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Introduction: Unbiased metagenomic sequencing (mNGS) is crucial for

infectious disease diagnosis and epidemiological surveillance. However, its

analysis requires specialized bioinformatics skills, creating barriers for clinicians.

We developed HPD-Kit (Henbio Pathogen Detection Toolkit) with an integrated

pathogen database to simplify pathogen detection and analysis for both human

and animal pathogens.

Methods: HPD-Kit includes a specifically curated pathogen database and

optimized bioinformatics pipeline. We evaluated its performance using

simulated datasets at varying pathogen abundances and clinical samples. The

toolkit provides both open-source software and a web interface for streamlined

one-click analysis.

Results: Validation with simulated data showed HPD-Kit maintains high

detection accuracy even at low pathogen abundance. Clinical dataset analysis

demonstrated superior pathogen identification compared to conventional

methods. The web interface retained this performance while significantly

improving usability.

Discussion: HPD-Kit effectively addresses the bioinformatics barrier in mNGS

analysis while maintaining high accuracy. Its dual open-source and web-based

implementation facilitates clinical and public health applications, promoting

wider adoption of mNGS technology in diagnostic settings.
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Highlights
Fron
• Three algorithms are used to perform layered alignments,

improving detection accuracy.

• The NPAS metric is more effective in identifying dominant

pathogens, outperforming unique reads and unique-

kmers rankings.

• HPD-Kit supports one-click analysis initiation locally or

online, greatly simplifying the process.
Introduction

The rapid and accurate identification of pathogens after disease

onset helps clinicians make early diagnoses and select targeted

treatments, ultimately improving patient outcomes and reducing

the risk of complications (Land et al., 2018). Pathogen detection is

also crucial for public health management, as accurate data can

track the spread of infectious diseases, identify outbreak sources,

and guide control measures (Chiu and Miller, 2019). However, the

diversity of pathogens complicates clinical differentiation, making

diagnosis challenging. Studies suggest that up to 60% of infectious

cases remain with unidentified causes (Schlaberg et al., 2017).

Traditional methods, such as culture and nucleic acid

amplification, are time-consuming and often insensitive to certain

pathogens. While newer technologies, like amplicon-based tests

(e.g., 16S rRNA/18S rRNA), provide faster detection, they are

typically limited to specific groups of microorganisms such as

bacteria or fungi.

Unbiased metagenomic next-generation sequencing (mNGS)

addresses the limitations of these conventional methods by

enabling hypothesis-free, culture-independent pathogen

detection directly from clinical samples. This approach can

identify a broad spectrum of microorganisms, including viruses,

bacteria, fungi, and parasites, and it often detects pathogens that

traditional methods fail to identify (Wilson et al., 2014; Naccache

et al., 2015; Wilson et al., 2015; Graf Erin et al., 2016; Gu et al.,

2016; Chiu et al., 2017; Murkey et al., 2017; Wilson et al., 2017b;

Wilson et al., 2017a; Wilson et al., 2018). mNGS has been

successfully used to diagnose infections in the central nervous

system, bloodstream, respiratory system, digestive tract, and eyes

(Hoffmann et al., 2015; Pan et al., 2015; Abril et al., 2016; Zhou

et al., 2016; Doan et al., 2017; Gosiewski et al., 2017; Kujiraoka

et al., 2017; Pendleton et al., 2017; Wilson et al., 2017a).

However, with the rapid advancement of sequencing

technologies, the volume of mNGS data has significantly

increased. A key challenge lies in performing accurate and

reproducible high-throughput data analysis to extract clinically

relevant information for diagnosis and monitoring. Due to its

broad-spectrum, mNGS typically generates over 99% host-derived

reads (Kostic et al., 2012; Wylie et al., 2012). Therefore, mNGS data

analysis requires the removal of host sequences, followed by the

alignment of non-host sequences to pathogen reference genomes to

estimate the abundance of various taxonomic units. Finally, the

likelihood of each pathogen’s involvement in disease must be
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calculated. Each step involves multiple tools with numerous

parameter settings. Researchers must carefully select tools,

configure parameters, integrate data, and ensure version

compatibility. These decisions can significantly impact the final

results and the reproducibility, which is critical for bioinformatics

pipelines (Baker, 2016; Suetake et al., 2023).

To ensure the effectiveness, reproducibility, and flexibility of an

mNGS data analysis pipeline, it should possess the following key

characteristics: (i) sufficient storage and computational resources,

with the flexibility to adjust run parameters according to available

resources; (ii) a high-quality pathogen reference genome database;

(iii) accurate and reproducible bioinformatics pipelines; and (iv) a

user-friendly interface or software package. Several software tools

for pathogen analysis, such as OneCodex (OneCodex), Sunbeam

(Clarke et al., 2019), and SURPI (Naccache et al., 2014), have been

developed. However, many of these tools require paid subscriptions

or significant computational resources to build the foundational

databases and perform analyses.

To address these challenges, we introduce the Henbio Pathogen

Detection Toolkit (HPD-Kit), an open-source, comprehensive tool

designed for pathogen detection and analysis in both humans and

animals (Figure 1). We begin by describing the construction of the

pathogen reference genome database. Next, we outline the HPD-Kit

bioinformatics pipeline, which includes host subtraction, quality

control, multi-method alignment and validation, and pathogen

pathogenicity assessment. We then evaluate its pathogen

identification capabilities using simulated datasets. Finally, we

demonstrate its practical utility through three case studies.
Method

Database construction

A comprehensive and non-redundant pathogen reference

genome database was constructed through the following steps:

Data collection and curation
Pathogen data were first collected from scientific literature and

six databases, including the NCBI Virus Database (Brister et al.,

2015; Amos et al., 2022; Urban et al., 2022; Olson et al., 2023;

Alvarez-Jarreta et al., 2024; Guo et al., 2024). The focus was on

pathogens that cause diseases in humans or animals through

infection. The collected data encompassed key attributes,

including taxonomic ID (TaxID), scientific name, taxonomy, host

range, and pathogenicity. Records sharing identical TaxID were

consolidated to remove duplicates. For each species (at the species

level), reference genome metadata and sequence files were then

retrieved and downloaded from NCBI based on the TaxID.

Selection of non-redundant reference genomes
To ensure the quality and uniqueness of the reference genomes,

priority was given to those from the RefSeq database (Pruitt et al.,

2007; O’Leary et al., 2016), which are designated by NCBI as

“reference genomes.” For species without records in RefSeq,
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genome assembly data were sourced from GenBank, prioritizing

assembly completeness in the following order: Complete,

Chromosome, Scaffold, and Contig (Kitts et al., 2016). To ensure

uniqueness, only one genome version per species (defined by

TaxID) was retained, with the same criteria applied to

different strains.
Database construction
Based on the selected non-redundant reference genome data, we

constructed a comprehensive pathogen database, categorized into

four distinct pathogen types. Each database includes essential

information about the pathogens, such as TaxID, genome size,

assembly level, and accession number. Additionally, indices and

other necessary files were generated using the reference genome

sequences, ensuring compatibility with analysis tools like Kraken2

(Lu et al., 2022), Bowtie2 (Langmead and Salzberg, 2012), and

BLAST (Johnson et al., 2008). These databases serve as a reliable

foundation for the HPD-Kit, facilitating efficient and accurate

pathogen identification.
Bioinformatics pipeline

Quality control and host subtraction
Quality control was performed using (version 0.23.4) (Chen

et al., 2018) was used for quality control to remove low-quality reads
Frontiers in Cellular and Infection Microbiology 03
and adapter sequences from the raw data. Reads were discarded if

more than 40% of their bases had a quality score below 20,

contained over 10 ambiguous bases (N), or were shorter than 30

bases. After quality control, sequences shorter than 80% of their

original length were also removed. To reduce host DNA

contamination, Bowtie2 (version 2.5.3) (Langmead and Salzberg,

2012) or BBDuk (version 39.08) (BBDuk) was used to align reads to

the host reference genome, and only unaligned reads were retained

for further analysis.

Multiple alignment algorithms and verification
Initial classification

The host-subtracted reads were classified using l Kraken2

(version 2.1.3) (Lu et al., 2022) with the parameters –report-

minimizer-data and minimum-hit-groups = 3. This step

generated TaxIDs, read counts, unique k-mers, and relative

abundances for each potential pathogen. To ensure detection

sensitivity and minimize false positives, species were retained if

they met the following criteria: (i) more than 10 reads, (ii) over 800

unique k-mers, or (iii) a unique k-mer-to-read ratio greater than 10

(i.e., more than 10 unique k-mers per read on average).
Refined alignment

Due to homologous sequences and PCR amplification duplicates,

the read counts generated by Kraken2 (Lu et al., 2022) may not

accurately reflect the true abundance of each pathogen. To obtain non-
FIGURE 1

Schematic overview of the workflow of HPD-Kit. (A) Overview of the pathogen database construction. (B-D) Overview of the pathogen detection
workflow of HPD-kit, which includes the following steps: quality control of input data, initial classification using kraken2, refined alignment with
bowtie2, similarity validation via BLAST, evaluating of pathogen importance through NPAS scores, and result reports.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1580165
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Que et al. 10.3389/fcimb.2025.1580165
redundant, high-quality read counts, a refined alignment and quality

control were performed. First, Bowtie2 (version 2.5.3) (Langmead and

Salzberg, 2012) was used to align the host-subtracted FASTQ files

against the reference genome of each pathogen identified by Kraken2,

excluding reads with MAPQ < 30 (Lu et al., 2022). Next, Komplexity

(version 0.3.6) (Komplexity) was employed to filter sequences with

complexity scores < 0.5. Finally, SAMtools (version 1.20) (Danecek

et al., 2021) was used to remove duplicate reads and calculated unique

read counts, genome base coverage, genome sequence coverage, and

sequencing depth for each pathogen.

Similarity validation
To assess sequence similarity, the unique reads for each

pathogen were aligned using BLAST (version 2.15.0) (Johnson

et al., 2008) against the corresponding species reference genome.

The top hits (with max_target_seqs = 1 and evalue = 1e-5) were

selected, and their read counts were used as the final unique read

counts for each pathogen. For paired-end reads, only those aligning

to the same sequence on the reference genome from both ends

were retained.
NPAS for identifying infection-related pathogens
Under sufficient sequencing depth, the presence of a pathogen

in a sample should theoretically result in (i) an increase in

sequencing reads and k-mer counts proportional to the

pathogen’s genome length, (ii) detection of all genome loci, and

(iii) adequate coverage of all sequences if the genome contains

multiple sequences. Based on these assumptions, we adapted the

RPKM (Mortazavi et al., 2008) normalization method, commonly
Frontiers in Cellular and Infection Microbiology 04
used in transcriptomics, to define a new metric: Normalized

Pathogen Abundance (NPA). This metric is designed to quantify

and evaluate pathogen abundance in a sample by integrating the

counts of unique kmers, unique reads, and the size of the pathogen

reference genome. The NPA for each pathogen in the sample is

calculated as follows (Equation 1):

NPA  =   unique _ kmers  �   unique _ reads
genome _ size

1000  �  sample _ total _ reads
1000000

=   unique _ kmers  �   unique _ reads
genome _ size�  sample _ total _ reads  �   109

(1)

Where unique_kmers and unique_reads represent the number

of unique k-mers and unique reads detected for a given species in

the sample, respectively; genome_size refers to the size of the

species’ reference genome; and sample_total_reads indicates the

total number of reads in the sample after host subtraction.

Subsequently, the importance or pathogenic potential of each

pathogen in the sample can be assessed using the Normalized

Pathogen Abundance Score (NPAS), calculated as follows

(Equation 2):

NPAS   =   log2(
NPAtreat

NPAcontrol   +   1
 �   base _ coverage  

�   sequence _ coverage   +1)
(2)

Where NPAtreat and NPAcontrol represent the NPA values in the

case and control samples, respectively; base_coverage refers to the

base-level coverage, reflecting the extent of coverage of reference

genome positions by the reads in the sample (Figure 2A);

sequences_coverage refers to the sequence-level coverage, indicating

the proportion of the reference genome sequences covered by the
FIGURE 2

Definition of “Coverage” Metrics. (A) The base_coverage metric represents the percentage of base pairs in the reference genome covered by
sequencing reads, regardless of coverage depth. For example, Pathogen A’s reference genome is 10,000 bp long, and 6,000 bp are covered by
sequencing reads, the base coverage is 60.0%. (B) The sequences_coverage metric represents the percentage of sequences in the reference
genome covered by sequencing reads, regardless of base coverage. For example, Pathogen B’s reference genome contains 3 sequences, and 2 are
covered by sequencing reads, the sequence_coverage is 66.7%.
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reads in the sample (Figure 2B). A log2 transformation is applied to

normalize the data distribution, and adding 1 prevents extreme values

from ratio calculation and log2 transformation.

When a pathogen is present in both case and control samples,

dividing by (NPAcontrol + 1) reduces the pathogen’s significance in

the case sample. This approach prioritizes pathogens that are truly

associated with infection based on their NPAS scores. If NPAcontrol

equals 0 (i.e., the pathogen is absent in the control sample) or is

close to 0, the NPAS formula simplifies to (Equation 3):
Frontiers in Cellular and Infection Microbiology 05
NPAS   =   log2(NPAtreat  �   base _ coverage  

�   sequence _ coverage   +1)
(3)

All detected potential pathogens in the sample are then ranked by

their NPAS scores, with higher scores indicating a greater likelihood

that the pathogen is dominant and related to the disease infection. It

is recommended to submit the top ten pathogens to pathologists and

clinicians for further validation using independent methods, in

conjunction with the clinical symptoms of the case.
FIGURE 4

Evaluation results on simulated datasets. (A) Detection outcomes of various species at different abundances. The x-axis represents read count, and
the y-axis represents randomly selected parasitic, fungal, bacterial, and viral species. Circles indicate detected species, while triangles indicate
undetected species. (B) Overall detection accuracy of pathogens at different abundances.
FIGURE 3

Overview of pathogen reference genomes. (A) The number and proportion of bacteria, fungi, parasites, and viruses in the database; (B) The sources
of reference genomes; (C) The completeness of reference genomes.
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Local analysis workflow construction

Pathogen identification is a complex analytical process that

involves multiple steps and software tools, often complicated by

compatibility issues between different software versions. To simplify

this process and reduce the technical barriers, we adopted

containerization technology alongside the Nextflow workflow

framework (Di Tommaso et al., 2017). This approach enabled us

to package the pathogen identification pipeline into a robust, plug-

and-play, and reproducible tool. First, we utilized Singularity (now

known as Apptainer) (Apptainer) to bundle all the required

software tools into a single container image. Next, we employed

Nextflow to script the entire pathogen identification and analysis

workflow, transforming it into a user-friendly command-line tool.

Customizable parameters enhance the tool’s versatility and

flexibility, catering to diverse user needs.

The pipeline supports both single-end and paired-end high-

throughput sequencing files and allows for the parallel processing of

multiple samples. The system dynamically adjusts the number of

parallel samples based on available server resources, significantly

improving processing efficiency. Users only need to download the

prepackaged Singularity image and the associated pathogen

database, set up the Singularity environment, and provide FASTQ

files along with a few essential parameters. With a single command,

they can execute the entire pathogen analysis pipeline, quickly

obtaining comprehensive results on potential pathogens present

in the samples.
Online analysis workflow construction

Although the local analysis workflow greatly simplifies the

pathogen identification process, it may still present challenges for

users lacking experience with Linux operating systems or sufficient

computational resources. To address this, we developed an online

pathogen identification and analysis module based on the

bioinformatics cloud platform HiOmics (Li et al., 2024). We first

adopted Docker (Docker: Accelerated, Containerized Application

Development) container technology to package all necessary tools

and dependencies into a lightweight container image. Next, we

scripted the detailed workflow using the Workflow Description

Language (WDL) (OpenWDL: Community Driven Open-

development Workflow Language), ensuring clarity and

maintainability. Finally, we employed Cromwell (Cromwell: A

Workflow Management System) as the execution and scheduling

engine to fully automate the process.

Users are not required to download or install any software or

databases. Instead, they can simply upload FASTQ files through the

Web interface, configure a few essential parameters, and initiate the

pathogen analysis workflow with a single click. This cloud-based

solution removes the technical burden, making it accessible to a

broader range of users, including those without advanced

computational expertise.
Frontiers in Cellular and Infection Microbiology 06
Results

High-quality, non-redundant pathogen
reference genome database

After rigorous screening, we compiled a comprehensive

database of nearly 6,000 entries of reference genome data for

pathogens, (Figure 3) which include 2,409 bacterial species, 768

fungal species, 2,307 viral species, and 321 parasitic species (as of

September 20, 2024). Each species is represented by a single, high-

quality, non-redundant reference genome, ensuring consistency

and reliability for downstream analyses and pathogen identification.
Evaluation on simulated datasets

To evaluate the accuracy of HPD-Kit in pathogen identification,

we randomly selected two species each from viruses, bacteria, fungi,

and parasites, in addition to the reference genome of the human

host. Paired-end test datasets were generated using the wgsim (Li

et al., 2009) sequencing simulator (version 1.20) from SAMtools,

with a read length of 100 bp and an error rate of 1%.

To determine the impact of pathogen abundance (read count)

in the sample on the detection accuracy of HPD-Kit, we generated

nine benchmark datasets with varying read counts: 15, 50, 100, 500,

1,000, 5,000, 10,000, 50,000, and 100,000. In each dataset, the

human host read count was fixed at 1 million. As illustrated in

Figure 4, when the read count of ≥500, the detection accuracy of

HPD-Kit for viruses, bacteria, fungi, and parasites achieved 100%.

Even at a low read count of 50, the overall accuracy remained at

62.5%. d These results demonstrate that HPD-Kit maintains robust

detection performance even under conditions of low pathogen

abundance. Notably, the detection accuracy for viruses remained

consistently at 100%, across all nine abundance levels.

For pathogens with a large number of reads and k-mers after

initial classification, if detailed alignment and similarity validation

yield only a small number of unique reads, HPD-Kit flags potential

false positives (see Table 1). Further analysis confirmed that these

pathogens were indeed absent from the simulated dataset.
Applications in clinical datasets

To evaluate the performance of HPD-Kit on clinical data, we

replicated key findings from three published studies focusing on

infectious diseases affecting the human digestive, visual and nervous

systems. Consistent results were obtained using both local software

packages and cloud-based workflows, demonstrating HPD-Kit’s

reproducibility and effectiveness in pathogen identification across

diverse disease contexts. Additionally, researchers can use HiOmics’

visualization plugin to generate heatmaps, coverage maps, scatter

plots, and other publication-ready visualizations by inputting the

results files from the pathogen identification workflow.
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Application 1: pathogen identification in diarrhea
The HPD-Kit successfully replicated the findings of Yanjiao

Zhou et al. (2016). by detecting Clostridium difficile in all qPCR-

positive samples (Supplementary Table S1), demonstrating its

advantage in pathogen detection without prior knowledge.

Figure 5A shows the analysis results for Clostridium difficile in

sample SRR2638129, highlighting that HPD-Kit not only identifies

pathogens but also provides detailed information for a

comprehensive understanding of their characteristics.

Application 2: pathogen identification in
infectious keratitis

In a previous study (Li et al., 2018), Jennifer Lu et al. introduced a

workflow using Kraken (Lu et al., 2022) for pathogen identification and

Pavian (Breitwieser and Salzberg, 2020) for interactive analysis of

metagenomic data from infectious keratitis patient samples. We

reanalyzed this dataset using HPD-Kit and obtained similar results.

Figure 5B summarizes the pathogen identification outcomes for 10

samples (8 infectious keratitis cases and 2 controls), presenting read

counts, k-mers distributions, and NPAS scores as heatmaps. Notably, in

sample SRR12486990 (Supplementary Table S2), Staphylococcus aureus

ranked second inNPAS score, while Staphylococcus argenteus ranked first.

Although S. aureus exhibited higher abundance in the case sample, its

presence in both control samples resulted in a slightly lower NPAS score

compared to S. argenteus. In contrast, the original study ranked S. aureus

first based on its z-score. Both S. aureus and S. argenteus belong to the

Staphylococcus genus, are Gram-positive, and share similar morphology.

Prior to 2015, S. argenteus was classified as a subspecies of S. aureus

(Zhang et al., 2016), suggesting that further differentiation between these

two organisms may require additional experimental validation.
Application 3: pathogen identification in
meningitis

In a study (Saha et al., 2019) involving 36 meningitis cases with

known etiologies, Senjuti et al. successfully identified pathogens in 25

cases (69.4%) using a pathogen-calling algorithm based on IDseq. In

comparison, HPD-Kit identified pathogens in 29 cases (80.6%) without

requiring control samples (Figure 5C; Supplementary Table S3). Among

these, the NPAS score ranked the causative pathogen first in 22 cases,

second in one case (CHRF0050, undetected by the original method),

third in three cases, and fourth in two cases (CHRF0039, also

undetected). One case ranked seventh (CHRF0001) and another

eighth (CHRF0004), both of which were missed by the original

method. Additionally, HPD-Kit also identified three cases of

neuroinvasive chikungunya virus (CHIKV), confirming a previously

unrecognized meningitis outbreak.
Discussion

Pathogen detection is increasingly recognized as a critical tool

for improving healthcare quality and safeguarding public health

(Armstrong Gregory et al., 2019). However, converting raw FASTQ

files into pathogen identification results remains a complex task,

especially for clinicians lacking bioinformatics expertise. To address
T
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this challenge, we developed HPD-Kit, a bioinformatics pipeline

specifically designed for human and animal pathogen detection.

HPD-Kit streamlines the processing of high-throughput sequencing

data, enabling users to perform comprehensive analyses without

requiring programming skills. It offers both a local software package

and an online analysis platform that deliver accurate and

reproducible results.

The use of reference genomes provides a reliable framework of

genetic information for pathogen detection, significantly enhancing

both accuracy and efficiency (Kaye and Wasserman, 2021). In our

study, we constructed a curated database comprising key pathogens

that infect humans and animals, while excluding the majority of non-

pathogenic microorganisms to minimize potential noise. For each

species, we selected the most complete and highest-quality reference

genome currently available. Unlike other tools that rely on broad-

spectrum microbial genome databases, such as the NCBI RefSeq

employed by SURPI (Naccache et al., 2014), GATK (Walker et al.,

2018), and Kraken (Lu et al., 2022), or nucleotide (nt) and non-

redundant protein (nr) databases like IDseq (Kalantar et al., 2020),

HPD-Kit’s pathogen-specific database minimizes computational

overhead and reduces interference from non-pathogenic microbes.

A common challenge faced by many microbial identification

tools is the frequent reporting of false positives due to low-abundance

reads. To reduce false positive rates, Lu et al. recommend applying

stringent filters (reads > 10 & unique k-mers > 1000) when using

Kraken2 for pathogen identification (Lu et al., 2022). However, this
Frontiers in Cellular and Infection Microbiology 08
approach risks filtering out some truly present low-abundance

pathogens. For instance, in samples SRR3214089 (total reads: 769;

reads of Epstein-Barr virus: 15; unique k-mers of Epstein-Barr virus:

557) and SRR3214092 (total reads: 25050; reads of JC polyomavirus:

8067; unique k-mers of JC polyomavirus: 883), both Epstein-Barr

virus and JC polyomavirus would be incorrectly classified as false

positives. To strike a balance between reducing false positives and

enhancing the detection of low-abundance pathogens, HPD-Kit

integrates three complementary algorithms: Kraken2 (Lu et al.,

2022), Bowtie2 (Langmead and Salzberg, 2012), and BLAST

(Johnson et al., 2008). Since Kraken2 is used only for initial

screening in HPD-Kit, we adjusted its filter criteria to unique k-

mers > 800 or unique k-mers-to-read ratio > 10. This adjustment

enables the correct detection of pathogens in samples SRR3214089

and SRR3214092. Testing on simulated datasets demonstrated that

HPD-Kit achieved an identification accuracy rate of 62.5% even with

a low number of reads (50), a critical capability for diagnosing and

treating diseases with early-stage low pathogen abundance. Table 1

further highlights HPD-Kit’s effectiveness in reducing false positives.

Accurately identifying the true infectious agent from a large pool

of potential candidates remains a significant challenge in pathogen

analysis. To address this, HPD-Kit leverages a rigorously curated

pathogen database and integrates multiple key metrics—such as

unique reads, unique k-mers, relative abundance, genome coverage,

and sequence similarity—to propose The NPAS score, a quantitative

measure of the pathogenic potential of candidates. The NPAS score is
FIGURE 5

Pathogen identification results by HPD-Kit in real datasets. (A) Detection summary of Clostridium difficile in sample SRR2638129 from the diarrhea
dataset. (B) Unique reads, unique k-mers, and NPAS rankings of pathogens in 8 cases of infectious keratitis. Dot size represents the inverse rank; the
largest dot indicates the highest rank (rank 1). NPAS rankings more effectively prioritize infection-related pathogens compared to unique reads or
unique k-mers. (C) Pathogen detection results in 36 meningitis samples. Blue squares denote pathogens detected by HPD-Kit, while gray triangles
indicate undetected pathogens.
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applicable to both control and non-control sample scenarios. For

example, in meningitis cases, HPD-Kit detected more pathogens

(independently confirmed by other methods) than original methods

(Saha et al., 2019), even when their NPAS scores did not always rank

first. Notably, control samples were not used in these specific cases.

For clinical diagnostics, we strongly recommend the inclusion of

control samples to minimize the potential influence of pathogens

present in controls on NPAS scoring.

In the context of public health surveillance, HPD-Kit holds

significant potential, particularly in its capacity for rapid response

during infectious disease outbreaks. Its streamlined bioinformatics

workflow and user-friendly interface enable the efficient processing of

high-throughput sequencing data, providing public health

laboratories with a powerful tool. Furthermore, its curated database

and filtering algorithms are likely to maintain high accuracy in

complex samples, thereby supporting the differentiation of outbreak

strains from background microbial communities. By reducing the

time and expertise required for pathogen detection, HPD-Kit has the

potential to enhance the ability of public health systems to effectively

respond to emerging infectious disease threats.

Although our pathogen database covers the majority of known

pathogens, the HPD-Kit is currently unable to detect newly emerging

pathogens that are not yet included. To address this limitation, we

have implemented the following measures: Users can report missing

or newly discovered pathogens via the email provided on GitHub,

and our team will review and update the database within one month.

Additionally, we conduct a comprehensive review of updates from

databases such as NCBI Virus Database every six months and

promptly upgrade the HPD database to ensure the inclusion of

newly emerging pathogens. In response to emergencies (e.g.,

disease outbreaks), we act swiftly to update and release new

versions of the database, ensuring that users always have access to

the most up-to-date data. Through these measures, we have

significantly enhanced the timeliness and comprehensiveness of

the database.

In the future, we plan to further enhance the functionality of

HPD-Kit by integrating pathogen genome assembly and mutation

analysis into its bioinformatics pipeline, leveraging artificial

intelligence to identify and characterize pathogen marker genes,

and improving the quality of microbial draft genomes to reduce

false-positive rates in microbial identification. These advancements

aim to transform HPD-Kit into a more powerful and versatile tool

for pathogen identification and analysis.
Conclusion

In summary, HPD-Kit offers an efficient and user-friendly

solution for pathogen analysis and identification, facilitating the

broader adoption of bioinformatics tools in pathogen detection.
Frontiers in Cellular and Infection Microbiology 09
Users can choose between a local software package or a web-based

interface, requiring minimal parameter adjustments to complete

analyses. This approach not only empowers researchers with

limited programming experience but also provides clinicians

with a reliable and accurate method for pathogen identification,

thereby supporting disease diagnosis and public health

decision-making.
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