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Introduction: Sepsis-induced coagulopathy (SIC) is a common disease in

patients with sepsis. It denotes higher mortality rates and a poorer prognosis in

these patients. This study aimed to develop a practical machine learning (ML)

model for the prediction of the risk of SIC in critically ill patients with sepsis.

Methods: In this retrospective cohort study, patients were extracted from the

Medical Information Mart for Intensive Care IV (MIMIC-IV) database and the Inner

Mongolia Autonomous Region People’s Hospital database. Sepsis and SIC were

defined based on the Sepsis-3 criteria and the criteria developed based on the

International Society of Thrombosis and Haemostasis (ISTH), respectively. We

compared nine ML models using the Sequential Organ Failure Assessment

(SOFA) score in terms of SIC prediction ability. Optimal model selection was

based on the superior performance metrics exhibited by the model on the

training dataset, the internal validation dataset, and the external validation dataset.

Results:Of the 15,479 patients in MIMIC-IV included in the final cohort, a total of

6,036 (38.9%) patients developed SIC during sepsis. We selected 17 features to

construct ML prediction models. The gradient boosting machine (GBM) model

was deemed optimal as it achieved high predictive accuracy and reliability across

the training, internal, and external validation datasets. The areas under the curve

of the GBM model were 0.773 (95%CI = 0.765–0.782) in the training dataset,

0.730 (95%CI = 0.715–0.745) in the internal validation dataset, and 0.966 (95%CI

= 0.938–0.994) in the external validation dataset. The Shapley Additive

Explanations (SHAP) values illustrated the prediction results, indicating that

total bilirubin, red cell distribution width (RDW), systolic blood pressure (SBP),

heparin, and blood urea nitrogen (BUN) were risk factors for progression to SIC in

patients with sepsis.

Conclusions: We developed an optimal and operable ML model that was able to

predict the risk of SIC in septic patients better than the SOFA scoring models.
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1 Introduction

Sepsis is a serious syndrome that accompanies severe infection

and has significant morbidity and mortality in the intensive care

unit (ICU), often initiated by a localized infection that induces a

systemic inflammatory response syndrome (SIRS) (Levi et al.,

2003). It is characterized by a life-threatening organ dysfunction,

which is caused by a dysregulation of the host’s response to

infection. It is estimated that more than 19 million people suffer

from sepsis each year, and it has become one of the major threats to

human mortality (Mithal et al., 2022). Currently, the hospital

mortality of adults with sepsis is approximately 189/100,000

person-years, while the ICU mortality is as high as over 42%

(Fleischmann-Struzek et al., 2020).

Sepsis-induced coagulopathy (SIC) is regarded as the earliest

and the most common complication of sepsis, which leads to the

formation of thrombus and coagulation dysfunction (Qin and Dun,

2021). Coagulopathy is present in 50%–70% of patients with sepsis

(MaChado and Silva, 2006). It is a significant complication of sepsis

that increases the risk of thrombosis, exacerbates organ failure, and

raises the mortality rates (Levi and Ten Cate, 1999; Levi and van der

Poll, 2017; Lyons et al., 2018). SIC mortality reaches 23.1% (Iba

et al., 2019b). These studies underscore the importance of promptly

identifying risk factors that lead to SIC.

SIC criteria were developed by members of the Scientific and

Standardization Committee (SSC) on disseminated intravascular

coagulation (DIC) of the International Society of Thrombosis and

Haemostasis (ISTH) in 2017 (Iba et al., 2017) (Supplementary Table

S1), which were designed to identify patients with “sepsis and

coagulation disorders.” The criteria are a scoring system. SIC is

defined as a score ≥4. It was observed that the mortality rate

increased along with the increase in the SIC score, and it

surpassed 30% when the score reached 4 (Iba et al., 2017). SIC is

more relevant than DIC for the updated Sepsis-3 criteria (Iba et al.,

2019a). It is therefore of utmost importance to identify patients with

SIC early. However, the SIC score mainly serves as a diagnostic

system, and there is still a lack of reliable predictive tools for SIC in

clinical practice.

In recent years, the prevalence of electronic health records

(EHRs) and the development of artificial intelligence (AI) have

provided opportunities for clinical medical research (Ngiam and

Khor, 2019), and the medical domain has witnessed significant

advancements in AI technology, with machine learning (ML)

algorithms assuming a pivotal role as a fundamental component

of AI. ML models are algorithms that enable computers to learn

from data and make predictions. They are categorized into

supervised, unsupervised, semi-supervised, and reinforcement

learning. Supervised models use labeled data for training, while

unsupervised models find patterns in unlabeled data. Semi-

supervised models combine both, while reinforcement models

learn through trial and error. These models are used in various

fields such as healthcare, finance, and marketing to solve complex

problems and make data-driven decisions (LeCun et al., 2015). At

present, scholars are primarily dedicated to investigating the

development and verification of the mortality and prognostic
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models for critically ill patients with SIC. However, there is a lack

of research on a clinical risk prediction model for critically ill

patients with SIC.

To bridge this knowledge gap, this study was conducted to

investigate the risk factors that influence coagulopathy in patients

with sepsis. More specifically, nine ML algorithms and Sequential

Organ Failure Assessment (SOFA) scoring were employed to

develop and validate early warning models for critically ill

patients with SIC, subsequently evaluating their predictive efficacy

to identify the most optimal model.

This study utilized both domestic and international medical big

data analysis to identify the risk factors for patients with SIC and to

establish an operable prediction model. The aim was to identify the

early risk factors for the development of SIC, thereby enabling

timely and effective interventions and preventive measures to

hinder the progression of sepsis to SIC, ultimately improving

patient survival rates.
2 Methods

2.1 Ethical approval

The Medical Information Mart for Intensive Care IV (MIMIC-

IV) database is a third-party, anonymized publicly available

database with preexisting Institutional Review Board (IRB)

approval. For the Inner Mongolia Autonomous Region People’s

Hospital data, approval was obtained from the Ethics Committee of

the same hospital.
2.2 Source of data and participants

An open and free critical care database, the MIMIC-IV, which

contained comprehensive clinical data of patients admitted to the

Beth Israel Deaconess Medical Center in Boston, Massachusetts,

between 2008 and 2019, was retrieved (Goldberger et al., 2000).

The other database comprises de-identified health data from ICUs

across the Inner Mongolia Autonomous Region between 2015 and

2020. The study was reported according to the recommendations of

the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) statement (Collins

et al., 2015).

For sepsis, we retrieved adult sepsis patients (≥18 years old) as

defined according to the Sepsis-3 criteria: 1) existing evidence of

suspected or confirmed infection and 2) SOFA score ≥2. The

exclusion criteria were: 1) age <18 years; 2) pregnant women; 3)

patients with congenital coagulopathy; 4) the coagulation function

was frequently affected by the pathological state of the tumors and

the chemotherapeutic agent used (thus, patients with various cancer

types were excluded); and 5) patients who died or were discharged

within 24 h after ICU admission.

For SIC, on the basis of all eligible patients with sepsis, SIC

patients were defined as those fulfilling the ISTH criteria. Patients

were considered to display SIC when they had a total SIC score ≥4
frontiersin.org
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with a total score of the prothrombin time/international normalized

ratio (PT-INR) and platelet count parameters >2 during the sepsis

(Iba et al., 2017).
2.3 Data extraction and processing

Data extraction was performed using PostgreSQL (version 4.21)

and STATA (version 18.1) software. The following data were

extracted from the MIMIC-IV database and the Inner Mongolia

Autonomous Region People’s Hospital database: 1) demographic

data; 2) first care unit; 3) outcomes; 4) severity score, including the

SOFA and SIC scores; 5) the mean values of vital signs and the

poorest laboratory test value during the first 24 h after ICU

admission; and 6) infectious sites defined using Navicat Premium

16 software. For the prediction of SIC, the MIMIC-IV database

collected 50 variables (Supplementary Table S2) and the Inner

Mongolia Autonomous Region People’s Hospital database

collected 59 variables, including the patient characteristics (age

and gender), vital signs (heart rate, respiratory rate, mean arterial

pressure, and SpO2), and laboratory data [PT, albumin, anion gap,

blood urea nitrogen (BUN), red blood cell count, and glucose].

Comorbidities were also collected based on the recorded

International Classification of Diseases, Ninth Revision (ICD-9),

combined with the Tenth Revision (ICD-10) diagnosis codes

(hypertension, diabetes mellitus, chronic obstructive pulmonary

disease, coronary heart disease, and liver disease). Lastly, data on

medications such as heparin and continuous renal replacement

therapy (CRRT), as well as mechanical ventilation (MV),

were collected.

The feature engineering was completed in three steps (Zhou

et al., 2024). Firstly, missing value identification and processing. In

this study, the “VIM” package was used to recognize the

distribution of missing values. Moreover, features with more than

20% missing values were removed, such as albumin, C-reactive

protein (CRP), and d-dimer. For the remaining features, missing

values were imputed using the “mice” package in R. Secondly,

outlier identification and processing. All outliers were not processed

as preserving outliers in medical data is critical to building accurate

prediction models and meeting clinical needs. Outliers might reflect

a true pathological state, and their removal could cause the model to

lose key risk factors, reducing its predictive power. In addition,

outliers might contain samples of high predictive value, and their

exclusion weakens the ability of the model to identify rare but high-

risk cases. The retention of outliers ensures the integrity and validity

of the dataset, making the model better adapted to the diversity of

actual clinical scenarios. At the same time, the retention of outliers

helps the model to stay close to clinical needs, which aids physicians

in identifying high-risk patients and in implementing timely

interventions. Thirdly, feature selection for model construction.

Univariate logistic feature selection was first performed on all the

included variables, followed by multivariate logistic feature

selection. Variables with a p-value <0.05 in the univariate analysis

were included in the multivariate analysis. A p-value <0.05 in the

multivariate analysis was considered statistically significant. This
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“univariate first, then multivariate” feature selection strategy can

reduce the number of features while maintaining model

performance, thereby improving the interpretability and efficiency

of the model.
2.4 Statistical analysis

The main outcome was the diagnosis of SIC during sepsis.

Continuous variables are presented as the mean (standard

deviation) or median (interquartile range, IQR), depending on the

distribution of the data, and were analyzed using Student’s t-test or

the rank-sum test for continuous variables. The chi-square test or

Fisher’s exact test was used for categorical variables, as appropriate.

The MIMIC-IV database was randomly assigned with 70% for

training and 30% for internal validation, while the Inner Mongolia

People’s Hospital was used for external validation. Nine ML

methods [i.e., logistic regression (LR), light gradient boosting

machine (LightGBM), eXtreme gradient boosting (XGBoost),

support vector machine (SVM), categorical boosting (CatBoost),

adaptive boosting (Adaboost), neural network (NN), k-nearest

neighbors (KNN), and gradient boosting machine (GBM)] and the

SOFA severity scoring system were respectively used to develop

models for the prediction of risk factors for SIC. The assessment

process was performed using 10-fold cross-validation. The area

under the receiver operating characteristic (ROC) curve (AUC),

the area under the precision–recall curve (AUPRC), and the

accuracy, sensitivity, specificity, predictive, and F1 scores were all

calculated to evaluate the predictive performance of each model. In

addition, calibration plots were drawn using the bootstrap method,

and decision curve analysis (DCA) was performed for each ML

model in the two databases. The best model was selected through an

overall comparison. Subsequently, fine-grained hyperparameter

adjustment was performed for the best model using the Bayesian

optimization algorithm. This algorithm is an efficient constrained

global optimization tool (Wu et al., 2019). The optimized model was

defined as the full model. The Shapley Additive Explanations

(SHAP) approach is commonly applied to explain the output of

theMLmodel (Liu et al., 2021). External validation of the full models

was performed in the Inner Mongolia People’s Hospital. The SOFA

scores were assessed to predict the risk of SIC and were compared

with the ML models in both the internal and external validations.

All statistical analyses were performed using R software (version

4.4.2). The framework of the prediction models is shown

in Figure 1.
3 Results

3.1 Baseline characteristics

As shown in Figure 2, of the 25,595 patients with sepsis in

MIMIC-IV, 15,479 were included in the final cohort, with 10,835

patients in the training set and 4,644 patients in the internal

validation set. A total of 6,036 patients developed SIC during
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sepsis, while 9,443 patients did not. A cohort of 212 patients with

sepsis in the Inner Mongolia People’s Hospital was included as an

external dataset.

Variable values on the first day of sepsis in MIMIC-IV were

analyzed, and differences in the characteristics were compared

(Supplementary Table S2). The SIC group had a higher rate of

comorbidities. Moreover, those in the SIC group were older [71

(59–81) vs. 68 (57–79), p < 0.001] and had higher Charlson

comorbidity index [6 (4–8) vs. 5 (3–7), p < 0.001], higher creatine

[1.3 (0.9–2.1) vs. 1 (0.8–1.5), p < 0.001], longer PT [17.25 (15.2–

22.6) vs. 12.6 (11.8–13.55), p < 0.001] and activated partial

thromboplastin time (PTT) [34.4 (29.7–44.2) vs. 28.8 (26.3–32.6),

p < 0.001], lower platelets (PLT) [151 (87–243) vs. 202 (152–269), p

< 0.001], higher heart rate [87.266 (16.889) vs. 83.385 (15.288), p <

0.001] and respiration rate [19.32 (17.04-22.36) vs. 18.46 (16.52-

20.91), p < 0.001], had more CRRT (7.77% vs. 2.51%; p < 0.001) and

use of vasoactive drugs (17.15% vs. 7.76%, p < 0.001), and showed

slightly higher numbers of urinary (15.23% vs. 14.04%, p < 0.05) and

blood infections (0.83% vs. 0.43%, p < 0.05).
3.2 Comparison of the nine models and
the SOFA scores

Before construction of the prediction model, 12 features were

initially screened out using univariate logistic regression followed by

multivariate logistic regression: heparin, coronary, CRRT,

vasoactive drug, PT, anion gap, respiration rate (resp_rate), red

cell distribution width (RDW), systolic blood pressure (SBP), mean

arterial pressure (mean blood pressure, MBP), mean corpuscular

volume (MCV), and total bilirubin (Supplementary Table S3).
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However, PT was deleted from the list of features, while BUN,

diabetes, sodium, aspartate aminotransferase (AST), mean

corpuscular hemoglobin (MCH), and temperature were included.

Thus, 17 features were eventually used to build the model. We

utilized nine ML models—LR, XGBoost, SVM, Adaboost, KNN,

LightGBM, CatBoost, NN, and GBM—with the 17 features

mentioned above to predict the risk factors for SIC in patients

with sepsis. The predictive performance of the various models is

listed in Table 1. The AUCs of the GBM model varied in the

training dataset (0.773, 95%CI = 0.765–0.782), the internal

validation dataset (0.730, 95%CI = 0.715–0.745), and the external

validation dataset (0.966, 95%CI = 0.938–0.994), which showed

excellent performance on the overall indicators (Figures 3a–c). In

addition, the AUCs of the SOFA scores in the different datasets were

as follows: 0.504 (95%CI = 0.493–0.504) in the training dataset,

0.511 (95%CI = 0.494–0.511) in the internal validation dataset, and

0.853 (95%CI = 0.791–0.853) in the external validation dataset. The

calibration curves are presented in Figures 4a–c, while the decision

curve analysis (DCA) graphs are shown in Figures 5a–c. The bias-

corrected lines lightly deviated from the ideal line, indicating good

agreement between the prediction and observation. Firstly, the

AUC was employed as the primary metric, complemented by

secondary metrics such as sensitivity and specificity. Secondly, the

DCA framework was utilized to assess the net benefit across various

risk thresholds, thereby quantifying the practical utility of the model

in clinical decision-making within critical care medicine. Thirdly, a

calibration curve was constructed to evaluate the accuracy of the

model predict ions. Final ly , through a comprehensive

multidimensional assessment, the GBM algorithm was identified

as the optimal model, and subsequent in-depth analyses

were conducted.
FIGURE 1

Framework of the prediction model. A total of 17 variables were selected through feature selection in the Medical Information Mart for Intensive
Care-IV (MIMIC-IV) database. We compared the discrimination of nine machine learning models using 10-fold cross-validation. The model with the
best overall performance was selected. Fine-grained hyperparameter adjustment was performed using Bayesian optimization. The Shapley Additive
Explanations (SHAP) values were used to explain the output of the full model. This full model was validated in the Inner Mongolia People’s Hospital.
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3.3 Explanation of risk factors

The importance scores of the 17 features used in the GBM

model were calculated to identify the critical features (Figure 6A).

The position on the y-axis implied the importance ranking, and the

x-axis reflected the association between each feature value and the

corresponding SHAP value (Kishor et al., 2015). For instance, high

heparin levels generally have SHAP values below 0, suggesting that

heparin use may reduce the risk of SIC in patients with sepsis. In

addition, high values of RDW correspond to SHAP values that are

mostly greater than 0, suggesting that RDW values may promote

the incidence of SIC. Figure 6B displays the ranking of the features

based on the average absolute SHAP value. The permutation

importance results indicated that the top five risk features were

total bilirubin, RDW, SBP, heparin, and BUN. Diabetes and

coronary disease may demonstrate low SHAP values (i.e.,
Frontiers in Cellular and Infection Microbiology 05
marginal contributions to the prediction outputs) within the

model, which failed to meet the predefined display threshold in

the visualization.
3.4 Interpretation of individual predictions

Figure 7 shows the SHAP force plot, which was used to explain

the individual prediction results of the GBM model. The SHAP

value measures the contribution degree of each feature to the

prediction results of the model. The yellow bars represent positive

SHAP values (increasing the probability of the predicted risk), while

the red bars represent negative SHAP values (decreasing the

probability of the predicted risk). The length of the bars is

proportional to the strength of the contribution. As shown in the

figure, f(x) = 1 represents the final prediction result, which is equal
FIGURE 2

Flowchart of the patient selection.
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to the baseline value E[f(X)] = 0.24 plus the sum of the SHAP values

of all variables. The total bilirubin value was 4.4, the RDW value was

14.9, and the MCV value was 106, which made positive

contributions of 0.668, 0.225, and 0.135, respectively, to the
Frontiers in Cellular and Infection Microbiology 06
prediction. In contrast, the combined effect of the other 12

features was a negative contribution of 0.145, while the SBP value

of 121 and the resp_rate value of 11.4 both had relatively small

negative contributions.
TABLE 1 Predictive performance of each model in the training, internal validation, and external validation datasets.

Model AUC Threshold Accuracy Sensitivity Specificity Precision F1

Training set

Logistic 0.732 0.367 0.673 0.664 0.679 0.569 0.613

SVM 0.727 0.395 0.676 0.636 0.702 0.577 0.605

GBM 0.773 0.387 0.705 0.673 0.725 0.61 0.64

Neural Network 0.744 0.416 0.689 0.613 0.738 0.599 0.606

XGBoost 0.731 0.499 0.674 0.653 0.687 0.572 0.61

KNN 0.931 0.370 0.839 0.868 0.819 0.755 0.807

Adaboost 0.654 0.202 0.651 0.584 0.694 0.55 0.567

LightGBM 0.785 0.383 0.718 0.68 0.743 0.629 0.653

CatBoost 0.747 0.601 0.697 0.613 0.752 0.612 0.612

SOFA 0.496 0.399 0.546 0.402 0.607 0.301 0.344

Internal validation dataset

Logistic 0.716 0.396 0.678 0.594 0.731 0.585 0.59

SVM 0.710 0.351 0.645 0.693 0.614 0.535 0.603

GBM 0.730 0.359 0.668 0.671 0.667 0.563 0.612

Neural Network 0.724 0.364 0.66 0.683 0.645 0.552 0.61

XGBoost 0.712 0.499 0.671 0.596 0.719 0.576 0.586

KNN 0.652 0.406 0.63 0.509 0.708 0.527 0.518

Adaboost 0.644 0.202 0.646 0.564 0.699 0.545 0.554

LightGBM 0.708 0.359 0.664 0.63 0.686 0.562 0.594

CatBoost 0.728 0.594 0.672 0.649 0.687 0.57 0.607

SOFA 0.489 0.380 0.521 0.392 0.636 0.491 0.436

External validation dataset

Logistic 0.868 0.787 0.811 0.803 0.853 0.966 0.877

SVM 0.773 0.836 0.646 0.601 0.882 0.964 0.74

GBM 0.966 0.764 0.92 0.916 0.941 0.988 0.95

Neural Network 0.947 0.697 0.929 0.938 0.882 0.977 0.957

XGBoost 0.921 0.503 0.84 0.837 0.853 0.968 0.898

KNN 0.954 0.702 0.901 0.882 1.000 1.000 0.937

Adaboost 0.808 0.822 0.698 0.663 0.882 0.967 0.787

LightGBM 1.000 0.500 1.000 1.000 1.000 1.000 1.000

CatBoost 0.991 0.688 0.934 0.927 0.971 0.994 0.959

SOFA 0.853 0.795 0.802 0.953 0.435 0.803 0.872
Logistic, logistic regression; SVM, support vector machine; GBM, generalized boosted model; Neural Network, artificial neural network; XGBoost, eXtreme gradient boosting; KNN, k-nearest
neighbors; Adaboost, adaptive boosting; LightGBM, light gradient boosting machine; CatBoost, categorical boosting; SOFA, Sequential Organ Failure Assessment score; AUC, area under the
receiver operating characteristic curve.
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4 Discussion

At present, the medical community is confronted by the

absence of dependable predictive tools designed to predict the

onset of coagulopathy in patients with sepsis. This gap highlights

a critical need for the development of advanced predictive tools that

can provide early and accurate detection of coagulation disorders,

thereby facilitating timely and effective interventions. The quest for

such tools is intensifying, with the goal of decreasing the

development of SIC in septic patients by enabling clinicians to

anticipate and address the complex challenges associated with

septic coagulopathy.

In this study, we developed and validated ML models using 17

selected features—diabetes, coronary, CRRT, heparin, vasoactive

drug, temperature, sodium, resp_rate, anion gap-min, BUN-max,

total bilirubin, MCV, MCH, RDW, MBP, SBP, and AST—to predict

the risk of SIC. The administration of vasoactive drugs could alter
Frontiers in Cellular and Infection Microbiology 07
the coagulation function through various mechanisms

(Mohammadi et al., 2017; Petch et al., 2021). Diabetes mellitus,

serum sodium levels, AST, body temperature, MCH, and BUN were

included in this study following systematic discussion and

multifactorial analysis. Although (Liu et al., 2022) did not directly

investigate the relationship between diabetes mellitus and SIC, their

findings demonstrated that blood glucose variability exacerbates

microthrombosis through oxidative stress and endothelial

glycocalyx injury, thereby providing a rationale for its inclusion.

(Han et al., 2024) confirmed the association between serum sodium

fluctuations and coagulation dysfunction in sepsis, revealing that

such fluctuations destabilize coagulation homeostasis by impairing

the vascular endothelial glycocalyx integrity, while hypernatremia

further aggravates coagulation disorders via platelet activation and

coagulation factor stimulation. (Wang et al., 2025) established that

elevated AST levels indicate hepatic dysfunction, which directly

reduces clotting factor production (given the liver’s synthesis of
FIGURE 3

Receiver operating characteristic curves shows the predictive performance of nine machine learning models in predicting the risk factors of SIC. (A)
Receiver Operating Characteristic curves of various models on the training set. (B) Receiver Operating Characteristic curves of various models on
the internal validation dataset. (C) Receiver Operating Characteristic curves of various models on the external validation dataset. Logistic, logistic
regression; SVM, support vector machine; GBM, gradient boosting machine; Neural Network, artificial neural network; XGBoost, eXtreme gradient
boosting; KNN, k-nearest neighbors; Adaboost, adaptive boosting; LightGBM, light gradient boosting machine; CatBoost, categorical boosting; AUC,
area under the receiver operating characteristic curve; 95%CI, 95% confidence interval.
FIGURE 4

Calibration curves of the nine prediction models across different datasets. (A) Performance of the models on the training set. (B) Results on the
internal validation dataset. (C) Assessment outcomes on the external validation dataset. Logistic, logistic regression; SVM, support vector machine;
GBM, gradient boosting machine; Neural Network, artificial neural network; XGBoost, eXtreme gradient boosting; KNN, k-nearest neighbors;
Adaboost, adaptive boosting; LightGBM, light gradient boosting machine; CatBoost, categorical boosting.
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80%–90% of coagulation factors) and promotes a prothrombotic

state. Body temperature, validated by (Zhou et al., 2024) through

ML models, serves not only as a sensitive marker of systemic

inflammation but also as a predictive biomarker for sepsis-related

coagulation dysfunction. In addition (Wang et al., 2025), identified

that MCH influences the erythrocyte oxygen-carrying capacity,

indirectly linking it to coagulation abnormalities in the context of

sepsis-associated hypoxia and metabolic dysregulation. Both (Wang

et al . , 2025) and (Zhou et al. , 2024) emphasized the

pathophysiological significance of BUN, demonstrating that

sepsis-induced renal injury (reflected by an elevated BUN)

disrupts coagulation regulation. Based on the “multi-organ

crosstalk hypothesis” of SIC, the inclusion of BUN is supported
Frontiers in Cellular and Infection Microbiology 08
by its role in the bidirectional interplay between renal dysfunction

and coagulation derangements.

The above features could be easily collected within 24 h after ICU

admission. Under the condition of ensuring accuracy, it achieved

practicality as far as possible. The GBM model predicted SIC based

on these 17 clinical variables, which demonstrated excellent predictive

performance in the training, internal validation, and external validation

datasets. The predictive performance of the models was assessed using

a comprehensive set of metrics including the AUC, accuracy,

sensitivity, specificity, positive predictive value (PPV), negative

predictive value (NPV), and the F1 score. Our ML model was

compared with the SOFA score for the following reasons. Firstly, the

SOFA score is a well-established standardized ICU tool that evaluates
FIGURE 5

The Decision Curve Analysis (DCA) graph is utilized to compare the clinical utility of various machine learning models in predicting the risk factors
for SIC. (A) Decision curve analysis of various models on the training set. (B) Decision curve analysis of various models on the internal validation
dataset. (C) Decision curve analysis of various models on the external validation dataset. Logistic, logistic regression; SVM, support vector machine;
GBM, gradient boosted models; Neural Network, artificial neural network; XGBoost, eXtreme gradient boosting; KNN, k-nearest neighbors;
Adaboost, adaptive boosting; LightGBM, light gradient boosting machine; CatBoost, categorical boosting.
FIGURE 6

Interpretation of the generalized boosted model (GBM). (A) Feature importance ranking based on the Shapley Additive Explanations (SHAP) values.
The position on the y-axis implies the importance ranking, while the x-axis reflects the association between each feature value and the
corresponding SHAP value. (B) Importance ranking of the included features according to the mean (|SHAP value|). RDW, red blood cell distribution
width; SBP, systolic blood pressure; MBP, mean arterial pressure; BUN, blood urea nitrogen; resp_rate, respiration rate; MCH, mean corpuscular
hemoglobin; AST, aspartate aminotransferase; CRRT, continuous renal replacement therapy.
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organ dysfunction and disease severity through physiological

indicators. It exhibits significant correlations with SIC and mortality

(Iba et al., 2017), thereby serving as a pivotal clinical benchmark.

Secondly, its globally recognized consensus and systematic framework

make it particularly suitable for the validation ofMLmodels. Finally, by

comparing the AUC metrics in SIC risk prediction, it can be

determined whether novel models surpass traditional scoring systems

while improving the interpretability and clinical applicability.

Furthermore, given its proven prognostic value for organ failure

(Fleischmann-Struzek et al., 2020), the SOFA score is extensively

utilized as a baseline control in studies of sepsis-related

complications. Moreover, the SHAP approach was employed to

interpret the predictions of the GBM model, offering clinicians

insights into the decision-making process of the model and aiding in

the timely identification of sepsis patients at high risk of developing SIC

for proactive intervention. Currently, ML plays a crucial role in the

early warning and prognostic prediction of diseases (Vellido, 2020;

Jiang et al., 2021). These algorithms can analyze complex and nonlinear

data and even make real-time predictions based on time series, which

cannot be completed using traditional regression analysis. GBM is an

ensemble learning algorithm that combines multiple weak learners,

typically decision trees, to form a robust prediction model. It optimizes

the loss function through gradient descent, iteratively adding weak

learners that focus on correcting the residuals of the previous model.

This process of sequential addition and correction enhances the

predictive accuracy of the model, making GBM highly effective for

both regression and classification tasks. However, as algorithms

advance, the complexity of models grows, which can make them

harder to interpret. This complexity is commonly described as

creating a “black box” effect, potentially hindering the adoption of

ML in the medical and healthcare sectors (Lippi et al., 2009). The

challenge lies in balancing the sophistication of ML models with the

need for transparency and interpretability, which are crucial for their

acceptance and effective use in clinical practice.
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By using the SHAP value to interpret the GBM model, which is

different from traditional feature importance, its most significant

advantage is that it can reflect the permutation of importance and

illustrate the positive and negative effects of the included features. As

shown in Figure 5, it was found to be the most important variable in

the prediction of SIC, followed by total bilirubin. Elevated total

bilirubin levels may indicate that sepsis has affected the liver,

impairing its ability to synthesize clotting factors and leading to

coagulation dysfunction in patients (Patel et al., 2015). The second

risk factor was the RDW, the value of which reflects the size

heterogeneity of the erythrocytes and indicates the body’s response

to oxidative stress and inflammation (Zhang et al., 2020). In recent

years, a growing number of research studies have shown the potential

value of RDW in predicting the prognosis of sepsis (Fu et al., 2018;

Ling et al., 2021; Wang and Hsu, 2021). Low SBP leads to

hypoperfusion and endothelial damage, which activates the

coagulation system and increases the risk of thrombosis, thereby

resulting in SIC. Heparin is a potent anticoagulant that enhances the

activity of antithrombin (AT), inhibiting the activation of clotting

factors and thereby reducing thrombus formation. In patients with

sepsis, heparin can effectively prevent and treat coagulopathy (Zou

et al., 2022). found that the early administration of prophylactic

heparin in patients with sepsis can reduce mortality and improve

outcomes. Moreover, anticoagulant therapies in patients without SIC

should be avoided due to the increased risk of bleeding with no

survival benefit (Yu et al., 2024). In patients with sepsis, an elevated

BUNmay indicate an impaired renal function, which is part of multi-

organ dysfunction syndrome (MODS). Renal insufficiency can further

exacerbate coagulopathy, as the kidneys play a crucial role in clearing

metabolic waste from the blood and in regulating electrolyte balance

(Zhou et al., 2024; Wang et al., 2025). Therefore, it is crucial to

monitor and manage the total bilirubin, RDW, SBP, heparin, and

BUN, as well as other indicators, in patients with sepsis in clinical

practice to prevent the occurrence of SIC.
FIGURE 7

The notation f(x) = 1 represents the predicted value of the model for a specific instance or sample. E[f(x)] = 0.24 denotes the average predicted
value, or the expected value, of the model across the dataset. The bars in yellow and red represent the risk factors and the protective factors,
respectively; longer bars denote greater feature importance. Here, these values are the model outputs before the SoftMax layer and, therefore, are
not equal to the final predicted probabilities. This figure shows the explanation for a high-risk instance. RDW, red blood cell distribution width; SBP,
systolic blood pressure; MBP, mean arterial pressure; BUN, blood urea nitrogen; resp_rate, respiration rate; MCH, mean corpuscular hemoglobin;
AST, aspartate aminotransferase; CRRT, continuous renal replacement therapy.
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The SOFA score, the platelet count, and the PT-INR have been

found to be significant in numerous studies, making the monitoring

of these three indicators essential. Any abnormality in these

indicators should raise suspicion for the possibility of SIC. In

addition to these three indicators, we also propose that attention

should be given to total bilirubin, SBP, heparin use, RDW, and

BUN. Abnormalities in these additional indicators should also

prompt consideration of the potential for SIC.
5 Strengths and limitations

This research has several notable strengths. Firstly, GBM has

shown excellent performance in various applications due to its high

predictive accuracy, ability to handle complex relationships, support for

missing values, automatic feature selection, and flexibility, making it

particularly suitable for tasks that require high interpretability.

Secondly, the SHAP solves the “black box” problem well for ML

models. Thirdly, based on the SHAP values, we ranked the risk factors

and illustrated the positive and negative risk factors that lead to SIC.

Moreover, this study is the first to incorporate a domestic sepsis

database combined with the MIMIC database to explore the risk

factors for SIC. However, several limitations of this study should be

considered. Firstly, only septic adults in ICUs were included. Secondly,

the ROC curve of the GBMmodel is not the largest; however, the GBM

model was chosen for the prediction of the risk factors that lead to SIC

based on a comprehensive consideration; thus, further clinical

experience and medical judgment should be recommended for those

where the model yields negative results. Thirdly, there is a current lack

of sufficient information to fully explain the practical utility of GBM

models in clinical settings. To address this, future efforts will focus on

the enhancement of learning and developing software that is more

practical and accurate. The goal is to empower clinicians to easily use

these tools online to predict the risk of SIC in patients proactively,

facilitating early preventive measures.
6 Conclusions

In conclusion, we developed an operable ML prediction model

incorporating 17 clinical features to effectively predict the risk of SIC in

ICU patients with sepsis. In addition, the prediction model showed

good predictive ability and discrimination in the external validation.

Nevertheless, further prospective studies are warranted to validate the

effectiveness and applicability of this prediction model.
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