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Tao Duan1, Long Che3, Yong Zhang1 and Honglin Yan1*

1School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
Sichuan, China, 2Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal
Science Academy, Chengdu, China, 3College of Animal Science and Technology, Henan University of
Animal Husbandry and Economy, Zhengzhou, Henan, China
Introduction: The persistent African swine fever epidemic has significantly

compromised China’s swine production. To accelerate production recovery,

commercial farms are increasingly adopting retention of two-way backcross

sows (Landrace × Yorkshire × Landrace, LLY) for breeding. This study aimed to

investigate the effects of yeast protein, an emerging sustainable protein source,

on reproductive performance, immune responses, and gut microbiota in two-

way crossbred sows (Landrace × Yorkshire, LY) and LLY sows.

Methods: The experiment employed a 2×2 factorial design evaluating two fixed

factors: sow hybrid (LY vs LLY) and yeast protein supplementation (0% vs 2.6%).

The four treatment groups were: LY sows without yeast protein supplementation

(LY-C), LLY sows without yeast protein supplementation (LLY-C), LY sows with

yeast protein supplementation (LY-YP), and LLY sows with yeast protein

supplementation (LLY-YP). A total of one hundred healthy sows of 2-6 parities

(50 LY sows and 50 LLY sows), were stratified by backfat thickness, body weight,

and parity, then randomly allocated to the four treatment groups on day 105 of

gestation, with 25 sows in each group. The experimental period lasted from day

106 of gestation to day 18 of lactation.

Results and conclusion: Yeast protein supplementation showed no significant

effects on most reproductive parameters of different sow hybrids, but reduced

backfat loss by 30.5% during lactation (P < 0.05) and demonstrated a numerical

reduction in mummification rate of fetuses (P = 0.06). Immunological

assessments revealed that LLY sows exhibited 26.8% lower serum IgM

concentration than LY sows (P < 0.05), while yeast protein supplementation

significantly reduced serum IL-1b levels by 45.6% (P < 0.05) on day 18 of lactation.

16S rRNA gene sequencing analysis revealed comparable fecal microbial diversity

across treatments (P > 0.05), though differences were observed in certain

bacterial genera between LY and LLY sows during late gestation and lactation.

Yeast protein supplementation enriched beneficial bacteria including

Ruminococcaceae_UCG-002 , Rikenellaceae_RC9_gut_group , and

Christensenellaceae_R_7_group, while suppressing potentially detrimental

bacteria such as Family_XIII_AD3011_group (P < 0.05). These findings
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demonstrate the practical feasibility of retaining LLY sows for commercial

breeding. Yeast protein supplementation, as a substitute for fishmeal during

late gestation and lactation, significantly reduced lactational backfat loss,

moderately attenuated inflammatory response, and enhanced gut microbiome

homeostasis through selective microbial enrichment in sows.
KEYWORDS
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1 Introduction

In recent years, China’s swine industry has suffered substantial

losses due to African Swine Fever (ASF) outbreaks (Liu et al., 2021).

The ASF epidemic caused a significant reduction in the population

of two-way crossbred sows (Landrace × Yorkshire, LY), resulting in

severe shortage of breeding stock and inflated prices for breeding

sows. Official data from the Ministry of Agriculture and Rural

Affairs of China (MARA) revealed a 40.5% reduction in hog

inventories and a 39.3% decrease in breeding sow populations

between August 2018 (ASF onset) and August 2019 (Ma et al.,

2021). To expedite production recovery, MARA and local

governments have prioritized breeding herd restoration through

policy interventions. Consequently, many farms have adopted

three-way crossbred sows (Duroc × Landrace × Yorkshire, DLY)

or two-way backcross sows (Landrace × Yorkshire × Landrace,

LLY) as replacements for traditional LY sows. While existing

research extensively compares reproductive performance between

DLY and LY sows, studies evaluating LLY versus LY sows remain

scarce. Current evidence suggests that although LLY sows exhibit

marginally reduced heterosis compared to LY sows, their overall

reproductive hybrid vigor remains substantial. Yu et al. (2020)

demonstrated that LLY sows maintain genetic stability in both

reproductive efficiency and growth traits, retaining sufficient

heterosis for commercial breeding applications. However, further

research is required to conclusively characterize performance

differences between LLY and LY sows.

Additionally, China has long grappled with a chronic deficit in

domestic protein feedstuffs, with excessive reliance on imported

protein sources posing a significant barrier to sustainable

development in both feed and livestock industries (Yin et al.,

2019). This critical situation underscores the urgent need to

identify alternative protein resources and develop innovative

nutritional strategies to strengthen national food security. Among

potential solutions, yeast, a single celled eukaryotic organism, and

its derivatives, have emerged as promising candidates due to their

rich composition of protein, amino acids, cell wall polysaccharides,

and bioactive compounds (Shurson, 2018; Agboola et al., 2021). The

diverse range of yeast-derived products, including live/dry yeast,

purified cell wall components, and fermentation-derived cultures or
02
extracts (Pang et al., 2022), has attracted significant attention from

animal nutritionists seeking functional feed additives. Extensive

research documents the beneficial effects of yeast products across

various species, demonstrating improvements in growth

performance, gut health, and immune modulation in poultry

(Hofacre et al., 2024; Islam et al., 2024; Qiu et al., 2024; Maina

et al., 2025), aquatic species (Jin et al., 2018; Zheng et al., 2021; Kong

et al., 2025), and young pigs (Espinosa et al., 2023; Fan et al., 2024;

Kim and Duarte, 2024). In sow nutrition, studies demonstrate

enhanced reproductive or growth performance, immune function,

and gut microbiota profiles in sows or their offspring through

supplementation with various yeast products, including live yeast

(Xia et al., 2022; Fu et al., 2024), yeast culture (Zhao et al., 2022; Liu

et al., 2023), yeast extract (Gao et al., 2021; Tan et al., 2021; dos

Santos et al., 2023), and yeast hydrolysates (Chang et al., 2024; Kim

and Duarte, 2024), though some studies show limited effects

(Chance et al., 2022; Le Floc′h et al., 2022). However, research of

yeast products as a major protein source in swine diets remains in

its infancy. Given its high digestibility and favorable essential amino

acid profile (Fernandes et al., 1998), whole yeast and its derivatives

present particular potential as alternative protein sources for swine

nutrition, especially in regions experiencing shortage of

conventional high-quality proteins like fishmeal and soybean

meal. This study therefore aims to investigate the effects of yeast

protein supplementation - a single-cell protein derived from

hydrolyzed yeast cells - on reproductive performance, immune

responses, and gut microbiota in LY and LLY sows. This study

addresses two key objectives: to establish scientific foundation for

optimizing LLY sow utilization in commercial swine production,

and to provide essential insights for yeast protein application in

both LY and LLY sows.
2 Materials and methods

2.1 Animal care

The research protocol was approved by The Animal Welfare

Committee of Southwest University of Science and Technology

under ethic approval number L2023021.
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2.2 Animals and experimental design

The experiment employed a 2×2 factorial design evaluating two

fixed factors: sow hybrid (LY vs LLY) and yeast protein

supplementation (0% vs 2.6%). The four treatment groups were:

LY sows without yeast protein supplementation (LY-C), LLY sows

without yeast protein supplementation (LLY-C), LY sows with yeast

protein supplementation (LY-YP), and LLY sows with yeast protein

supplementation (LLY-YP). A total of one hundred healthy sows of

2-6 parities (50 LY sows and 50 LLY sows), were stratified by

backfat thickness, body weight, and parity, then randomly allocated

to the four treatment groups on day 105 of gestation, with 25 sows

in each group. The experimental period lasted from day 106 of

gestation to day 18 of lactation.
2.3 Diet and feeding

The experimental diets were formulated to meet the nutrient

requirements for gestating and lactating sows as recommended by

the NRC (2012), with detailed composition and nutritional levels

presented in Table 1. Yeast protein supplementation was

incorporated at 2.6%, a level determined by replacing 2.1%

fishmeal in the control diet through iso-nitrogenous substitution,

thereby constituting 7% of the total dietary protein sources. The

yeast protein was produced via polysaccharide removal and

subsequent protein concentration from dried yeast, primarily

comprising microbial protein and yeast-derived metabolites. The
Frontiers in Cellular and Infection Microbiology 03
analyzed crude protein and amino acid contents of the yeast protein

are provided in Table 2.

From day 106 of gestation until parturition, sows were housed

in individual crates and offered 3.0 kg/d of corresponding diets.

After parturition, the feed allowance was 2 kg initially and increased

by 1.0 kg/d until day 5 of lactation. From day 6 onward, all sows had

free access to feed and water until weaning.
2.4 Measurements and sample collection

After parturition, the following parameters were recorded for

each sow: number of total born piglets, number of live-born piglets,

number of normal-born piglets (piglets birth weight > 800 g), and

piglet birth weight. These data were used to calculate the litter birth

weight, coefficient of variation (CV) of piglet birth weight, stillborn

rate, mummification rate, and intrauterine growth restriction

(IUGR, piglets birth weight < 800 g) rate. Piglets were weighed

individually at birth, and on day 7, 14, and 18 of lactation, to

calculate piglet or litter weight gain, and to estimate milk yield

following the method of Hansen et al. (2012). Sow backfat thickness

was measured 65 mm to the left side of the dorsal midline at the last

rib (P2) using an ultrasound scanner (Renco Lean-Meater; Renco

Corporation, Minneapolis, MN, USA).

On the day of farrowing, 50 mL of colostrum was collected from

two to five teats of each sow. On day 18 of lactation, 0.3 mL of

oxytocin was injected intravenously through the ear vein, and then

50 mL of milk was rapidly collected from two to five teats. Both
TABLE 1 Ingredients and chemical composition of experimental diets.

Items Control diet YP diet Items Control diet YP diet

Ingredients, % Valine 0.11 0.11

Corn 61.675 60.365 Choline chloride 0.1 0.1

Wheat bran 5.00 5.00 Premix1 0.8 0.8

Soybean meal 22.00 22.50 Total 100.00 100.00

Fishmeal 2.10 – Calculated nutrient level, %

Yeast protein – 2.60 DE, Mcal/kg 3.3 3.3

Calcium carbonate 1.30 1.35 CP 16.8 16.8

Dicalcium phosphate 1.05 1.25 CP from YP, % 0 7

Sodium chloride 0.50 0.50 Ca 0.9 0.9

Cottonseed oil 2.60 2.60 SID-CP 13.8 13.8

Glucose 2.50 2.50 SID-Lys 0.93 0.93

L-Lysine sulfate 0.17 0.19 SID-Met 0.27 0.27

DL-Methionine 0.035 0.05 SID-Thr 0.56 0.56

L-Threonine 0.045 0.055 SID-Trp 0.18 0.18

L-Tryptophan 0.015 0.030 SID-Val 0.75 0.75
1Mineral mixture supplied per kilogram of diets: Fe 120 mg; Cu 20 mg; Mn 60 mg; Zn 120 mg; Se 0.3 mg; I 0.5 mg; Carrier (Corn cob meal) 109mg. Vitamin mixture supplied per kilogram of
diets: vitamin A 10000IU; vitamin D3 2000 IU; vitamin E 60 IU; vitamin K3 5.0 mg; vitamin B1 5.0 mg; vitamin B2 10.0 mg; vitamin B6 6.0 mg; vitamin B12 50 mg; nicotinic acid 40 mg; d-
pantothenic acid 20 mg; folic acid 2.0 mg; biotin 0.2 mg; Carrier (Corn cob meal) 30mg.
YP, yeast protein.
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colostrum and milk samples were filtered through sterile gauze and

stored at -20°C until further analysis. Fasting blood samples on day

113 of gestation and day 18 of lactation were drawn by jugular vein

puncture into two 5 mL tubes without anticoagulant. After 2 h of

room temperature coagulation, samples were centrifuged at 2,550 ×

g at 4°C for 10 min. Serum samples were harvested and stored at

-20°C until analysis. Fecal samples (2 g) were aseptically collected

from six randomly selected sows per group on day 113 of gestation,

day 3 of lactation, and day 18 of lactation. Samples were transported

on dry ice to the laboratory and stored at -80°C pending analysis.
2.5 Milk and plasma sample analyses

Milk composition was analyzed for fat, protein, lactose, dry

matter, and solids non-fat contents with an automatic milk quality

analyzer (CombiFoss FT+, Foss, Denmark). Concentrations of

immunoglobulins (IgG, IgA, IgM) and inflammatory cytokines

(TNF-a, IL-10, IL-17, IL-1b) in colostrum, milk, and serum were

determined with commercial ELISA kits (Nanjing Jiancheng Bio-

Engineering Institute, China).
2.6 Fecal microbial analysis

Microbial DNAwas extracted from thawed stool samples using the

EZNA. ®Stool DNA Kit (D4015, Omega, Inc., Norwalk, CN, USA)

following the manufacturer’s protocol. The genomic DNA was

measured for purity and integrity before sequencing. The V4

hypervariable region of the 16S rRNA gene was amplified using

515F and 806R primers according to Zhou et al. (2023). The 16S

RNA gene sequencing was performed on PacBio Sequel II platform.

Sequences with ≥97% similarity were clustered to the same operational

taxonomic unit (OTU) using USEARCH (v10.0). Representative

sequences for each OTU were selected. The Naive Bayes classifier in

QIIME2 (v2020.6) was used for taxonomic classification. The relative

abundance of each OTU was examined at different taxonomic levels.

Alpha diversity, as well as taxonomic community assessments, were

performed by QIIME2 (v2020.6). Beta diversity was analyzed by
Frontiers in Cellular and Infection Microbiology 04
principal coordinate analysis (PCoA) to assess the diversity in

samples using QIIME (v1.9.1) (Mou et al., 2025).
2.7 Statistics

The statistical analysis was performed using the MIXED

procedure of SAS software (Version 9.3; SAS Institute Inc., Cary,

NC, USA), except for stillborn rate, mummification rate, IUGR rate,

and piglet preweaning mortality, where odds ratios of these traits

were analyzed using the GENMOD procedure of SAS. The fixed

effects in the mixed model include sow hybrid (LY vs LLY), yeast

protein supplementation (0% vs 2.6%), and their interaction. Mean

values were presented as least square mean ± largest SEM, except for

stillborn rate, mummification rate, IUGR rate, and piglet

preweaning mortality which were reported as mean and their

95% confidence limits. All variables were considered significant

when P < 0.05, whereas 0.05 < P < 0.1 was considered a tendency.

For the 16S rRNA sequencing data, differences in the alpha

diversity indexes between groups were analyzed by t-test. The

permutational multivariate analysis of variance (PERMANOVA)

was used on the Bray-Curtis distance matrices to assess the beta

diversity between groups. The Wilcoxon rank-sum test was used to

compare data of relative abundance at different taxonomic levels

between groups.
3 Results

3.1 Sow and litter performance

Reproductive performance analysis (Table 3) revealed neither

main effects of sow hybrid nor yeast protein supplementation, nor

their interactive effects on majority of reproductive parameters (P >

0.05). Notably, LLY sows exhibited significantly lower CV of piglet

birth weight compared to LY sows (19.37% vs. 22.88%; P < 0.01).

Yeast protein supplementation demonstrated a numerical reduction

in mummification rate of fetuses (0% vs. 0.87%; P = 0.06).
TABLE 2 The analyzed contents of crude protein and various amino acids in yeast protein used in this experiment.

Item Content, % Item Content, %

CP 57.10 Methionine 0.70

Aspartic Acid 5.13 Isoleucine 2.47

Threonine 2.62 Leucine 3.63

Serine 2.36 Tyrosine 1.85

Glutamic acid 9.78 Phenylalanine 2.14

Glycine 2.33 Lysine 3.81

Alanine 5.04 Histidine 1.13

Cystine 0.54 Arginine 2.33

Valine 2.82 Proline 1.72
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Lactation performance parameters (Table 4) remained

unaffected by either sow hybrid or yeast protein supplementation

in most measured indices (P > 0.05). However, LLY sows

demonstrated a numerical reduction in average daily feed intake

(ADFI) (4.91 vs. 5.22 kg/d; P = 0.06). And yeast protein

supplementation reduced sow backfat loss by 30.5% during

lactation (0.98 vs. 1.41 mm; P < 0.05).
Frontiers in Cellular and Infection Microbiology 05
3.2 Milk yield and milk composition

Milk composition analysis (Table 5) demonstrated that neither

sow hybrid nor yeast protein supplementation exerted significant

influence on milk yield or majority of compositional parameters in

both colostrum and milk (P > 0.05). Notably, LLY sows exhibited
TABLE 3 The effect of yeast protein supplementation on the farrowing performance of two sow hybrids.

Items
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Total born piglets 14.22 13.46 13.82 13.86 0.62 0.18 0.95 0.83

Live-born piglets 13.28 12.91 12.98 13.22 0.56 0.47 0.64 0.54

Normal-born piglets1 12.31 12.32 12.17 12.45 0.51 0.98 0.55 0.12

Litter birth weight, kg 18.83 18.19 18.45 18.57 0.76 0.36 0.87 0.15

Piglet birth weight, kg 1.33 1.41 1.37 1.36 0.05 0.11 0.86 0.06

CV of piglet birth weight, % 22.88a 19.37b 20.19 22.06 1.41 < 0.01 0.15 0.40

Stillborn rate2, % 4.08 3.29 3.92 3.42 0.41 0.54 0.36

[2.75;6.05] [2.07;5.22] [2.56;5.99] [2.21;5.29]

Mummification rate3, % 0.56 0 0.87 0 0.37 0.06 0.33

[0.19;1.67] [0;0] [0.37;2.05] [0;0]

IUGR rate4, % 5.82 3.81 5.12 4.32 0.08 0.30 0.18

[4.18;8.08] [2.47:5.87] [3.49;7.52] [2.94:6.36]
1piglets birth weight > 800 g.
234Data were binomially distributed, and hence confidence limits were given in brackets instead of SEM values.
Within a row and within a main effect, values with different letters are significantly different (P < 0.05).
YP, yeast protein; CV, coefficient of variation; IUGR, intrauterine growth restriction, piglets birth weight < 800 g.
TABLE 4 The effect of yeast protein supplementation on the lactational performance of two sow hybrids.

Items
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Litter size after cross-fostering 12.01 11.71 11.85 11.88 0.22 0.27 0.93 0.10

Piglet weight, kg

After cross-fostering 1.40 1.47 1.44 1.43 0.04 0.15 0.90 0.16

Day 7 2.55 2.66 2.63 2.58 0.06 0.15 0.56 0.34

Day 14 4.32 4.46 4.43 4.35 0.09 0.22 0.53 0.46

Day 18 5.33 5.44 5.39 5.38 0.12 0.33 0.95 0.49

Average daily gain, g 210.0 216.4 212.2 214.2 5.8 0.24 0.71 0.43

Litter weight, kg

After cross-fostering 16.88 17.29 17.22 16.95 0.48 0.53 0.68 0.30

Day 7 30.81 31.21 31.52 30.50 0.77 0.71 0.34 0.09

Day 14 48.09 49.39 49.24 48.24 1.26 0.45 0.56 0.14

Day 18 58.02 59.44 59.23 58.24 2.23 0.50 0.64 0.22

Total weight gain 43.14 43.76 43.75 43.15 1.71 0.71 0.72 0.61

(Continued)
f
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elevated milk fat content compared to LY sows in colostrum (5.78%

vs 4.25%) and milk (6.77% vs 5.78%) (P < 0.05). Furthermore, LLY

sows showed higher milk dry matter (20.98% vs 19.42%; P < 0.01)

and solids non-fat content (14.51% vs 14.12%; P = 0.05) compared

to LY sows.
3.3 Concentration of immunoglobulins and
inflammatory cytokines in serum

Serum immunological profiling (Table 6) revealed no main effects

of sow hybrid nor yeast protein supplementation on serum

immunoglobulins or inflammatory cytokines on day 113 of gestation

(P > 0.05). However, on day 18 of lactation, LLY sows exhibited 26.8%
Frontiers in Cellular and Infection Microbiology 06
lower serum IgM concentration than LY sows (2.18 vs. 2.98 mg/mL; P

< 0.05), and yeast protein supplementation decreased the serum IgG by

22.6% (2.43 vs. 3.14 mg/mL; P < 0.05) and IL-1b by 45.6% (70.40 vs.

129.53 pg/mL; P < 0.05) in sows. In addition, a significant interactive

effect was observed between the main effects on the serum IL-10

content on day 18 of lactation (P = 0.02).
3.4 Concentration of immunoglobulins and
inflammatory cytokines in colostrum and
milk

Colostrum and milk immunological profiling (Table 7)

demonstrated nei ther sow hybr id nor yeast prote in
TABLE 4 Continued

Items
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Sow backfat thickness, mm

At parturition 15.77 15.23 15.88 15.11 0.68 0.41 0.23 0.10

At weaning 14.40 13.69 14.25 13.84 0.63 0.24 0.50 0.37

Backfat loss 1.14 1.24 1.41a 0.98b 0.21 0.61 0.03 1.00

Piglets preweaning mortality1, % 11.9 9.1 12.8 8.4 0.41 0.11 0.75

[8.4;16.9] [6.3:13.0] [8.7;18.8] [6.1:11.6]

Sow ADFI, kg/d 5.22 4.91 5.06 5.08 0.17 0.06 0.89 0.82
f

1Data were binomially distributed, and hence confidence limits were given in brackets instead of SEM values.
Within a row and within a main effect, values with different letters are significantly different (P < 0.05).
YP, yeast protein; ADFI, average daily feed intake.
TABLE 5 The effect of yeast protein supplementation on the milk composition and milk yield of two sow hybrids.

Items
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Colostrum, %

Milk fat 4.25b 5.78a 5.54 4.50 0.71 0.01 0.08 0.82

Milk protein 17.49 18.88 17.66 18.71 1.40 0.22 0.35 0.74

Milk Lactose 2.73 2.54 2.73 2.54 0.26 0.34 0.38 0.76

Milk DM 28.17 31.12 29.66 29.63 1.85 0.06 0.99 0.78

Solids non-fat 23.73 25.01 23.87 24.88 1.31 0.23 0.34 0.79

Milk, %

Milk fat 5.78b 6.77a 6.15 6.40 0.49 0.02 0.52 0.36

Milk protein 4.71 4.96 4.92 4.75 0.22 0.16 0.32 0.11

Milk Lactose 6.23 6.34 6.28 6.29 0.10 0.23 0.82 0.21

Milk DM 19.42b 20.98a 19.98 20.42 0.50 < 0.01 0.27 0.32

Solids non-fat 14.12b 14.51a 14.31 14.32 0.24 0.05 0.94 0.46

Milk yield, kg/d 9.88 10.20 9.98 9.57 0.27 0.86 0.32 0.17
Within a row and within a main effect, values with different letters are significantly different (P < 0.05).
YP, yeast protein.
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TABLE 6 The effect of yeast protein supplementation on concentrations of immunoglobulins and inflammatory cytokines in sow serum.

Items
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Day 113 of gestation

IgG, mg/mL 4.04 4.29 4.35 3.97 0.79 0.69 0.53 0.40

IgA, mg/mL 155.4 131.34 153.14 133.6 27.4 0.27 0.37 0.84

IgM, mg/mL 2.40 2.69 2.59 2.49 0.55 0.51 0.83 0.78

TNF-a, pg/mL 21.02 19.88 18.14 22.76 3.00 0.63 0.06 0.12

IL-10, pg/mL 24.10 27.71 28.65 23.16 5.48 0.40 0.21 0.20

IL-17, pg/mL 5.91 6.12 5.82 6.21 0.84 0.76 0.54 0.50

IL-1b, pg/mL 51.26 61.17 63.24 49.19 13.64 0.36 0.19 0.59

Day 18 of lactation

IgG, mg/mL 2.66 2.92 3.14a 2.43b 0.37 0.41 0.04 0.18

IgA, mg/mL 125.9 139.6 140.6 124.9 18.6 0.39 0.33 0.73

IgM, mg/mL 2.98a 2.18b 2.51 2.65 0.33 < 0.01 0.62 0.64

TNF-a, pg/mL 40.92 33.29 38.09 36.13 7.20 0.22 0.75 0.59

IL-10, pg/mL 24.45 28.05 29.29 23.21 3.70 0.26 0.06 0.02

IL-17, pg/mL 8.26 8.35 9.08 7.52 1.51 0.94 0.23 0.43

IL-1b, pg/mL 93.18 112.75 129.53a 76.40b 27 0.35 0.02 0.45
F
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Within a row and within a main effect, values with different letters are significantly different (P < 0.05).
YP, yeast protein.
TABLE 7 The effect of yeast protein supplementation on concentrations of immunoglobulins and inflammatory cytokines in sow milk.

Irems
Sow hybrid (H) YP supplementation (YP)

SEM
P-value

LY LLY Control YP H YP H×YP

Colostrum

IgG, mg/mL 3.65 3.68 4.42a 2.90b 0.59 0.95 < 0.01 0.52

IgA, mg/mL 137.0 137.1 136.2 137.8 22.1 1.00 0.93 0.77

IgM, mg/mL 3.12 3.19 2.86 3.44 0.50 0.86 0.19 0.93

TNF-a, pg/mL 17.12 17.57 16.59 18.10 3.51 0.88 0.62 0.74

IL-10, pg/mL 23.63 23.74 24.10 23.27 2.52 0.96 0.71 0.47

IL-17, pg/mL 5.74 5.61 5.78 5.56 0.92 0.87 0.78 0.78

IL-1b, pg/mL 64.96 59.51 66.71 57.76 14.93 0.67 0.49 0.21

Milk

IgG, mg/mL 3.50 3.63 3.66 3.46 0.61 0.80 0.70 0.14

IgA, mg/mL 161.5 150.3 165.8 146.1 17.2 0.47 0.21 0.89

IgM, mg/mL 3.16 3.40 3.30 3.26 0.44 0.52 0.93 0.81

TNF-a, pg/mL 18.14 22.19 19.65 20.68 3.67 0.20 0.74 0.72

IL-10, pg/mL 18.00 21.77 19.27 20.49 2.86 0.13 0.62 0.25

IL-17, pg/mL 5.21 5.37 4.73 5.85 0.81 0.82 0.11 0.27

IL-1b, pg/mL 56.47 70.46 57.32 69.61 13.61 0.24 0.30 0.75
Within a row and within a main effect, values with different letters are significantly different (P < 0.05).
YP, yeast protein.
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supplementat ion significant ly influenced major i ty of

immunoglobulins and inflammatory cytokines in both colostrum

and milk (P > 0.05). However, yeast protein supplementation

reduced the IgG concentration in colostrum by 34.3% (2.90 vs.

4.42 mg/mL; P < 0.01).
3.5 Analysis of the differences in fecal
microbiota between two sow hybrids

The alpha diversity analysis revealed no significant differences

in the ACE index, Chao1 index, Shannon index, and Simpson index

between LY and LLY sows on day 113 of gestation, day 3 of

lactation, and day 18 of lactation (Figures 1A–C; P > 0.05). Beta-

diversity assessment through PCoA based on the Bray-Curtis

distance matrices demonstrated no clear clustering between the

two different sow hybrids at any sampling timepoint (P > 0.05;

Figures 2A–C).

Community composition at the phylum level showed Firmicutes

as the primary dominant phylum and Bacteroidetes as the secondary

dominant phylum across all samples (Figure 3A). The bacterial

community composition of the top 10 genera is displayed in
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Figure 3B. In the two sow hybrids, Rikenellaceae_RC9_gut_group,

unclassified_p_2534_18B5_gut_group, and Lactobacillus were

the top three prevalent genera on day 113 of gestation.

These dominant genera shifted to Christensenellaceae_R_7_group,

L a c h n o s p i r a c e a e _ N K 4 A 1 3 6 _ g r o u p , a n d

Rikenellaceae_RC9_gut_group on day 3 of lactation, and further

changed to Rikenellaceae_RC9_gut_group, Christensenellaceae_

R_7_group, and uncultured_rumen_bacterium on day 18 of lactation.

Wilcoxon rank-sum test for the differential microbial genera

in the feces of different sow hybrids are shown in Figure 4. On day

113 of gestation, LLY sows exhibited reduced relative abundances

of Lachnospiraceae_NK4A136_group , Lachnospiraceae_

AC2044_group, and unclassified_Ruminococcaceae, contrasting

with elevated abundances of Prevotellaceae_NK3B31_group,

Prevotella, and unclassified_UCG_010 compared to LY sows

(P < 0.05; Figure 4A). On day 3 of lactation, LLY sows

demonstrated enriched relative abundances of Ruminococcus but

depleted Lachnospiraceae_AC2044_group compared to LY sows

(P < 0.05; Figure 4B). On day 18 of lactation, LLY sows showed

significantly higher abundances of unclassified_[Eubacterium]

_coprostanoligenes_group, unclassified_Ruminococcaceae ,

Phascolarctobacterium, and Catenibacterium, alongside reduced
FIGURE 1

Alpha diversity index of fecal microbiota in two sow hybrids at different stages. (A) 113G, day 113 of gestation. (B) 3L, day 3 of lactation. (C) 18L, day
18 of lactation. LY, Landrace × Yorkshire; LLY, Landrace × Yorkshire × Landrace.
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dgA_11_gut_group and Limosilactobacillus abundances compared

to LY sows (P < 0.05; Figure 4C).
3.6 Effects of yeast protein
supplementation on the fecal microbiota
of sows

The alpha diversity analysis revealed no significant differences

in the ACE index, Chao1 index, Shannon index, and Simpson index

between control and yeast protein-supplemented sows on day 113

of gestation, day 3 of lactation, and day 18 of lactation (Figures 5A–

C; P > 0.05). Beta-diversity assessment through PCoA based on the

Bray-Curtis distance matrices demonstrated no clear clustering

between the two groups at any sampling timepoint (P > 0.05;

Figures 6A–C).

The community composition at the phylum level in both

control sows and yeast protein-supplemented sows demonstrated

Firmicutes and Bacteroidetes as the dominant phyla across all
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samples (Figure 7A), consistent with previous observations in

different sow hybrids. The bacterial community composition of

the top 10 genera during late gestation or lactation is displayed in

Figure 7B, which shows the same pattern as previously observed in

different sow hybrids.

Wilcoxon rank-sum test for the differential microbial genera in

the feces of control sows and yeast protein-supplemented sows are

shown in Figure 8. On day 113 of gestation, yeast protein

supplementation exhibited elevated relative abundances of

Rikenellaceae_RC9_gut_group, Christensenellaceae_R_7_group, and

UCG_002 compared to control sows (P < 0.05; Figure 8A). On day

3 of lactation, yeast protein supplementation demonstrated enriched

relative abundances of Ruminococcus and unclassified_[Eubacterium]

_coprostanoligenes_group, but reduced Family_XIII_AD3011_group

compared to LY sows (P < 0.05; Figure 8B). On day 18 of lactation,

yeast protein supplementation significantly increased the relative

abundance of unclassified_[Eubacterium]_coprostanoligenes_group,

but decreased the abundances of unclassified_Lachnospiraceae and

Lachnospiraceae_XPB1014_group compared to LY sows (P <

0.05; Figure 8C).
FIGURE 2

The Principal Coordinate Analysis (PCoA) of bacterial communities in two sow hybrids. (A) 113G, day 113 of gestation. (B) 3L, day 3 of lactation. (C) 18L, day
18 of lactation. LY, Landrace × Yorkshire; LLY, Landrace × Yorkshire × Landra.
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4 Discussion
The present study demonstrated no significant differences in

most reproductive and lactation parameters between LY and LLY

sows, consistent with earlier research by Sun et al. (2020) and Wang

et al. (2021). Furthermore, our study revealed replacement of

fishmeal with yeast protein (at a 2.6% inclusion rate) during late

gestation to weaning tended to reduce the mummification rate of

fetuses, although no statistically significant effects were observed on

other reproductive and lactation performance parameters. While

previous studies have highlighted the beneficial effects of yeast

products as functional additives in improving sow performance,

the impact of yeast protein substitution for fishmeal on sow

productivity remains elusive (Chen et al., 2024). Our findings

align with previous studies reporting comparable reproductive

and lactation performance in sows supplemented with either live

yeast (Le Floc′h et al., 2022; Xia et al., 2022) or yeast-derived

products (Chance et al., 2022) at low-dose ranges of 0.01% to

0.125%. This consistency extends to recent research by Chen et al.

(2024), who observed similar outcomes when replacing fishmeal

with 0.5% to 2.0% yeast protein supplementation from day 103 of

gestation to weaning. However, conflicting evidence exists in the

literature. Several studies have reported increased numbers of live-
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born piglets (Hasan et al., 2018; Bass et al., 2019) and enhanced

piglet birth weight (Taylor-Pickard et al., 2017) following

supplementat ion with live yeast or yeast derivat ives

supplementation at doses ranging from 0.08% to 0.2%. Notably,

in addition to variations in yeast product types, the timing of

supplementation may contribute to these discrepancies. The

aforementioned studies demonstrating improved farrowing

outcomes implemented supplementation throughout the entire

gestation, whereas our intervention commenced during late

gestation. This temporal difference suggests that earlier initiation

of yeast protein supplementation during gestation might enhance

embryonic survival and consequently increase live-born piglets.

In addition, our study indicated that yeast protein

supplementation exerted no significant effects on sow lactation

performance, contrasting with several previous research. Previous

studies have demonstrated increased sow feed intake (Tan et al.,

2021; Zhao et al., 2022), elevated milk yield and composition (Peng

et al., 2020; Zhao et al., 2022; Chen et al., 2024), and improved pre-

weaning piglet growth performance (Zhao et al., 2022; Liu et al.,

2023; Chen et al., 2024; Kim and Duarte, 2024) by utilizing various

yeast-based products, including live yeast, yeast culture, yeast

extract, yeast hydrolysates, and yeast protein. The absence of

significant alterations in colostrum composition and milk yield

observed in our study may directly explain the unchanged piglet
FIGURE 3

Relative abundances of top 10 bacteria at levels of phyla (A) and genera (B) in two sow hybrids at different stages. LY, Landrace × Yorkshire; LLY,
Landrace × Yorkshire × Landrace; 113G, day 113 of gestation; 3L, day 3 of lactation; 18L, day 18 of lactation.
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growth performance during lactation. Notably, we identified that

yeast protein supplementation significantly attenuated sow backfat

loss during lactation. Excessive loss of backfat and body

mobilization may compromise subsequent reproductive

performance through increasing the weaning to estrus interval of

sows (Thaker and Bilkei, 2005) and reducing ovulation rates and

embryonic survivals (Van den Brand et al., 2000; Vinsky et al.,

2006). Our results align with previous research documenting the

adipose-preserving effects of yeast-derived supplements, including

yeast extracts and live yeast (Tan et al., 2021; Sun et al., 2022). As

proposed by Sun et al. (2022), the metabolic demands of parturition

drive substantial energy expenditure that precipitates backfat

depletion. The supplementation of yeast fermentation or culture

products, characterized by high nutrient density and bioavailability,

appears to enhance the energy reserves of sows, effectively

counterbalancing this catabolic process with no effect on feed

intake as evidenced in our results.

Serum immunoglobulin concentrations serve as critical

indicator of humoral immune response in animals. Changes in

these protein levels have been demonstrated to affect animal

productivity and immunity. IgA, IgG, and IgM are the main
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immunoglobulins in the body fluids of humans and animals. IgA

governs mucosal immunity within the gastrointestinal tract, IgG is

the most important immune factor in secondary immune

responses, and IgM is the main immune factor involved in

primary immune responses (Hăbeanu et al., 2022). Our study

revealed a statistically significant reduction in serum IgM

concentrations in LLY sows compared to LY sows on day 18 of

lactation. Given the pivotal role of IgM in innate immunity,

particularly its ability to neutralize pathogens and act as a cell

and pathogen signaler for lysis by complementary cells (Keyt et al.,

2020) , the observed defic iency sugges t s d iminished

immunocompetence in LLY sows during late lactation.

Additionally, we found that yeast protein supplementation

reduced IgG concentration in both serum on day 18 of lactation

and colostrum. This result contrasts with previous studies utilizing

yeast-derived product supplementation, which reported either no

alterations in colostrum immunoglobulin profiles (Hasan et al.,

2018; Bass et al., 2019; Le Floc′h et al., 2022; Xu et al., 2023) or

elevated immunoglobulin levels in blood (Xia et al., 2022; Zhao

et al., 2022) or colostrum (Quinn et al., 2001; Jang et al., 2013;

Zanello et al., 2013; dos Santos et al., 2023). The observed
FIGURE 4

Analysis of differential bacterial genera in fecal microbiota of two sow hybrids at different stages. (A) 113G, day 113 of gestation. (B) 3L, day 3 of
lactation. (C) 18L, day 18 of lactation. LY, Landrace × Yorkshire; LLY, Landrace × Yorkshire × Landrace.
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FIGURE 5

The effect of yeast protein supplementation on the alpha diversity index of fecal microbiota in sows at different stages. (A) 113G, day 113 of gestation.
(B) 3L, day 3 of lactation. (C) 18L, day 18 of lactation. C, sows fed with control diet; Y, sows fed with yeast protein-supplemented diet.
FIGURE 6

The Principal Coordinate Analysis (PCoA) of bacterial communities in sows fed either a control diet or a yeast protein-supplemented diet. (A) 113G, day 113
of gestation. (B) 3L, day 3 of lactation. (C) 18L, day 18 of lactation. C, sows fed with control diet; Y, sows fed with yeast protein-supplemented diet.
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discrepancies may stem from the type of yeast-derived products and

the length and rate of inclusion. The yeast protein used in our study,

derived from dried yeast through polysaccharide-depletion

enrichment, primarily consists of yeast cell proteins and

metabolic products. In contrast, yeast products in previous

studies retained b-glucan-rich cell walls, known to enhance both

innate and adaptive immunity (Zhen et al., 2020; Byrne et al., 2021;

Bi et al., 2022; Rhayat et al., 2023). Notably, yeast protein

supplementation reduced serum IL-1b concentration by 45.6% in

sows on day 18 of lactation, a key pro-inflammatory cytokine linked

to systemic inflammation (Parrilla et al., 2020). This anti-

inflammatory effect aligns with findings by Fu et al. (2023) and

Fan et al. (2024), who observed that supplementation with yeast

hydrolysate or yeast fermentation products reduced serum IL-1b
conc en t r a t i on s in weaned p i g l e t s cha l l enged w i th

lipopolysaccharide or Salmonella typhimurium.

The gut microbiota plays a critical role in animal health by

regulating key physiological functions, including nutrient

metabolism, growth and development, intestinal barrier

maintenance, immune modulation, and protection against

pathogen invasion (Barathan et al., 2024). On day 18 of lactation,

t h e r e l a t i v e abundance o f dgA_11_gu t_ g r oup and

Limosilactobacillus was significantly lower in LLY sows. DgA-

11_gut_group is involved in metabolism of amino acids, energy,
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and lipids (Sun et al., 2019). A recent study by Li et al. (2024)

demonstrated that supplementation with mulberry 1-

deoxynijirimycin increased the relative abundance of dgA-

11_gut_group, thereby reducing inflammatory responses in

rabbits. Chang et al. (2024) demonstrated that the relative

abundance of Limosilactobacillus positively correlated with the

serum IL-6 concentrations in sows. And this genus has been

shown to possess antimicrobial properties and intestinal immune

functions, mitigating inflammation and colitis through NF-kB

signaling pathway regulation (Liu et al., 2022). Thus, the reduced

dgA-11_gut_group and Limosilactobacillus abundance in the feces

of LLY sows may explain their lower serum IgM concentrations

compared to LY sows observed on day 18 of lactation in this study.

Our study demonstrated that yeast protein supplementation did

not alter the a-diversity or b-diversity of gut microbiota in sows,

indicating no effects on microbial species diversity and richness in

either LLY or LY sows. These findings align with reports by Hasan

et al. (2018) and Zhao et al. (2022), though contradictory results

exist. Notably, Ma et al. (2023) observed significant increases in

Shannon, Simpson, and Sobs indices following gestational yeast

culture supplementation. We propose these discrepancies may stem

from variations in yeast product types and the timing of

supplementation. Our supplementation spanned late gestation to

weaning, while Ma’s study lasted from day 30 of gestation to
FIGURE 7

Relative abundances of top 10 bacteria at levels of phyla (A) and genera (B) in sows fed either a control diet or a yeast protein-supplemented diet at
different stages. C, sows fed with control diet; Y, sows fed with yeast protein-supplemented diet.
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weaning. Our results revealed yeast protein supplementation

s i g n i fi c a n t l y i n c r e a s e d r e l a t i v e a b u n d a n c e o f

Rikenellaceae_RC9_gut_group, Christensenellaceae_R_7_group,

and UCG_002 in sows on day 113 of gestation. These findings

align with previous research by Ma et al. (2023), who reported that

yeast culture supplementation effectively increased intestinal

a bund an c e s o f R i k e n e l l a c e a e _RC9_ gu t _ g r o up and

Prevotellaceae_NK3B31_group in lactating sows. Cai et al. (2021)

reported significantly reduced Rikenellaceae_RC9_gut_group

abundance in mice with intest inal inflammation and

malnutrition. Christensenellaceae_R_7_group has been identified

as a potential beneficial bacterium contributing to gut

homeostasis and immune regulation (Kong et al., 2016). These

microbial shifts suggest yeast protein benefits late-gestation gut

health in sows. During lactation, yeast protein supplementation

increased Ruminococcus and unclassified_[Eubacterium]

coprostanoligenes_group abundances in sows on day 3, with

sustained elevation of the latter through day 18. Concurrently, it

reduced Family_XIII_AD3011_group abundance on day 3 and

d e c r e a s e d u n c l a s s i fi e d _ L a c h n o s p i r a c e a e a n d
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Lachnospiraceae_XPB1014_group on day 18. These findings align

with previous studies. Ma et al. (2023) documented similar

reduc t ions in Lachnosp i raceae_XPB1014_group and

Terrisporobacter in yeast culture-supplemented sows, while Zhao

et al. (2022) observed increased Ruminococcus and decreased

Bacteroidales abundances with yeast culture supplementation. The

Ruminococcus genus, comprising two fiber-degrading species,

hydrolyzes plant fibers into cellulose and hemicellulose, which are

subsequently fermented to volatile fatty acids (VFAs) (Jami and

Mizrahi, 2012). This suggests yeast protein-induced increases in

Ruminococcus abundance may affect cellulose digestion, VFA

production, and energy utilization efficiency, as observed in

Tibetan sheep (Ovis aries) supplemented with selenium yeast (Cui

et al., 2021). Bai et al. (2024) demonstrated that Eubacterium

coprostanoligenes could stimulate mucin production in goblet

cells, enhancing intestinal mucus barrier integrity to prevent

microbial invasion and reduce the inflammatory response.

Notably, Family_XIII_AD3011_group shows negative correlations

with acetic acid concentrations (Shi et al., 2020) and impaired

disease resistance in Tibetan pigs (Shang et al., 2022). As a
FIGURE 8

The effect of yeast protein supplementation on the differential bacterial genera in fecal microbiota of sows at different stages. (A) 113G, day 113 of
gestation. (B) 3L, day 3 of lactation. (C) 18L, day 18 of lactation. C, sows fed with control diet; Y, sows fed with yeast protein-supplemented diet.
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conditional pathogen, this genus may induce hypoglycemia through

dysbiosis-driven insulin hypersecretion and has been associated

with human depression and metabolic disorders (Zhang et al.,

2017). In growing pigs, Lachnospiraceae_XPB1014_group

abundance negatively correlates with body fat weight (Hu et al.,

2019), potentially explaining our observed 30.5% reduction in

lactational backfat loss in sows with yeast supplementation

through its suppression. Collectively, these microbial shifts likely

account for the 45.6% reduction in serum IL-1b concentrations

observed in yeast-supplemented sows on day 18 of lactation,

indicating yeast protein promotes beneficial bacterial

proliferation, and suppresses pathogenic proliferation, thereby

improving gut health in lactating sows.
5 Conclusion

LY and LLY sows exhibited comparable reproductive performance,

immune function, and gut microbiota, demonstrating the practical

feasibility of retaining LLY sows for commercial breeding. Yeast protein

supplementation as a substitute for fishmeal during late gestation and

lactation significantly reduced lactational backfat loss and moderately

attenuated inflammatory response. This effect was likely mediated

through selective gut microbiota modulation by promoting beneficial

genera such as Christensenellaceae_R_7_group, Ruminococcus and

Eubacterium coprostanoligenes, while suppressing specific genera

including Family_XIII_AD3011_group and Lachnospiraceae_

XPB1014_group. These findings indicate that yeast protein

substitution for conventional high-protein ingredients not only

reduces feed costs but also improves reproductive performance,

immune function, and gut microbiome homeostasis in sows.
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