine receptor (GPCR) gene

further demonstrated the clustering of global strains, emphasizing the virus’s

transboundary movement and genomic diversity. To strengthen phylogenetic

inference, we identified shared SNPs, synonymous and non-synonymous

mutations across the genome with a total of 2212 variants. Haplotype network

and mutation pattern analyses across global genomes further highlighted the

conservative evolution of Indian isolates within a distinct haplogroup.

Discussion: Several mutation events between haplogroups highlight the virus’s

continuous genetic diversification, which correlates with known patterns

of spread.
KEYWORDS

lumpy skin disease virus, TMRCA, phylogenetic analysis, haplotype network, genetic
diversity, transboundary spread
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1 Introduction

In recent years, (1)there has been a notable rise in significant

transboundary emerging diseases affecting various animal species,

posing substantial threats to both economic stability and public

health, especially in relation to food security (Bianchini et al., 2023).

One such disease that has garnered attention is lumpy skin disease

(LSD), which has led to substantial economic losses within the cattle

industry. Recognizing its swift transmission and reemergence, the

World Organisation for Animal Health (WOAH) has classified LSD

as a critical notifiable disease (Tuppurainen et al., 2017). The

causative agent, the lumpy skin disease virus (LSDV), belongs to

the Poxviridae family, within the Capripoxvirus genus, and is

classified alongside the sheep pox virus (SPPV) and goat pox

virus (GTPV) (Al-Salihi, 2014).

LSD spreads primarily through arthropod vectors such as biting

flies, mosquitoes, and ticks. This makes the disease more prevalent

epidemiologically during the summer when hot and humid

conditions favor vector activity. Rarely, the direct transmission

can occur through close contact between infected and susceptible

animals and contaminated feed and water sources (Al-Salihi, 2014;

Reddy et al., 2023). The disease leads to high rates of morbidity with

varying levels of mortality, and clinically, affected animals exhibit

symptoms such as fever, reduced appetite, swollen lymph nodes,

and characteristic skin lesions distributed across the body. In severe

cases, animals experience diminished production ability, infertility,

decreased milk production, and compromised hide quality (Babiuk

et al., 2008b; Manjunatha Reddy et al., 2025).

The history of LSD outbreaks traces back to 1929 in what is now

Zambia, formerly North Rhodesia, located in South Africa

(Bianchini et al., 2023). Until the 1980s, occurrences of LSD were

sporadic and primarily confined to the African subcontinent.

However, outbreaks beyond Africa emerged in Egypt in 1988,

followed by Israel in 1989, and subsequently in several Middle

Eastern countries (Sprygin et al., 2019). The disease then spread to

European nations, with Turkey experiencing outbreaks in 2013,

followed by the Balkans and Russia in 2015 (Mazloum et al., 2023).

In 2019, the disease reached the Asian subcontinent, with reports

from China, Bangladesh, India, Vietnam, Thailand, Mongolia,

Pakistan, Sri Lanka, Myanmar, and Afghanistan (Giasuddin et al.,

2019; Sudhakar et al., 2020; Lu et al., 2021). Genetic analysis of LSD

isolates from its emergence until 2015 suggested a common origin.

However, in 2017, the first recombinant strain was reported in

Saratov, Russia, followed by reports from Udmurtya, Russia, in

2018 and Xinjiang, China, in 2019 (Ma et al., 2022). These

recombinant strains subsequently spread to other nations such as

Mongolia, Vietnam, and Thailand (Sprygin et al., 2022; Mathijs

et al., 2021; Seerintra et al., 2022). Notably, in 2019, LSD outbreaks

in southeastern parts of the Asian subcontinent, including Pakistan,

Bangladesh, India, Myanmar, Sri Lanka, and Pakistan, were

attributed to the KSGPO-like vaccine strain (Mazloum et al.,

2023; Manjunathareddy et al., 2024).

LSDV, belonging to the large DNA virus family Poxviridae,

shares the characteristic large linear double-stranded DNA,

measuring 151 kbp and containing 156 putative open reading
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frames (ORFs). Poxviruses, including LSDV, are known for their

slow evolutionary rate, with genome variations primarily occurring

in the flanking regions and in genes related to immune evasion,

while most of the genome remains highly conserved (Breman et al.,

2023). Given LSDV’s rapid global spread, understanding its

evolutionary trajectory is crucial. Since the initial complete

genome sequence of LSDV was reported in 2001 (Tulman et al.,

2001), numerous sequences have been added to GenBank,

providing valuable insights into its evolutionary dynamics.

However, genomic data and evolutionary studies on LSDV in

India remain limited. Therefore, to elucidate the evolutionary

status and molecular epidemiology of LSDV in India, this study

determined and analyzed the complete genome sequence of LSDV

isolated from cattle in the country.
2 Materials and methods

2.1 Ethics statement

The study involved the collection of biological samples from

cattle. Skin scabs were collected following standard protocols

without using anesthesia. Permission for sample collection was

granted by the respective states’ Animal Husbandry Departments,

and animal owners’ consent was obtained before sampling.
2.2 Study area and clinical samples

The samples were collected from various districts of Andhra

Pradesh, Arunachal Pradesh, Gujarat, Karnataka, Madhya Pradesh,

Maharashtra and Nagaland and during the 2020–2022 outbreaks

(n=15). Skin scabs were collected from the affected animals and

transported in the viral transport medium (VTM) to the National

Institute of Veterinary Epidemiology and Disease Informatics

(NIVEDI), Bengaluru, India, for subsequent analysis. The scab

tissue samples were triturated and 10% suspension was prepared

in phosphatebuffered saline (PBS, pH 7.2), followed by filtration

using a 0.45 µM syringe filter and stored at -80°C until further use.
2.3 Molecular identification and virus
isolation

The DNA extraction from the processed samples was done

using the DNeasy Blood and Tissue Kit (Catalogue no. 69506,

Qiagen, Germany) following the manufacturer’s guidelines. The

extracted DNA was subjected to the Capripoxvirus-specific PCR

targeting the major enveloped protein (P32) gene (237 bp) (Reddy

et al., 2015). Further, the full-length G protein-coupled chemokine

receptor (GPCR) gene was amplified as described earlier

(Manjunatha Reddy et al., 2023). After confirmation, the

processed tissue samples were used for virus isolation. For this,

Madin-Darby Bovine Kidney cells (MDBK) maintained in 10%

growth media (MEM with 10% FBS) were grown to 90% confluency
frontiersin.org
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in 25 cm2
flasks and inoculated with the tissue sample suspension.

The infected flasks were incubated at 37°C in a 5% CO2 incubator

and observed daily for the presence of cytopathic effects (CPE).
2.4 GPCR full-length gene sequencing and
phylogenetic analysis

The purified PCR products of the GPCR gene were sequenced

using their respective forward and reverse primers using the Sangers

sequencing method at Eurofins Genomics India Private Limited,

Bangalore, India. Further, the sequences were analyzed and edited

using the Gene tool (Informer Technologies, Inc.). The nucleotide

sequences of the GPCR gene of the genus Capripoxvirus, both from

Indian origin and other countries, were taken from the GenBank

database to conduct phylogenetic analysis. Sequence alignment was

done by using the Multiple Alignment using Fast Fourier

Transform (MAFFT) tool (MAFFT alignment and NJ/UPGMA

phylogeny (cbrc.jp)). Model selection and phylogenetic analysis

were constructed by using the IQ-Tree web server with 1000

bootstrap values (Trifinopoulos et al., 2016).
2.5 Whole genome sequencing

For the whole genome sequencing one each from first wave

(2020-21) of LSD (LSDV/CHITRA-05/NIVEDI/ICAR/2020),

second wave (2022-23; ICAR/NIVEDI/LSDV/Mithun/Arunachal

Pradesh/2023/India) and third wave (2023-24; ICAR/NIVEDI/

LSDV/Cattle/2024/Telegana/India) from two different species

cattle, mithun and cattle, respectively were subjected to whole

genome sequencing. Briefly, the virus was bulk-produced and

concentrated by the polyethylene glycol (PEG) precipitation

method. Further, the viral DNA was extracted by using a DNeasy

Blood and Tissue Kit (Catalogue no. 69506, Qiagen, Germany) as

per the manufacturer’s instructions. The concentration of the DNA

was assessed using a Nano spectrophotometer (Nabi), and the DNA

was sent to Eurofins Genomics Private Limited, Bangalore, India for

sequencing the whole genome (Illumina platform).
2.6 Whole genome assembly and
annotation

DNA libraries were prepared with an insert size of 150 for

Illumina sequencing and sequenced on the Illumina platform. The

quality of raw Illumina reads was assessed by FastQC (Andrews,

2010), following which the trimming and filtering were done by

Trimmomatic v0.38 (Bolger et al., 2014). The genome was

assembled using a de novo approach implemented in SPAdes

v3.14.0 (Bankevich et al., 2012). LSDV-Neethling strain genome

(Accession No: NC_003027) was used as a reference for Reference

Assisted Genome Ordering Utility (RAGOUT) (Kolmogorov et al.,

2014) assisted assembly of contigs generated by SPAdes assembler.

Gaps in the consensus sequence were filled by SOAPdenovo2-
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GapCloser (Luo et al., 2012) using Illumina paired-end reads.

Genome assembly quality was assessed by Quast v.5.2.0 (Gurevich

et al., 2013). Annotation was performed with Genome Annotation

Transfer Utility (GATU) (Tcherepanov et al., 2006). After the

annotation, the whole genome sequence was submitted to the

GenBank with Accession number OR863389, PQ510118 and

OR602866. The final assembly was mapped against Illumina

paired-end reads and the resulting bam file was used to calculate

nucleotide wise depth using SAMtools (Li et al., 2009).
2.7 Nucleotide sequence retrieval

The complete genome sequence of LSDV (~150Kbp) of 113

isolates from worldwide was retrieved from the National Centre for

Biotechnology Information (NCBI) Virus database (NCBI Virus

(nih.gov)). The geographical distribution of these LSDV sequences,

is shown in Figure 1. The reference sequence of GTPV (NC004003)

and SPPV (NC004002) were downloaded from the NCBI Virus

database to investigate the outgroup between all three virus groups.
2.8 Phylogenetic analysis of LSDV isolates

The final dataset consisting of 116 sequences was used for

phylogenetic analysis. The multiple sequence alignment was

performed using the online MAFFT tool (MAFFT alignment and

NJ/UPGMA phylogeny (cbrc.jp)). Model selection was determined

by IQ Tree and TVM+F+G4 was found to be best fitting model and

phylogenetic analysis was carried out by using the IQ-Tree web server

construction using the maximum likelihood nucleotide model

(Trifinopoulos et al., 2016). Bootstrap resampling with 1,000

replicates was used to test the reliability of the phylograms. The

output phylogenetic trees generated were then exported to iTOL

(iTOL: Interactive Tree Of Life (embl.de)) an online software tool to

visualize, construct and modify phylogenetic trees (Letunic and Bork,

2024). Simultaneously, JModel Test 2.0 was employed to determine

the suitable best-fit evolutionary model (Darriba et al., 2012) and

Bayesian phylogenetic analysis was done by using Bayesian

Evolutionary Analysis by Sampling Trees (BEAST) 2.0 software.

For this, nine sequences were excluded due to their similarity with

other sequences. Bayesian evolutionary analysis utility software was

employed to generate the XML input file for BEAST analysis with the

GTR+G model of nucleotide substitution, a constant population size

coalescent prior, and strict and relaxed clock models. The sequences

were tip-dated according to the year of collection. The best model is

selected by calculating the Bayes factor (BF). The phylogenetic

analysis was conducted by BEAST 2.7.6 (Bouckaert et al., 2019)

with Beagle v4.0.0. library program (Suchard and Rambaut, 2009) to

generate and run a Bayesian inference of phylogeny with the Markov

chain Monte Carlo (MCMC) (Drummond et al., 2002) algorithm

with a chain length of 60 million iterations. MCMC chain

convergence was assessed by evaluating the estimated sampling size

by using the Tracer v1.7.2 (Rambaut et al., 2018). The clock rate and

the Time to the Most Recent Common Ancestor (TMRCA) estimates
frontiersin.org
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were extracted by using Tracer v1.7.2 and the final Maximum Clade

Credibility tree (MCC) using a posterior was identified by using

TreeAnnotator v2.7.6 with a burnin of 10% discarding the first 10%

of the trees. The output generated was visualized in FigTree (ed.ac.uk)

to construct and modify the tree.
2.9 Genomic variant analysis and ORF-level
annotation in LSDV

The LSDV sequences were mapped against reference sequence

LSDV NI-2490 (NC003027) using Minimap2 (Li, 2021). The

sequence alignment and map (SAM) file was then converted and

sorted to a binary alignment map (BAM) file using SAMtools (Li

et al., 2009). The variants were called from these BAM files using

BCFtools (Danecek et al., 2021). The variant call format (VCF) was

then annotated using SnpEff, in which a custom database was built

for LSDV using Neethling strain genome (Accession No:

NC003027) (Cingolani et al., 2012). The isolates were then

grouped into 5 based on the clustering pattern observed in

phylogenetic analysis. The variants shared in common within the

groups and the unique variants within the groups and their position

in the ORFs and their effect were evaluated.
2.10 Haplotype network and statistical
analysis

The multiple sequence alignment file was used to make a

Transitive Consistency Score network (TCS network) using
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PopARTv1.7 (Population Analysis with Reticulate Trees)

(Clement et al., 2002; Leigh and Bryant, 2015). Using PopART,

the population genetics among the sequences were analyzed, and

Tajima’s D value is calculated. The total number of segregating sites,

nucleotide diversity, and the number of parsimony information

sites were obtained using PopARTv1.7. The sequences used in the

study are given in the Supplementary File.
3 Results

3.1 Molecular identification and virus
isolation

DNA extracted from all scab tissue samples collected from

different states amplified for the Capripoxvirus-specific gene target

P32 of 237 bp, confirming that the virus is a Capripoxvirus. For

virus isolation, the MDBK cells were infected with the isolate and

observed for 7 days post-infection for any changes in the cell

morphology. All samples exhibited morphological changes after

4–5 blind passages. Characteristic CPE, including clustering,

rounding of cells, and foci formation, were observed 72–96 hours

post-infection (Figures 2A, B).
3.2 GPCR sequence alignment and
phylogenetic analysis

DNA extracted from suspected cases and amplified for the

GPCR gene produced a 1200 bp PCR product. Multiple sequence
FIGURE 1

The map depicting the geographical distribution of the LSDV sequences retrieved from PubMed for the present study.
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alignment of the GPCR gene of our isolates, reference sequence, and

sheep and goat pox viruses has revealed the insertion of 21 bp in our

isolates, confirming that our sequences are of LSDV. The resulting

sequences were submitted to GenBank under accession numbers

PP530466 to PP530481. The phylogenetic analysis of the GPCR

gene has revealed that all the Indian sequences have clustered into a

single clade, showing a common evolutionary origin. The sequences

from the border countries of India, like Nepal and Bangladesh

strains, form part of a broader clade indicating the entry of the virus

from neighboring countries. The close genetic relationship between

these South African strains points to the cross-border transmission

of LSDV. The LSDV strain in Indian gazelle is particularly notable,

the strain’s close relationship with the sequences of cattle-derived

strains shows the inter-species transmission of LSD. The

recombinant strains from Russia are tightly related to those from

vaccine strains. This shows the rapidly evolving and transmission

nature of LSDV. The recombinant strains, the sheep pox vaccine

virus and goat pox vaccine virus formed separate clades as shown

in Figure 3.
3.3 Whole genome assembly and
annotation

De novo assembly with SPAdes using Illumina reads produced a

total of 12 contigs. Reference-assisted contig assembly with Ragout

yielded a single scaffold with a length of 150774 bp and 105 gaps. To

fill the gaps, SOAPdenovo2-GapCloser was employed, resulting in a

final genome of 150774 bp with a total of 20 gaps. Assembly

coverage was calculated using Samtools depth by mapping the

assembly against Illumina paired-end reads which resulted in an

average depth of 1423.7. Per base coverage details are given in

Supplementary File Sheet 1. The total coding region was 145986 bp

with inverted terminal repeats of 2394 bp on either end, with an

overall GC content of 25.9%. Annotation by GATU has predicted a

total of 156 putative proteins.
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3.4 Phylogenetic analysis

Whole genome sequences of LSDV strains were aligned with

NCBI data to construct a maximum-likelihood phylogenetic tree

and a maximum clade credibility tree, using goat pox virus and

sheep pox virus as outgroups.

3.4.1 Maximum likelihood analysis
The maximum likelihood tree shows the genetic diversity and

evolutionary relationships between strains isolated from different

geographical locations. The virus sequences formed multiple clades

representing different geographical regions. This clustering suggests

the region-specific evolution of the virus. Notably, strains from

China and Vietnam form distinct sub-clades, indicating localized

transmission and evolution. The strains from Vietnam share a close

evolutionary relationship with the virus strains of Thailand and

China. This shows the role of Southeast Asia in virus spread due to

shared agricultural practices and livestock trade.

The LSDV strains from India are positioned on three distinct

branches of the phylogenetic tree. Strains from the 2019 outbreaks

cluster on one branch, closely related to the Neethling reference

strain, with fewer genomic variations. The virus strain sequenced in

this study (OR863389, PQ510118 and PQ616985) and previously

sequenced in the lab (OR602866) also fall within this branch. In

contrast, the LSDV strains from the recent 2022 outbreak form a

separate branch and show a closer relationship to the Russian

strains, displaying higher genomic variation, as illustrated in

Figure 4. The results also demonstrated that the LSDV isolates

from cattle to Mithun (Bos Frontalis) shared genomic similarity

suggesting similar LSDV isolates are circulating in both cattle

and Mithun.

3.4.2 TMRCA estimation
The earliest TMRCA dates back to the early 17th century, as

shown in the Supplementary Figure 1, reflecting a long evolutionary

history of the virus. LSDV, initially endemic to Africa, has spread
FIGURE 2

LSD virus isolation: The LSDV (5-Chitra isolate) infected MDBK cell line at 72hrs post-infection. The arrow indicates the clustering, rounding and
characteristic foci formation of the MDBK cells infected by LSDV (B) compared to healthy cells (A).
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worldwide, particularly in regions such as Europe, Asia, and the

Middle East.

The close clustering of strains from India and Kenya

(NC_003027.1) suggest that Kenya has acted as a historical

reservoir for LSDV, facilitating the virus’s spread to the Indian

subcontinent, showing the global geographic Spread of LSDV. The

viral strains sequenced in this study, OR863389, PQ510118, and

OR602866, showed a TMRCA of early 2017. Multiple viral strains

from India cluster together with a relatively recent TMRCA dating

back to the last decade, showing that the virus is being introduced

into the country through livestock movement.

3.4.3 Phylogeny-associated variant landscape of
LSDV genomes

Phylogenetic analysis revealed the presence of eight distinct clusters

among the isolates. In total, 2116 single nucleotide polymorphisms

(SNPs) and 106 insertions/deletions (indels) were detected across the

genome. Notably, 294, 155, 15, 67 and 97 unique variants were

identified in clusters 1.1, 1.2, 1.2_KSGPO, 2.1 and 2.5 respectively,

indicating possible cluster-specific mutations contributing to the

observed phylogenetic separation. Comprehensive details of these

variants are provided in Supplementary File (Sheet 2 and Sheet 3).

Cluster 1.1, comprising strains majorly from Africa, showed 294

unique variants, predominantly synonymous mutations, mainly

located in genes LSDV144-156. Cluster 1.2 (Mediterranean like),

with isolates from India, Russia and Mediterranean countries, had
Frontiers in Cellular and Infection Microbiology 06
155 unique variants, most of which were missence followed by

synonymous mutations distributed across the genome. Cluster

1.2_KSGPO (KSGP-like) included isolates predominantly from

India and Bangladesh, had 155 unique variants, most of which

were missence mutations distributed across the genome. Cluster 2.1,

had 67 variants mainly located in genes LSDV145– LSDV155,

followed by LSDV001–008. Cluster 2.5, containing only Asian

isolates, had 97 variants, mostly missense, with more than half

observed in LSDV144–156. Indian isolates grouped into Clusters

1.2 and 1.2_KSGPO, with both of the isolates assembled in the study

falling under the latter.

3.4.4 Phylogenetic network analysis
The multiple sequences alignment of the Lumpy skin disease

virus and their subsequent analysis has revealed a total of 41594

segregating sites of which the PI sites were 41003. The incidence of

sites and their distribution across gaps and ambiguous sequences,

along with the statistical evaluation (Tajima’sD), has been

summarized in Table 1. The Tajima’s D value of 0 indicates that

the DNA sequence is evolving positively with a balancing evolution,

meaning there is certain genetic variations being favored and

maintained in the population. The constructed phylogeographic

network is shown in the Figure 5.

The analysis of the phylogeographic network revealed that the

predominant cluster is haplotype 33, with a total of 13 identical

sequences from Thailand and China, followed by haplotype 36, with
FIGURE 3

Phylogenetic analysis of the full-length gene of GPCR of the LSDV isolates obtained in this study suing maximum-likelihood tree showing the LSDV
isolates close relationship with GPV than SPV.
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7 identical sequences from China, Vietnam, and Taiwan. India has

11 different haplotypes circulating in the country with haplotype 29

containing 7 identical sequences. The viral strains isolated in the

present study, OR863389, PQ510118, and OR602866, which are

closer in the phylogenetic tree, belong to three different haplotypes,

i.e., haplotype 6, 7, and 10, respectively. South Africa has a total of

12 haplotypes, Russia has a total of 9 haplotypes, and China has 7

haplotypes circulating in the country. Haplotypes 13 and 14 are

present in the Balkan countries. Out of a total of 62 haplotypes, 43

haplotypes contain only a single sequence, and the rest are

distributed in the remaining haplotypes with multiple sequences.

Haplogroup-wise details of the identical sequences and their

geographical locations are given in the Supplementary File 1.
Frontiers in Cellular and Infection Microbiology 07
4 Discussion

Lumpy skin disease is an important transboundary viral disease

affecting cattle and buffalo with severe economic losses. It has been

widespread in Africa, the Middle East, Europe, and Asia (Toplak

et al., 2017; Mercier et al., 2018; Sprygin et al., 2020; Sudhakar et al.,

2020) since its first report was made in Zambia, Africa in 1929

(Morris, 1930; MacDonald, 1931). Over the past decades, we have

seen several vaccine spillovers, novel recombinant strains, and

transboundary migration of LSDV. The high severity of LSDV in

the recent outbreaks could be attributed to increased mutations in

the LSDV genome, which has resulted in the circulation of multiple

LSDV variants during the same time, as evident in the recent
TABLE 1 Tajima’s D statistical analysis of the variations in the studied genomes.

Sl. no Network type
Number of
segregating sites

Number of PI sites
Nucleotide
diversity

Tajima’s D statistic

1
Transitive Consistence
Score

41594 41003 0.0778324
D = -1.98337 p
(D >= -1.98337)

= 0.988641
FIGURE 4

Phylogenetic analysis of the worldwide LSDV full genome sequences. The maximum likelihood tree was constructed using whole genome
sequences. The LSD viruses from India (red color) are originated and evolutionarily more related to LSDV isolates from Kenya.
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outbreaks from India (Yadav et al., 2024). The gaps in prior

outbreaks hinder evolutionary inferences into the virus genome

and constrain future vaccine development via harnessing routes of

evolutionary machinery.

In this study, we have collected LSD outbreak samples from

different states of India, namely, Karnataka, Maharashtra, Gujarat,

Andhra Pradesh, and Madhya Pradesh, during the 2020–2022

outbreaks. The etiological agent was confirmed by the virus

isolation as it is considered the gold standard test for LSDV

identification (Amin et al., 2021), where the LSDV showed typical

CPE of foci formation in the MDBK cell lines (Fay et al., 2020).

Molecular detection was done by conventional PCR (Reddy et al.,

2015; Sanjeevakumar et al., 2023), and preliminary phylogenetic

analysis of the GPCR gene revealed that all the sequences were

clustered into three main groups: LSDV, Sheep poxvirus, and Goat

poxvirus cluster. Within the LSDV cluster, all the sequences in this

study were clustered along with the field strains, standing distinctly

from other LSDV recombinant and vaccine strains as reported in the

previous reports (Sudhakar et al., 2020; Putty et al., 2023). This

might be attributed to uncontrolled movement of cattle across

different state province, mixed species rearing and grazing on

natural pastures and also the mass vaccination with heterologous

goatpox vaccine for prevention and control of LSD in India might

have contributed for circulation of same field strain of LSDV, rather

than vaccine and recombinant strains in India. Phylogenetic analysis

of the specific genes, such as the GPCR gene, has been instrumental

in constructing phylogenetic trees that depict the evolutionary

lineage of LSDV and its relatives (Seerintra et al., 2022). These
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studies indicate that LSDV is more closely related to GTPV than to

SPPV, suggesting a more recent common ancestry between LSDV

and GTPV (Seerintra et al., 2022).

Vaccine strains, field isolates, and recombinant strains clustered

distinctively and originated from a common ancestor, likely 400 years

ago. This is in agreement with previous findings that the common

ancestor of both LSDV clusters 1.1 and 1.2 existed ~ 500 years ago

(Van Schalkwyk et al., 2022). The depth of this evolutionary history

highlights the longstanding circulation of Capripoxviruses in animal

populations, far preceding modern records of LSDV outbreaks. The

phylogenetic results support theories that Capripoxviruses, including

LSDV, share a common ancestor with GTPV and SPPV, which were

also thought to have originated in Africa and possess unique genetic

characteristics that contribute to their virulence and epidemiological

behaviour (Ochwo et al., 2020; Ko et al., 2022). Early studies by

Tulman et al. (2002) suggested that these viruses had been circulating

in wild ungulate populations before their eventual spillover into

domestic animals like cattle, goats, and sheep (Tulman et al., 2002).

The ancient origin in the phylogenetic tree aligns with the

proposition that sub-Saharan Africa served as a reservoir for

various strains of Capripoxvirus. The virus’s persistence in this

region likely facilitated its spread across Africa, the Middle East,

and Europe over centuries (Babiuk et al., 2008a; Wang et al., 2022).

This is further supported by the work of Gelaye et al. (2015), which

highlighted the regional movement and adaptability of

Capripoxviruses (Gelaye et al., 2015).

TMRCA implies that LSDV evolved over centuries of genetic

adaptation before being identified as a prominent veterinary
FIGURE 5

Analysis of phylogenomic geographic network of lumpy skin disease virus genomes 812 worldwide. Each of the circles represents either haplogroup
or haplotype. The circle size states 813 the sequence load; the bigger the circle size represents the number of genome sequences there.
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pathogen in the early twentieth century. Its evolutionary success is

likely attributed to the virus’s genetic stability, which allowed it to

persist in different environmental and ecological conditions. As a

large DNA virus, LSDV has a slower mutation rate than RNA

viruses, which helps maintain genomic integrity over time. Despite

its slower mutation rate, LSDV shows ongoing genetic

diversification, as evidenced by the different lineages in the

phylogenetic tree. The emergence of newer strains in Russia,

India, and China suggests that the virus continually adapts to new

environments and hosts, possibly through recombination events

with other field strains. This is supported by the findings of

Kononova et al. (2021) and Suwankitwat et al. (2022), who

demonstrated that recombination events can lead to more

aggressive strains capable of causing severe outbreaks. The genetic

diversity observed among LSDV strains is indicative of ongoing

evolution, with studies highlighting the presence of mixed isolates

that exhibit features of both vaccine and field strains (Chibssa et al.,

2021; Suwankitwat et al., 2022). This genetic variability poses

challenges for vaccine development and disease management

strategies, as traditional vaccines may not provide adequate

protection against newly emerged strains (Molla et al., 2017;

Bedeković et al., 2018).

Similar estimations were provided for South African strains.

The South African isolates from the 1950s, such as MW656252.1,

have an estimated TMRCA from the late 1800s, which supports the

theory that LSDV originated in sub-Saharan Africa. Some studies

have traced the origins of LSDV to sub-Saharan Africa, with

evidence of its emergence in various African countries before

spreading to other regions (Bowden et al., 2008; Tuppurainen

et al., 2017). The Indian sequences, particularly between 2019 and

2022 show a most common recent ancestor to be early 2017 and

appear to have diverged from strains found in China and South

Africa. This suggests India may have experienced multiple virus

introductions, possibly through livestock trade routes. Tuppurainen

et al. (2017) emphasize the role of the cattle trade in spreading

LSDV from Africa to Asia. The Indian strain OR393172.1 and other

strains in the cluster are closely related to strains from China

(OM803091.1) and Russia (OM793603.1), suggesting recent viral

spread across Asia, facilitated by livestock movement and

transboundary trade. This aligns with the research of Ratyotha

et al. (2022), who noted that LSDV outbreaks in South Asia were

linked to cross-border livestock movement (Ratyotha et al., 2022).

Although the Indian sequences shared a common ancestor, they

still clustered into three different groups, depicting distinct

evolutionary and recombination events. The first group

comprised of two Ranchi isolates from 2019 and a Hyderabad

isolate from 2020, accounting for the initial LSDV outbreaks in

India. These isolates shared similar features with the then-Asian

isolates. According to the previous reports, the second and third

groups consisted of sequences majorly post-2021 and could be

divided into low-mutation and highmutation isolates (Yadav et al.,

2024). The second group clustered closer to the first, with the

Neethling reference at the center, marking its evolution from the

latter with lower mutations. This theory of early Indian isolates

originating from Clade 1.2 Kenyan and derived KSGP strains from
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Eastern Africa has been confirmed by previous studies (Breman

et al., 2023; Sudhakar et al., 2020). Our isolates clustered with the

second group, affirming their origin from the early outbreaks.

However, the situation has changed in the case of the third

group, which seems to have evolved with the isolates from the

2015 Russian outbreak and showed high mutation rates compared

to the reference strain.

A notable aspect of LSDV evolution is the emergence of

recombinant strains, particularly in countries like Russia, China

and Thailand (Ma et al., 2022; Seerintra et al., 2022). Recombinant

viruses are significant because of their ability to adapt to new

suitable hosts and can be more virulent. For example, Sprygin

et al. (2018) reported similar recombinant strains in Russia, which

likely contributed to the rapid spread and increased virulence of

LSDV in the region (Sprygin et al., 2018). Shumilova et al. (2022)

identified a similar recombinant strain in the Saratov region of

Russia in 2019 that indicated the virus successfully overwintered the

climatic conditions of Russia and caused the outbreak in the region,

showing the constant survival and spread of the disease (Shumilova

et al., 2022). In Thailand, recombinant strains such as OR347834.1

(Thailand 2021) suggest ongoing viral evolution, likely facilitated by

the proximity of large livestock populations and frequent trade

interactions between Thailand, India, and China. This is supported

by Lubinga et al. (2014), who noted that the ability of LSDV to adapt

rapidly through recombination has made its eradication in affected

regions particularly challenging (Lubinga et al., 2014). Previous

studies have highlighted the importance of recombination in the

evolution of poxviruses like LSDV (Tuppurainen et al., 2017).

LSDV’s ability to spread and adapt across various regions is

evident in its evolutionary trends. In China, the emergence of

recombinant strains like OM803091.1 indicates the virus’s

capacity to adapt to new regions and host populations. For

instance, LSDV has been identified in several other species.

Sudhakar et al. (2023) identified LSDV in freerange Indian

gazelles, Reddy et al. (2023) identified LSDV in the yak, and more

recently, LSDV was reported for the first time in Mithun by Reddy

et al. (2024), this shows the ability of the poxviruses to undergo

rapid genome recombination that might lead to their adaptation to

new hosts as shown by Moss (1996), and particularly here in LSDV,

the identification of the recombinant strain with combining

sequences from a wild-type field strain and a vaccine strain in

Russia by Sprygin et al. (2018) (Moss, 1996; Sprygin et al., 2018;

Manjunatha Reddy et al., 2023; Sudhakar et al., 2023; Reddy et al.,

2024). This identification of LSDV in different species suggests the

possible interspecies transmission of LSDV just like other pox

viruses, as seen in the case of PPRV (Lembo et al., 2013; Dao

et al., 2022). This shows the host-jumping nature of the LSDV and

further emphasizes LSDV’s adaptability to wide hosts.

The temporal aspect of LSDV evolution is also noteworthy, as

the virus has displayed a pattern of increased incidence and

geographical spread over the last few decades. For instance,

significant outbreaks have been documented in the Middle East

between 2012 and 2015, with a notable increase in cases reported in

subsequent years (Alkhamis and VanderWaal, 2016). The

emergence of LSDV in new regions, such as Southeast Asia and
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China, underscores the need for continuous monitoring and

research to understand the dynamics of its evolution and spread

(Wei et al., 2023).

DNA viruses are more stable and less frequently mutated than

RNA viruses. However, the recent outbreaks of LSDV in the

country are alarming and show the frequent mutation and

recombination of the virus that happened in the previous decade.

The number of mutations between these haplogroups demonstrates

the virus’s inclination for genetic diversity. The cumulative

variations in the genomes may have led to the recent epidemic

observed in the country. Thus, continuous monitoring of the viral

genome is necessary to control the disease. This study gives us an

overview of the evolutionary network through haplogroups,

haplotypes, and their geographical locations.

Phylogenetic analysis revealed the presence of eight distinct

clusters among the isolates. The observed trends in the genetic

variation across the clusters suggest several key inferences. First, the

geographical distribution of isolates plays a significant role in

shaping the variant landscape, with distinct patterns of genetic

variation observed in different regions, such as India, China, Africa,

and Eurasia. Synonymous mutations were predominant across

most clusters, indicating a possible selective advantage in

maintaining protein function while allowing for genetic diversity.

The LSDV147–156 gene region emerged as a mutation hotspot,

highlighting its potential importance in viral evolution and host

adaptation. Notably, a recent pan-GWAS analysis further identified

LSDV001/LSDV156, LSDV004/LSDV153 and LSDV002/LSDV155

—as potential contributors to the presence or absence of pan-

genome genes and observed phenotypes across different clades (Xie

et al., 2024). Finally, the minimal genetic diversity observed in

Cluster 1.2_KSGPO points to a conserved genomic structure or a

recent common ancestor, suggesting limited variation within

this group.

The TCS network analysis has revealed several distinct

haplotypes are evident with clear geographic clustering. The

reference sequence is grouped in Haplogroup 1, consisting of 3

genome sequences from Kenya. Haplotype 33 is the most prevalent

group, with 13 sequences, followed by haplotype 29 and 36 with 7

identical sequences. South Africa has a maximum number of

representations of haplotypes, with 12 from a total of 21

sequences, followed by India, with 11 from a total of 21

sequences. Haplotype 13 is present in 4 Balkan countries Albania,

Greece, Serbia, and North Macedonia. The 3 Indian strains that

formed a separate cluster in the phylogenetic tree are grouped in

haplotype 62. This shows that multiple haplotypes are circulating in

the regions. These results align with previous findings on

capripoxviruses, where genetic diversity among strains is often

shaped by livestock movement and trade (Tuppurainen and

Oura, 2012). The geographical distribution of haplogroups

provides interesting insights into LSDV distribution worldwide.

The complex evolutionary dynamics found in LSDV, together with

its genetic diversity, provide hurdles to effective disease control.

While successful in some areas, current vaccinations may not

significantly protect against all circulating strains. The

geographical distribution of LSDV strains and the virus’s
Frontiers in Cellular and Infection Microbiology 10
propensity to recombine and form new varieties underscores the

need for regional, rather than worldwide, vaccine research efforts.
5 Conclusions

The phylogenetic analysis of the LSDV worldwide sequences

provides a comprehensive understanding of LSDV’s evolutionary

trajectory. From the study, it can be inferred that the virus has

evolved through geographic diversification, recombination events,

and host adaptation and the Indian strains have shown rapid

diversification and share common ancestors with strains from not

only Kenyan origin but also from China and Russia, reflecting

cross-border transmission. The phylogenetic and haplotype

network analysis also revealed species spillover of LSDV strains

with circulation of geographically distinct haplogroups across India.

The divergence between field and vaccine strains emphasizes the

need for ongoing surveillance and vaccine updates to manage the

spread of LSDV. The study highlights the importance of continued

genetic surveillance in identifying emerging strains and informing

vaccine strategies. The virus’s potential to recombine and adapt

functionally emphasizes the need for region-specific management

methods to prevent future outbreaks and reduce economic losses in

affected countries.
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