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Fungal infections are becoming more prevalent globally, particularly affecting

immunocompromised populations, such as people living with HIV, organ

transplant recipients and those on immunomodulatory therapy. Globally,

approximately 6.55 million people are affected by invasive fungal infections

annually, leading to serious health consequences and death. Mitochondria are

membrane-bound organelles found in almost all eukaryotic cells and play an

important role in cellular metabolism and energy production, including

pathogenic fungi. These organelles possess their own genome, the

mitochondrial genome, which is usually circular and encodes proteins essential

for energy production. Variation and evolutionary adaptation within and between

species’ mitochondrial genomes can affect mitochondrial function, and

consequently cellular energy production and metabolic activity, which may

contribute to pathogenicity and drug resistance in certain fungal species. This

review explores the link between the mitochondrial genome and mechanisms of

fungal pathogenicity and drug resistance, with a particular focus on

Cryptococcus neoformans and Candida albicans. These insights deepen our

understanding of fungal biology and may provide new avenues for developing

innovative therapeutic strategies.
KEYWORDS

mitochondrial genome, Cryptococcus neoformans, Candida albicans, pathogenicity,
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Introduction

The rising incidence of fungal infections, with morbidity and mortality rates rising

globally, poses a significant public health challenge (Tu et al., 2021; Fisher et al., 2022; Roe,

2023; Denning, 2024). These infections are not only causing substantial health losses but

also imposing a considerable financial burden. In the United States alone, direct medical

costs are estimated to reach billions of dollars (Koffi et al., 2021; Iliev et al., 2024). The

widespread use of antifungal agents has led to the emergence of drug resistance, which has

now become a critical public health concern. This resistance not only limits treatment
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options for patients but also increases the risk of recurrent

infections and mortality (Kontoyiannis and Lewis, 2002; Lockhart

et al., 2023; Vitiello et al., 2023; Zhang et al., 2023). The World

Health Organization (WHO) has released its first Fungal Priority

Pathogen List (FPPL), focusing on the most threatening global

fungal threats. This has been a major concern for the scientific

community, calling on the global research community to strengthen

research on fungal infections and drug resistance (Fisher and

Denning, 2023; Casalini et al., 2024).

Mitochondria are important organelles in eukaryotic cells, with

the role of ATP production and participation in various cellular

processes (Singh, 2021; Ziegler et al., 2021; Borcherding and

Brestoff, 2023; Ryu et al., 2024). Mitochondria possess their own

genomes, termed the mitochondrial genomes, which enable them to

synthesize a subset of proteins independently of the nucleus

(Sandor et al., 2018; Fu et al., 2020). These proteins play an

essential role in cellular energy metabolism, the respiratory chain,

and various essential biochemical processes (Wallace, 2016; Kim

et al., 2022; Liu et al., 2022; Vercellino and Sazanov, 2022). As

eukaryotes evolved, the mitochondrial genome appeared to vary

considerably among the major eukaryotic taxa (Zardoya, 2020). In

animals, the mitochondrial genomes are typically closed-loop DNA

molecules encoding a small number of genes involved in energy

production (Boore, 1999). Animal mitochondrial genomes

generally lack intergenic regions and introns, rendering them

relatively simple (Miyazawa et al., 2021; Pimentel et al., 2024).

However, exceptions have been reported in some metazoans with

regenerative abilities, such as placozoans and bryozoans (Jenkins

et al., 2022). In contrast, the mitochondrial genome of plants is

primarily in the form of closed circular DNA molecules containing

intergenic regions and varying numbers of introns (Kan et al., 2020;

Grosser et al., 2023). Fungal mitochondrial genomes are more

similar to plant mitochondria than to animal mitochondria in

terms of structure and composition (Sandor et al., 2018). For

example, Saccharomyces cerevisiae is the first fungus reported to

have a cyclic mitochondrial genome and has been extensively

studied (Lipinski et al., 2010). Research related to the role of the

mitochondrial genome in human fungal pathogens is also on the

rise. In pathogenic fungi, the functionality of mitochondria directly

influences their physiological status and pathogenic potential

(Shingu-Vazquez and Traven, 2011; Gao et al., 2022; Alves and

Gourlay, 2024). Mitochondrial proteins are critical for establishing

infection through energy metabolism and efficient oxidative stress

responses (Bambach et al., 2009; Verma et al., 2018; Soggiu et al.,

2019; Zhai et al., 2021). There is also a link between mitochondria

and the resistance to antibiotic drugs in pathogenic fungi (Shingu-

Vazquez and Traven, 2011; Li et al., 2020; Song et al., 2020; Zhang

et al., 2021). The introns of the mitochondrial genome, the stability

of the genome, and the generation of reactive oxygen species (ROS)

as byproducts can all influence the ability of pathogenic fungi to

infect hosts and resist antibiotic drugs (Yildiz and Ozkilinc, 2020;

Liu and Pyle, 2021, 2024). In this review, we will focus on outlining

the composition and diversity of the mitochondrial genome of

pathogenic fungi, the relationship between fungal mitochondrial

genome and pathogenicity, and the impact of fungal mitochondrial
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genome on their drug resistance, with a particular focus on the

human opportunistic pathogens Cryptococcus neoformans and

Candida albicans. This review provides valuable information for

future studies of fungal mitochondrial systems as well as innovative

new therapeutic strategies.
Mitochondrial genome structure and
diversity in pathogenic fungi

Fungal mitochondrial genomes typically exhibit a single

circularly mapped chromosome, near-standard bacterial-like

tRNA and rRNA structures, and a minimal genetic code (Fonseca

et al., 2021; Tang et al., 2024). These mitochondrial genomes encode

essential genes required for oxidative phosphorylation and other

mitochondrial functions (Lavin et al., 2008; Sandor et al., 2018).

Variations in core gene count and organization, along with

intergenic region sequences, considerably affect the size of

fungal mitochondrial genomes (Aguileta et al., 2014; Franco et al.,

2017; Korovesi et al., 2018; de Almeida et al., 2021; Tang et al.,

2024). Animal mitochondrial genomes are relatively small,

ranging from 14 kb to 20 kb, while plant mitochondrial genomes

are larger, ranging from 180 kb to 600 kb (Boore, 1999; Morley

and Nielsen, 2017). Fungal mitochondrial genomes fall between

these two size ranges, varying from 11,223 bp in Hanseniaspora

pseudoguilliermondii to 332,165 bp in Golovinomyces cichoracearum

(Zaccaron and Stergiopoulos, 2021; Christinaki et al., 2022). Most

proteins encoded by fungal mitochondrial genomes are key

components of oxidative phosphorylation. Nevertheless, there are

obvious differences in the amount of these proteins at the species

level. For example, seven proteins are encoded in the mitochondrial

genome of the model yeast S. cerevisiae (Foury et al., 1998; De Chiara

et al., 2020) or the related human pathogen Candida glabrata (Koszul

et al., 2003). However, the mitochondrial genomes of the pathogens

Cryptococcus deneoformans and Cryptococcus deuterogattii encode 13

proteins (Ma and May, 2010), and the mitochondrial genomes of

Aspergillus and Penicillium encode 14 proteins (Joardar et al., 2012).

Introns are the main drivers of size variations in fungal mitochondrial

genomes. They are widely present in these genomes and are generally

classified into Group I and Group II based on RNA secondary

structure (Saldanha et al., 1993; Gomes et al., 2023). Variation in

intron content is observed even within the same fungal genus. The

number of introns, including the COX1, COX2, COX3, NAD1 and

NAD5 genes, varies considerably between species and occasionally

within a single species. Notably, the COX1 gene is an important

reservoir for introns (Ye et al., 2020; Tan et al., 2022), known as a key

place where introns are stored. The heterogeneity of mitochondrial

introns is closely linked to species evolution. In genera likeAspergillus

and Penicillium, intron addition and deletion occur in a cyclic

manner (Nielsen et al., 2004; Joardar et al., 2012). In the Cordyceps

militaris strain, each intron in the mitochondrial genome may have

experienced one to four gain and/or loss events (Zhang et al., 2015).

Research indicates that, although the large subunit of ribosomal RNA

(LSU rRNA) genes in the majority of fungal species contain highly

conserved introns, certain Candida species do not possess these
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introns. This observation implies a correlation between the presence

of introns and evolutionary development, emphasizing important

variability both among different species and within individual species

(Miletti and Leibowitz, 2000; Krol et al., 2019). A recent study used an

RNA structure-based bioinformatics approach to identify Group I

introns in key mitochondrial genes of pathogenic fungi, including all

high-priority pathogens identified by theWorld Health Organization.

The study also assessed the prevalence of these introns in different

fungal phylogenies and their fixation within a few genetic hotspots

(Liu and Pyle, 2024). It was also found that in C. albicans and

Candida auris, the splicing catalysis of these introns demonstrated

greater efficiency compared to previously identified group I introns.

Also, these introns exhibited rapid catalytic turnover under ambient

temperatures and physiological concentrations of magnesium ions

(Liu and Pyle, 2024). This finding implies a potential close

relationship between introns and the environmental adaptability of

pathogenic fungi.

The human pathogenic fungus C. neoformans possesses a

mitochondrial genome that ranges in size from 24,740 to 31,327

base pairs (Wang and Xu, 2020). The mitochondrial genome

contains 17 genes, exhibiting a conserved gene order across

closely related species, such as C. deneoformans and Cryptococcus

gattii (Litter et al., 2005; Ma and May, 2010). This genome

encompasses genes responsible for proteins involved in the

electron transport chain, ATP synthesis, and genes encoding

the mitochondrial ribosomal protein S3 (Rps3) and the small and

large subunits of mitochondrial ribosomal RNA (Wang and Xu,

2020). Comparative genomics has revealed that a 40 kb region

containing 14 genes was transferred from var. grubii to var.

neoformans (Kavanaugh et al., 2006). These two varieties diverged

approximately 18 million years ago (MYA) and share 85-90%

nucleotide identity at the genomic level. This nearly identical

region is prevalent in most clinical and environmental var.

neoformans strains globally and the result of a non-reciprocal

transfer event from var. grubii to var. neoformans about 2 MYA.

This genetic exchange likely occurred through a hybrid

intermediate, potentially formed by incomplete sexual cycling

between the variants (Kavanaugh et al., 2006). A study by Yue

Wang et al. analyzed 184 sequenced mitochondrial genomes from

C. neoformans isolates and revealed variations in size, intron

distribution, and single nucleotide polymorphisms in the

mitochondrial genomes of Cryptococcus complex (Wang and Xu,

2020). This genetic diversity is likely associated with the fungal

geographic distribution, ecological niche, mating type, and genetic

lineage. These variability traits of mitochondrial genomes provide

important sights into the genetic diversity and evolution of

Cryptococcus (Wang and Xu, 2020). The mitochondrial genome

of C. neoformans shows evidence of frequent intron gains and losses

throughout its evolutionary history, as indicated by the distribution

and phylogenies of introns and their corresponding exons. The

occurrence of self-scissoring introns within mitochondrial genes

differs across various complexes and genotypes, presumably as a

result of recurrent intron loss and gain events during the homing

mechanism (Gomes et al., 2023). In the mitochondrial genomes of

C. neoformans and C. gattii, Group I introns are primarily
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distributed in the COB and COX1 genes, with varying frequencies

among different genotypes and species. For example, the VNIII

genotype, a cross between C. neoformans and C. deneoformans,

exhibits the highest intron frequencies in four loci of mtLSU, two

loci of COB, and five loci of COX1. In contrast, lower intron

frequencies were observed in the more virulent and frequently

isolated VNI genotype in clinical samples worldwide (Gomes

et al., 2023). Phylogenetic analyses of COB and COX1 introns

reveal that introns occupying the same insertion site form well-

defined monophyletic groups. Introns located at the first insertion

site in COB exhibit greater similarities to one another, whereas

those at the second insertion site reveal a similar pattern (Gomes

et al., 2023). A survey of Group I introns in the mitochondrial LSU

rRNA genes of 77 C. neoformans and C. gattii isolates identified two

new introns in the LSU rRNA genes. These introns form a

monophyletic group closely related to the COX1 introns of

certain ascomycete and basidiomycete genera. The structures and

sequences of these introns differ from known introns, and their

presence is highly associated with pathogenicity and antifungal

resistance, suggesting a unique evolutionary history (Gomes

et al., 2018).

C. albicans is a common commensal and opportunistic

pathogenic fungus, and its mitochondrial DNA molecule is 41 kb

in size (Jones et al., 2004). This dimorphic fungus is petite-negative,

meaning that the absence of mitochondrial DNA renders it non-

viable (Bulder, 1964; Chen and Clark-Walker, 2000; Joers et al.,

2007). Its mitochondrial genome contains genes encoding complex

I subunits that have been lost in closely related fungi, such as in S.

cerevisiae and Saccharomyces pombe (Nosek and Fukuhara, 1994;

Anderson et al., 2001). The mitochondrial genome of C. albicans

has a GC content of approximately 32%, a characteristic shared by

many other yeasts (Kolondra et al., 2015), suggesting that it has

been conserved to some extent during evolution. Within this

mitochondrial genome, GC-enriched fragments are typically

dispersed as clusters of short palindromic sequences that may

adopt hairpin structures, serving as mobile genetic elements and

regulatory signals (Kolondra et al., 2015). The mitochondrial

genome of C. albicans primarily exists as multiple head-to-tail

tandems and includes 14 genes for subunits of the oxidative

phosphorylation pathway, two ribosomal RNA genes, and 24

tRNA genes (Gerhold et al., 2010; Kolondra et al., 2015). The

protein-coding genes encompass subunits of NADH dehydrogenase

(Complex I), cytochrome c oxidase (Complex IV), and ATP

synthase (Complex V). The mitochondrial genome has a limited

number of introns, specifically two in the RNL gene, two in the COB

gene, and four in the COX1 gene (Kolondra et al., 2015). The

genome consists of two main coding regions: the short coding

region (SCR) and the long coding region (LCR), along with two

inverted repeat regions (IRa and IRb). These non-coding regions

exhibit limited transcriptional activity in RNA sequencing, confined

to a few short segments (Kolondra et al., 2015). In C. albicans,

mitochondrial intergenic regions are useful for examining

microvariation (Bartelli et al., 2013). A study conducted the

sequencing of mitochondrial genomes from two clinical isolates

of C. albicans, revealing 372 polymorphic sites. Of these, 230 were
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1576485
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ni and Gao 10.3389/fcimb.2025.1576485
located within coding regions and 142 within non-coding regions,

indicating a notable presence of neutral substitutions. The high

variability and size differences in these non-coding regions, with up

to a 56 bp size difference, indicate that they may be subject to

neutral evolution (Bartelli et al., 2013). Another study sequenced

seven regions of the mitochondrial genomes from 36 C. albicans

strains and identified 66 polymorphic sites, resulting in the

construction of 19 distinct haplotypes. Notably, strains sharing

the same mitochondrial haplotypes were found across various

geographic regions. The absence of a strong correlation between

mitochondrial haplotypes and the origin of strains, whether

geographic or anatomical, indicates considerable mobility

among various populations (Jacobsen et al., 2008). These findings

suggest that the distribution of mitochondrial haplotypes in C.

albicans is probably independent of geographic distribution or host

specificity. Therefore, caution is advised when employing

mitochondrial haplotypes in phylogenetic studies of C. albicans. A

study of mitochondrial genomes from sequenced C. albicans

isolates representing different sites of infection and countries of

origin showed that, in addition to the nuclear genome, the

mitochondrial genome also undergoes genetic recombination.

This indicates that the mitochondrial genome of C. albicans

exhibits variability, influenced by sexual or parasexual mating

processes (Wang et al., 2018).
Mitochondrial genome and
pathogenic mechanisms

Human fungal pathogens are responsible for severe, life-threatening

diseases and predominantly exhibit aerobic characteristics. Therefore,

the morphology, genetics, and metabolism of their mitochondria are

essential for their survival in environmental contexts and during

infections in hosts (Alspaugh, 2015; Chang and Doering, 2018; Song

et al., 2020; Rokas, 2022; Thambugala et al., 2024). Mitochondrial

dynamics, including their fusion and fission, can impact fungal

virulence (Chang and Doering, 2018; Liang et al., 2018). For instance,

in C. albicans, loss of FZO1, which is involved in mitochondrial fusion,

leads to increased susceptibility to peroxide stress and altered drug

susceptibility (Thomas et al., 2013). Similarly, in Aspergillus fumigatus, a

conditional mutant strain of the essential geneMgm1, encoding another

GTPase required for mitochondrial fusion, was completely devoid of

virulence (Neubauer et al., 2015). Thus, understanding the functional

diversity of fungal mitochondria can provide valuable insights into their

biology and pathogenic mechanisms, potentially leading to more

effective treatments for fungal infections.

The mitochondrial function of C. neoformans is directly related

to the pathogenicity (Figure 1). Specifically, the disruption of

mitochondrial fusion attenuates the resistance to oxidative and

nitrosative stresses and the virulence of C. neoformans (Chang

and Doering, 2018). The correlation between the mitochondrial

genomes of pathogenic fungi and their virulence is complex.

Abnormal expression of mitochondrial genome genes can affect

the pathogenicity of Cryptococcus. The increased atypical

expression of the mitochondrial genome-encoded NADH
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dehydrogenase gene, caused by a mutation of the NADH

dehydrogenase subunit 1 promoter, leads to heightened ATP

production, accelerated metabolic activity, and enhanced

virulence in Cryptococcus (Merryman et al., 2020). Besides, the

recombination of mitochondrial genomes may affect the virulence

of fungal populations. In Cryptococcus species, there is a

recombination event of mitochondrial genome in every VNIa-5

isolate, which is associated with disease in HIV-uninfected patients,

but not in every non-VNIa-5 isolate, indicating mitochondrial

genome recombination may contribute to the emergence of more

virulent strains (Ashton et al., 2019). Recent findings indicate that

homing endonuclease genes contribute to variations in intron sizes

within the mitochondrial LSU rRNA gene of Cryptococcus species.

These differences may play a role in mitochondrial functionality,

potentially affecting virulence (Gomes et al., 2018). The study by

Gomes et al. identified two novel introns in the mitochondrial LSU

rRNA gene of C. neoformans. Notably, the presence of these introns

was statistically associated with genotypes reported to be less

pathogenic, indicating a potential link between intron presence

and reduced virulence (Gomes et al., 2018). Another study revealed

evidence of frequent gains and losses of mitochondrial introns

during the evolution of C. neoformans (Gomes et al., 2023). This

indicates a dynamics evolutionary process that could be associated

with the fungal adaptation to various host environments and its

potential for pathogenicity. Introns within mitochondrial genes can

influence the expression of proteins essential for energy production

and the response to oxidative stress, both of which are essential for

the survival of C. neoformans in hostile environments (Fox, 2012;

Chang and Doering, 2018; Gomes et al., 2023). The mitochondrial

genome is involved in the production of ROS and the ability to

manage excessive ROS is also critical for C. neoformans to survive

the hostile environment (Meng and Ding, 2023). The

overexpression of the protein encoded by the mitochondrial

genome notably enhanced resistance to increased levels of ROS

induced by heat stress, enabling C. neoformans to endure high

temperatures during host infection (Gao et al., 2022). Nevertheless,

the complex relationship between the mitochondrial genome and

the virulence of Cryptococcus remains largely known and requires

further investigation.

In C. albicans, genetic diversity within the mitochondrial

genomes can have a substantial impact on its pathogenicity by

altering the efficiency of energy metabolism, morphological

transitions, and responses to oxidative stress (Noble et al., 2010;

Bonhomme et al., 2011; Brown et al., 2014; Dantas Ada et al., 2015;

Grahl et al., 2015) (Figure 1). Energy metabolism plays a critical role

during the transition from yeast to hyphae, a process that requires

substantial ATP levels and is essential for tissue invasion and

damage within the host (Alonso-Monge et al., 2024). It has been

reported that reduced respiratory capacity due to mutations in the

mitochondrial complex of C. albicans attenuates its fitness and

virulence (Sun et al., 2019). Moreover, mitochondrial mutants of C.

albicans exhibited reduced virulence in a mouse model of

disseminated disease, while the virulence of all respiratory

mutants was similarly diminished in the Galleria mellonella

infection model (Bambach et al., 2009; Becker et al., 2010; She
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et al., 2015; Sun et al., 2019). Biofilm is the key virulence factor for

C. albicans and linked to increased resistance to oxidative stress

due to the production of ROS, with mitochondria being the primary

source of ROS in eukaryotic cells (Seneviratne et al., 2008;

Gulati and Nobile, 2016; Pemmaraju et al., 2016), which

indicates a link between mitochondrion and biofilm formation.
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In addition, mitochondria function as the antioxidant defense

system, safeguarding the cell from oxidative damage due to

immune system in C. albicans. In C. albicans strains exhibiting

compromised mitochondrial function, there is a decrease in the

copy number of the mitochondrial genome, accompanied by an

increase in ROS levels. This abnormal ROS level compromises
FIGURE 1

The correlation between mitochondria and the pathogenicity of fungi. In C. neoformans, the process of mitochondrial fusion is associated with pathogenicity.
Elevated expression of the mitochondrial genome-encoded NADH dehydrogenase gene increases ATP levels while reducing ROS level, thereby enhancing
virulence. Mitochondrial genome recombination may facilitate the emergence of more virulent strains. The presence of two novel introns in the mitochondrial
LSU rRNA gene correlates with attenuated pathogenicity. In C. albicans, the yeast-to-hypha transition necessitates high ATP level, and ROS can
inhibit this process. Mitochondrial genome evolution may contribute to the important consequences for host adaption. Mitochondrial genome
methylation, recognized as a new epigenetic mechanism, can drive adaptive changes in the mitochondrial genome. (Created with BioRender.com).
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hyphal formation and alters interaction with macrophages, thereby

reducing the virulence of the infection (Liang et al., 2018). Genome

evolution in C. albicans, including changes in the mitochondrial

genome such as the accumulation of point mutations, loss of

heterozygosity (LOH) events, large-scale chromosomal

rearrangements, and even ploidy change, may enhance its ability

to survive and reproduce in different host environments (Selmecki

et al., 2006; Wu et al., 2007; Ford et al., 2015; Bartelli et al., 2018; Ene

et al., 2019). Mitochondrial genome methylation in C. albicans has

been identified as a novel epigenetic mechanism for the adaptive

changes in the mitochondrial genome (Bartelli et al., 2018).

Researchers have observed that environmental conditions, such as

continuous exposure to hypoxia and 37°C, can decrease

mitochondrial genome methylation in strains SC5314 and L757

(Bartelli et al., 2018). This process is closely related to the

pathogenicity of Candida, as strains that are able to grow and

reproduce rapidly are more likely to cause infections. This

decreased methylation varies across strains at specific genome

locations (Bartelli et al., 2018), suggesting that this response may

be lineage-specific and related to the adaptation and different

pathogenicity of these strains. However, more direct evidence is

needed to further validate whether the altered methylation levels of

these loci can directly affect the pathogenicity and environmental

adaptability of C. albicans.
Mitochondrial genome and drug
resistance

Fungal drug resistance presents a serious and growing

challenge in the medical field (Fisher et al., 2022). This

resistance is a complex phenomenon influenced by multiple

mechanisms that enable fungi to endure and flourish in the

presence of antifungal agents. Acquired resistance often involves

mutations in target protein binding sites, alterations in drug

targets, and the activation of drug efflux mechanisms (Lockhart

et al., 2023; Zhang et al., 2023). The mitochondrial function is

closely related to the drug resistance in fungi. In S. cerevisiae, the

lack of the mitochondrial genome results in an obvious

upregulation of PDR5, a gene that encodes an ATP-binding

cassette (ABC) transporter essential for the efflux of antifungal

agents, finally enhancing drug resistance (Moye-Rowley, 2005;

Rahman et al., 2018; Harris et al., 2021). For pathogenic fungi,

such as C. glabrata, the loss of the mitochondrial genome can

result in increased drug resistance (Sanglard et al., 2001; Batova

et al., 2008; Ferrari et al., 2011). In A. fumigatus, mitochondrion

fission mutant strains exhibit increased resistance to azole drugs

(Valero et al., 2020). The loss of mitochondrial genome can also

disrupt lipid biosynthesis and subsequently alter membrane

permeability, influencing the fungal response to antifungal

agents (Calderone et al., 2015; Rella et al., 2016). For C.

neoformans and C. albicans, the loss of mitochondrial function

due to tetracycline treatment can increase the susceptibility of C.

neoformans and C. albicans to amphotericin B, a powerful

antifungal agent widely used in clinical settings to treat severe
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fungal infections (Oliver et al., 2008), suggesting the relationship

between mitochondrial function and drug resistance varies among

different pathogenic fungi.

C. neoformans, like other pathogenic fungi, exhibits drug

resistance that is closely associated with mitochondrial functions

(Figure 2). Research has shown that azoles kill C. neoformans by

increasing intracellular level of ROS, which are mainly produced by

mitochondria (Peng et al., 2018), implying a link between

mitochondrion and drug resistance. Impaired mitochondrial

fusion in C. neoformans results in severe growth defects under

hydrogen peroxide stress and is associated with reduced resistance

to antifungal agents (Chang and Doering, 2018). Also, a study has

pointed out that Cryptococcal mitochondria play a unique role in

drug resistance. Age-dependent increases in mitochondrial ROS

resulted in regulatory changes in membrane transport proteins and

ergosterol synthesis, which enhanced fluconazole tolerance in old

Cryptococcus cells (Yoo et al., 2024). Thus, ROS have a complex

regulatory role in antifungal drug tolerance in C. neoformans, with

drug-induced ROS inhibiting fungal growth and endogenous ROS

in old C. neoformans cells enhancing resistance to antifungals.

Therefore, further studies are needed to determine whether the

differential effects of ROS on drug resistance are due to differences

in the types of ROS produced under various conditions.

Additionally, dysfunctional mitochondria in C. neoformans have

been reported to result in reduced mitochondrial membrane

potential, increased susceptibility to oxidative stress, while

enhanced tolerance to fluconazole (Telzrow et al., 2023),

indicating a complex relationship between mitochondrial function

and drug resistance. The mitochondrial genome exhibits a profound

relationship with antifungal resistance in C. neoformans. The

investigation focused on group I introns in the mitochondrial

LSU rRNA gene and their association with drug susceptibility in

77 Cryptococcus isolates, revealing that two novel introns in the LSU

rRNA gene may influence the minimum inhibitory concentration of

amphotericin B and 5-flucytosine (Gomes et al., 2018). This

indicates that group I introns in the mitochondrial genome of

Cryptococcus may represent valuable molecular markers and

therapeutic targets considering antifungal resistance (Gomes

et al., 2018). Also, in the process of asexual reproduction, C.

neoformans passes its mitochondrial genome from parent cells to

their progeny. This mechanism can lead to the emergence of new

mutations within the mitochondrial genome, especially when

subjected to selective pressures like antifungal treatments (Dong

et al., 2019; Hua et al., 2019; Wang and Xu, 2020).

In C. albicans, deficiencies in mitochondrial fusion and a

substantial decline in mitochondrial genome maintenance are

linked to diminished resistance to azole antifungals, indicating a

connection between the integrity of the mitochondrial genome and

drug resistance (Ror and Panwar, 2019), suggesting a relationship

between the integrity of the mitochondrial genome and drug

resistance (Figure 2). The mitochondrial genome is important for

respiration and ROS production, both key to developing drug

resistance. Mutations in the mitochondrial complex of C. albicans

lead to reduced respiratory capacity, thereby decreasing its ability to

resist azole drugs (Shingu-Vazquez and Traven, 2011; Sun et al.,
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2013; Thomas et al., 2013; Sun et al., 2019). The function of efflux

pumps for antifungal medications requires energy, indicating a

possible relationship between the mitochondrial genome and

the regulation of drug efflux pump activity (Guo et al., 2014,

2017). In azole-tolerant C. albicans, elevated mitochondrial

aerobic respiration is associated with an increase in ATP levels,

indicating a greater transfer of ATP from the mitochondria to

the cytoplasm (Guo et al., 2017). This ensures that drug efflux

pumps have a greater supply of available ATP, thereby enhancing

intracellular azole efflux. A study has indicated that photodynamic

treatment (PDT) presents a promising therapeutic option for

C. albicans, particularly in light of its multi-drug resistance

profile. Notably, the respiratory-deficient strain of C. albicans

demonstrated an increased susceptibility to PDT compared to

its parental strain (Chabrier-Rosello et al., 2008). This finding

suggests that the integrity of the mitochondrial genome may play

an essential role in the varying responses of C. albicans to different

therapeutic approaches.

Although few antifungals currently target the mitochondrial

genome directly, several mitochondrion-targeting drugs have shown

potential as antifungals (Qin et al., 2023) (Figure 3). These agents
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target unique proteins in the electron transport chain, which are

considered promising antifungal targets. For example, T-2307, which

inhibits complexes CIII and CIV of the electron transport chain, is in

phase II clinical trials, indicating its potential to overcome drug

resistance (Shibata et al., 2012; Gerlach et al., 2021). Preclinical

agents such as ML316, which targets the mitochondrial phosphate

carrier Mir1, exhibit potential in enhancing the effectiveness of current

antifungal treatments (McLellan et al., 2018). Licicolin H is a highly

effective, broad-range antifungal agent that specifically targets

cytochrome bc1 reductase (mitochondrial respiratory complex III).

It has shown major inhibitory effects against various species,

including Candida, Cryptococcus, and Aspergillus (Singh et al.,

2012, 2013). Similarly, indazole compounds Inz-1 and Inz-5

inhibit cytochrome bc1, reducing the mitochondrial respiration of

C. albicans (Vincent et al., 2016). However, the connection between

the mitochondrial genome and drug resistance in pathogenic fungi

is not yet fully understood. Therapeutic strategies targeting

mitochondrial genome of pathogenic fungi and their encoded

proteins will largely have the potential to improve fungal disease

treatment, because their genomes and products have characteristics

unique to different species.
FIGURE 2

The correlation between mitochondria and antifungal drug resistance. In C. neoformans, azoles exert their antifungal effects by increasing intracellular
levels of ROS. In old cells, elevated endogenous mitochondrial ROS drive resistance to drugs by increasing ergosterol synthesis and upregulating ABC
transporter. The impaired mitochondrial fusion results in reduced resistance to antifungal drugs. Introns in the mitochondrial LSU rRNA gene has an
impact on drug susceptibility for amphotericin B and 5-flucytosine. In C. albicans, defects in mitochondrial fusion and losses in mitochondrial genome
maintenance are associated with diminished resistance to azole drugs. The reduced respiratory capacity diminishes the ability to withstand azole drugs.
ATP supply enhances the efficacy of drug efflux pumps, increasing azole efflux and promoting drug resistance. Solid arrows indicate activation, Arrows
with a perpendicular bar indicate suppression. Dashed arrows with a circular dot indicate dual effects. (Created with BioRender.com).
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Conclusions

Mitochondrial genome structure and
diversity

The mitochondrial genomes of pathogenic fungi display

considerable structural and size variability. Typically circular in

form, these genomes encode important proteins involved in energy

metabolism. Variations in fungal mitochondrial size primarily arise

from differences in introns and intergenic regions, along with

distinctions in core protein-coding genes. The presence of introns

is notable, as they play an important role in contributing to these size

differences, thus contributing to genetic diversity within fungal

mitochondrial genomes. The dynamics characteristics of these

introns, manifested through their acquisition and loss, are

intricately linked to the evolutionary processes of species,

emphasizing the adaptability of fungal mitochondria.
Mitochondrial genomes and pathogenicity

The connection between the mitochondrial genome and

pathogenicity in fungi is complex. In C. neoformans, variations in

mitochondrial genome size, mainly due to the presence of introns,

are associated with levels of virulence. Strains exhibiting defective

tubular mitochondria tend to display reduced virulence

characteristics. Besides, the mitochondrial genome plays a critical

role in the generation and regulation of ROS, which is essential for

the survival of C. neoformans within the host. In the case of C.

albicans, the genetic diversity observed within mitochondrial
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genomes considerably impacts its pathogenic potential. This

impact arises from its influence on the efficiency of energy

metabolism, morphological transitions, and responses to oxidative

stress. These findings emphasize the essential role that the

mitochondrial genome has in fungal pathogenicity.
Mitochondrial function and drug resistance

The mitochondrial function in pathogenic fungi is key for

understanding drug resistance. In C. neoformans, the dysfunction of

mitochondrion and its byproducts ROS has a complex impact on the

resistance to azole drug. In addition, variations in drug susceptibility are

linked to introns found in themitochondrial LSU rRNA gene, indicating

that these introns could be used as molecular markers for antifungal

resistance. In C. albicans, mutations affectingmitochondrial morphology

result in reduced resistance against azole drugs. Importantly, the

mitochondrial genome plays a role in respiration and ROS

production, which is related to drug resistance. However, the direct

connection between antifungal drug resistance and the mitochondrial

genome remains largely unexplored. More studies are needed to

determine whether the mitochondrial genome could be targeted to

create better therapeutic strategies for managing fungal infections.
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