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Positive sense single strand RNA (+ssRNA) viruses are one of the evolutionary

successful organisms and many of them pose a significant threat to human

health. Diseases caused by +ssRNA viruses such as COVID-19, Flu and acute viral

hepatitis are major public health concern worldwide. Therefore, a lot of research

is focused at decoding the life cycle of +ssRNA viruses and develop specific

antiviral therapeutics against them. Interaction of the viral RNA with virus-

encoded proteins and host proteins drives the lifecycle and pathogenesis of

+ssRNA viruses. Recent developments in computational and high-throughput

omics-based experimental technologies offer the sensitivity and specificity for

molecular characterization of these RNA-protein complexes. These are

promising tools to revolutionize the field of +ssRNA virus research and pave

the way for antiviral discovery. This review summarizes the current scientific

resources available to characterize the RNA-protein interactome of +ssRNA

viruses and provides an overview of the drug discovery pipeline for developing

antivirals against pathogenic +ssRNA viruses.
KEYWORDS

RNA-protein interactions, RNA binding protein, positive strand RNA viruses, RaPID

assay, RAP-MS
1 Introduction

The central dogma of molecular biology signifies the importance of flow of genetic

information from DNA to RNA to protein. Decades of research have further uncovered

multiple layers of complex mechanisms by which biological systems accurately process the

flow of information and maintain homeostasis. Such precision and specificity of the
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biological systems are mostly attributed to close interaction between

different components of the system.

RNA and proteins are two fundamental components of living

organisms, required for their survival and propagation. Ribosomal-

RNA, transfer-RNA and messenger-RNA work in a coordinated

fashion to generate proteins, which perform major cellular function

to maintain homeostasis. Interaction between RNA and proteins

(RNA-binding proteins, denoted as “RBPs” hereafter) plays a major

role in mediating the function of both and such interactions are

indispensable for many essential processes in living organisms.

RBPs serve diverse cellular functions: for example, RBP-RNA

interacts to form the ribonucleoprotein particles (RNPs), dynamic

complexes, involved in different steps of gene expression,

intracellular trafficking of RNA, decay of RNA and control of

protein turnover etc (Dreyfuss et al., 2002; Gerstberger et al.,

2014). The RBPs function by synergistically interacting with

structurally well-defined binding domains. Although these

domains are limited in number, they are tailored to perform

specific function (Lunde et al., 2007). The major RBP binding

domains with over 100 PDB structures are Zinc Finger, Helicase,

RNA Recognition Motif, PUA domain, and KH domain (Corley

et al., 2020). RBPs are consistent with their frequent housekeeping

roles, widely distributed across tissues, and more evolutionarily

conserved than standard regulators like transcription factors

(Gerstberger et al., 2014).

In addition to endogenous cellular regulations, RBPs play a

pivotal role in determining the fate of pathogens, such as viruses,

within our bodies. Pathogenic +ssRNA viruses are a major human

health concern. Owing to simple organization and high mutation

rate of their genome, they generate a number of distinct variants in a

short span of time, making it more difficult to control their spread.

Notably, the central dogma of flow of genetic information in

+ssRNA viruses rely only on two components, that is, from RNA

to protein. Viral RNA serves as the genetic material and with the

help of virus-encoded proteins and host proteins, it plays a central

role in transmission, spread andmaintenance of genomic integrity of

the virus. Knowledge gained from research on many +ssRNA viruses

suggest that specific and spatio-temporally controlled RNA-protein

interactions among viral RNA and proteins as well as viral RNA/

proteins and host RNA/proteins enable these viruses to hijack the

host cellular machineries in order to survive and proliferate inside

the host and maintain their genomic integrity through generations

(Nagy and Pogany, 2012; Robinson et al., 2018). Therefore,

molecular dissection of these RNA-protein interactions is key to

understanding the mechanistic details of survival and spread of the

pathogenic +ssRNA viruses as well as designing specific antiviral

therapeutics against them.

Due to the unstable nature and crucial role of secondary and tertiary

structures of RNA in dictating its function, it is not easy to characterize

RNA-protein interactions. However, with the development of more

sensitive proteomics techniques and computational methods, it is now

possible to construct the RNA-protein interactome of +ssRNA viruses.

RNA-protein interactome of few +ssRNA viruses such as SARS-CoV-2

and Zika virus have been generated, which helped in understanding the

life cycle of the virus and identification of putative antiviral targets
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(Flynn et al., 2021; Kamel et al., 2021a; Schmidt et al., 2021; Verma et al.,

2021; Zhang et al., 2022). In this review, we focus on available RNA-

centric techniques to construct the RNA-protein interactome and

discuss the functional significance of the data in understanding the

life cycle of +ssRNA viruses and antiviral target discovery.
2 RNA-protein interactions help the
+ssRNA viruses escape the host innate
immune response and complete their
life cycle

2.1 RNA-protein interactions in viral
evasion of the host innate immune
response

Host innate immune effectors differentiate between self and non-

self RNAs. After entry of an +ssRNA virus into the host cell, viral

RNA is released from the capsid, which may be recognized by the

host antiviral immune effectors such as Toll like receptor 7/8 (TLR7/

8), 2′-5′-oligoadenylate synthetase (OAS)/RNase L and targeted for

degradation (Figure 1) (Chan and Gack, 2016). Further, during

replication of the viral genome, double-strand RNA is generated,

which is recognized by host antiviral immune effectors such as Toll-

like receptors (TLRs) and RIG-I-like receptors (RLRs). Among the

TLRs, TLR3 and RLR family proteins like, retinoic acid inducible

gene-I (RIG-I), melanoma differentiation-associated gene 5 (MDA5)

and laboratory of genetics and physiology 2 (LGP2) channelize the

viral RNA for degradation (Figure 1) (Ma and Suthar, 2015; Chan

and Gack, 2016). In many cases, +ssRNA virus infection also causes

mitochondrial damage, resulting in the release of mitochondrial

DNA, which is sensed by the cyclic GMP-AMP (cGMP) synthase

(cGAS), leading to the induction of type I interferon and interferon-

stimulated genes (ISGs), thereby mounting a strong antiviral

response. RNA viruses also activate NOD-like receptor thermal

protein domain associated protein 3 (NLRP3), activating

inflammasomes and/or pyroptosis (Choudhury et al., 2021). Viral

RNA may also modulate cellular autophagy machinery and

components of the stress granule, RNA granule or P bodies due to

their link with the host’s innate immune response (White and Lloyd,

2012; Tsai and Lloyd, 2014). Interaction between the viral RNA and

host proteins mediate the above-mentioned processes. For example,

RNA-protein interactome of the SARS-CoV-2 5’- and 3’-UTR

regions identified DDX24 and ABCE1 as interaction partners of

the viral 3’-UTR and 5’-UTR, respectively (Verma et al., 2021).

DDX24 associates with RNA and negatively regulates RIG-I-like

receptor signaling, inhibiting the host antiviral response (Ma et al.,

2013). ABCE1 (RNase L inhibitor) inhibits the activity of RNase L,

which is activated by the host in response to RNA virus infection or

interferon alpha/beta (IFN-a/b) stimulation (Tian et al., 2012).

Active RNase L cleaves the viral RNA, which is prevented in the

presence of ABCE1. Hence, DDX24-3’-UTR and ABCE1-5’-UTR

interactions appear to be immune evasion strategies of the SARS-

CoV-2. A phylogenetically conserved RNA structure within the 3C
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region of Polio virus ORF actively inhibits the endoribonuclease

activity of RNase L (Han et al., 2007). RNA-protein interactome of

the SARS-CoV-2 5’- and 3’-UTR regions also identified the antiviral

role of LAMP2a, which is the receptor for chaperone-mediated

autophagy (Verma et al., 2021). DENV-2 PR-2B sfRNA (sub-

genomic RNA fragments) interacts with TRIM25, interferes with

its deubiquitylation and inhibits RIG-I signaling (Manokaran et al.,

2015). DENV-2 non-coding sfRNA interacts with G3BP1, G3BP2

and CAPRIN1 and inactivates them to suppress the expression of

ISGs (Bidet et al., 2017). N6-methyladenosine (m6A) modification of

HCV and SARS-CoV-2 RNA helps them in evading recognition by

RIG-I (Kim et al., 2020; Li et al., 2021). MRM2/FTSJ2, a
Frontiers in Cellular and Infection Microbiology 03
mitochondrial 2’-O-methyltransferase interacts with the SARS-

CoV-2 RNA, which might shield the viral RNA from recognition

by MDA5 (Flynn et al., 2021). NSP15 of coronaviruses (CoVs)

encode endoribonuclease EndoU, which cleaves the viral polyuridine

sequence, inhibiting the activation of host immune sensors. The viral

5’-polyuridine from negative-sense viral RNA, termed PUN RNA is

the product of polyA-templated RNA synthesis and is an MDA5-

dependent pathogen-associated molecular pattern (PAMP)

(Hackbart et al., 2020).

Notably, viral proteases also play a key role in inhibiting the host

innate immune components. For example, Picornavirus 2Apro

disrupts MDA5-MAVS mediated antiviral innate immune response,
FIGURE 1

Recognition of +ssRNA viruses by the host innate immune pathways and generation of antiviral response. RIG-I and MDA5 recognize dsRNA, TLR3
and TLR7/8 sense dsRNA and ssRNA, respectively, and activate the indicated pathways to express type I and type III interferons and proinflammatory
cytokines. dsRNA also activates RNase L, which cleaves the former. Viral proteins can damage mitochondria and/or activate the inflammasome. RIG-
I, Retinoic acid-inducible gene; MDA5, Melanoma differentiation-associated gene 5; LGP2, Laboratory of genetics and physiology 2; MAVS,
Mitochondrial antiviral signaling protein; TRAF3, TNF receptor associated factor 3; TBK1, TANK-binding kinase 1; IKKe, IkB kinase e; IRF3/7, Interferon
regulatory factor 3 or 7; TLR3, toll-like receptor 3; TLR7/8, toll-like receptor 7 or 8; TRIF, TIR-domain containing adaptor inducing interferon-b; RIP-
1, receptor-interacting protein 1; TRAF6, TNF receptor associated factor 6; TAK1, TGFb-activated kinase 1; IKKa/b, IkB kinase a/b; MyD88, Myeloid
differentiation primary response 88; IRAK1,4, interleukin-1 receptor-associated kinase 1,4; OAS, oligoadenylate synthetase; 2’-5’ A, 2’-5’
oligoadenylate; NLRP3, NOD-like receptor thermal protein domain associated protein 3; cGAS, cyclic GMP-AMP synthase; cGAMP, cyclic GMP-AMP;
STING, Stimulator of interferon genes,IL-1b, Interleukin-1b; IFN-a/b, interferon a/b; IFNaR1/2, interferon a/b receptor 1/2; JAK1, janus kinase 1;
TYK2, tyrosine kinase 2; STAT1/2, signal transducer and activator of transcription ½; IRF9, interferon regulatory factor 9; ISRE, interferon stimulated
response element; ISGs, interferon stimulatory genes. The figure is made in Microsoft PowerPoint and BioRender.
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Coxsackievirus B3 (CVB3) 2Apro cleaves MDA5 and MAVS by

caspase-proteasome independent pathway, while poliovirus (PV)

2Apro cleaves MDA5 via caspase-proteosome dependent pathway,

CVB3 2Apro cleaves TRIF, thus antagonizing type-I and type-III

interferon production (Lind et al., 2016). The RLR signaling

pathway is disrupted by the 3Cpro of picornavirus. 3Cpro of EV-A71

binds to the N-terminal CARDs of RIG-I, inhibiting its interaction

with MAVS, and thus disrupting activation of type-I IFN response

and 3Cpro of encephalomyocarditis virus (EMCV) cleaves RIG-I in

vitro, promoting its degradation by the caspase pathway (Papon et al.,

2009; Lei et al., 2010). EMCV 3Cpro also disrupts the TANK–TBK1–

IKKe–IRF3 complex by cleaving TANK, thus decreasing type‐I IFN

production (Huang et al., 2017). FMDV 3Cpro disrupts NF‐kB and

IRF3 signaling pathway by cleaving the C-terminal zinc finger domain

of IKKg (Wang et al., 2012). FMDV 3Cpro and 2B proteins inhibit

LGP2 expression (Zhu et al., 2017).

Proteases of coronaviridae also interferes with innate immune

response (Lei and Hilgenfeld, 2017). SARS-CoV PLpro reduces the

ubiquitination of STING, TRAF3 and TBK1, thus prohibiting their

activation (Chen et al., 2014). It also stabilizes the IkBa and inhibits

NF‐kB signaling pathway (Frieman et al., 2009). 3CLpro (Also known

as Mpro) of porcine deltacoronavirus (PDCoV) and porcine epidemic

diarrhea virus (PEDV) cleaves IKKg, thereby abrogating NF-kB
signaling (Wang et al., 2016; Zhu et al., 2017a). 3CLpro of PDCoV

cleaves STAT2, 2A of EV71, 3C of EMCV, and 3C of FMDV cleave

STAT1, and 3C, 3D proteases of EV71 cleave IRF9 and disrupt the

JAK-STAT pathway (Du et al., 2014; Wang et al., 2015; Huang et al.,

2017; Zhu et al., 2017b). Further, leader protease (Lpro), found in

many picornaviruses targets multiple host innate immune factors

to promote survival of the virus. The FMDV-Lpro cleaves LGP2,

inhibiting the type I IFN response (Rodrıǵuez Pulido et al., 2018).

FMDV-Lpro also induces the degradation of p65/RelA subunit

of NF-kB and decreases the expression of IRF3 and IRF7, leading

to inhibition of the NF-kB activity and IFN-a/b expression,

respectively (de Los Santos et al., 2007; Wang et al., 2010).

A shorter form of FMDV-Lpro, known as Lbpro, inhibits the

ubiquitination of RIG-I, TBK1, TRAF6, and TRAF3, thereby

inhibiting the secretion of type I IFNs (Wang et al., 2011). The Lpro

of Theiler’s murine encephalomyelitis virus (TMEV) andMengovirus

inhibits IRF3 activity and blocks IFN-b transcription (Hato et al.,

2007; Stavrou et al., 2010). Mengovirus-Lpro also inhibits NF-kB
activity, leading to inhibition of IFN-a/b expression in virus-

infected cells (Zoll et al., 2002).
2.2 RNA-protein interactions drive the
progress through different stages in the life
cycle of +ssRNA viruses

The life cycle of a +ssRNA virus starts with the entry of the virus

into the host cell. Post uncoating, the viral genome is released to the

cytoplasm, where it serves as the template for translation of the non-

structural and/or structural polyprotein, followed by their cleavage

through autolysis and/or with the help of virus-encoded and/or host
Frontiers in Cellular and Infection Microbiology 04
proteases. Translation of proteins in +ssRNA viruses may be

mediated via cap-dependent, cap-independent or a combination

of both mechanisms. The presence of the 5’- end cap stabilizes the

viral RNA and protects it from getting degraded by the host

nucleases. The 5’-cap also enables cap-dependent translation of

the viral RNA, using the host translation machinery. Both cap-

dependent and cap-independent translation is driven by the

interaction of viral genomic RNA with a temporally regulated

complex of host translation factors. For example, RNA-protein

interactome of the SARS-CoV-2-5’- and 3’-UTR RNAs show

enrichment of host translation factors (Verma et al., 2021). Note

that SARS-CoV-2 translation is a cap-dependent process. RNA-

protein interactome of the Hepatitis E virus internal ribosome entry

site (HEV-IRES), which drives cap-independent translation of the

viral ORF4 protein, also shows enrichment of host translation

factors (Kumar et al., 2023b). Poly(rC) binding proteins1 and 2

(also known as PCBP1 and PCBP2) enhance Polio virus translation

by forming RNP complex with stem loop IV of the viral IRES (Blyn

et al., 1996). The PTB-associated splicing factor (PSF) interacts with

the cloverleaf structure in the IRES of coxsackievirus B3 (CVB3)

and this interaction plays important role in viral translation (Dave

et al., 2017). Another host protein, RNA helicase A (RHA) interacts

with S fragment in the 5’-UTR of Foot-and-mouth disease virus

(FMDV) RNA (Lawrence and Rieder, 2009). In coronaviruses,

the cap and the poly (A) tail of the viral genomic RNA recruit

initiation factor(s) that support the formation of a closed loop RNA

conformation, which favors efficient translation initiation (Figure 2)

(Walsh and Mohr, 2011; Lo et al., 2019; Stern-Ginossar et al., 2019;

Sorokin et al., 2021).

2.2.1 RNA-protein interaction during the
replication of +ssRNA viruses

Replication of the viral genome is central to the life cycle of a

virus, which generates multiple copies of the viral genome to

assemble progeny viruses. In the case of +ssRNA viruses, viral

genomic RNA acts as the template and with the help of viral RNA-

dependent RNA polymerase (RdRp) and many other viral and host

proteins, viral genome is copied. RdRp usually binds to the +ssRNA

virus genome at the 3’-end. Multiple host factors bind to the

genome at the 5’- and 3’-ends, leading to the assembly of a RNA-

protein complex, which facilitates circularization of the genome and

formation of negative-strand RNA, sub-genomic RNAs and

positive-strand genomic RNA (Figure 2). For example, genome

circularization is important for replication of Flaviviruses (Villordo

and Gamarnik, 2009). Nucleocapsid (N) protein of the Bovine

Coronavirus (BCoV) interacts with both 5’- and 3’-ends of the

viral genome, resulting in circularization of the viral genome, which

is important for the synthesis of the negative strand RNA (Lo et al.,

2019). Analysis of RNA-protein interactome of the SARS-CoV-2-

5’- and 3’-UTR RNAs suggests PPI-mediated bridging of the 5’- and

3’- ends of the viral genome during replication (Verma et al., 2021).

In the case of Zika virus (an enveloped positive strand RNA virus),

interaction of the viral envelope (E) protein with multiple regions

of Zika genomic RNA, [which includes two regions at the 5’- end
frontiersin.org
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(nt 135–294 and nt 734-899) and one region at the 3’- end (nt-10474-

10644)] is important for viral replication (Hou et al., 2017). The stem

loop I (SL-I) in the 5’-UTR of Polio viruses interacts with host PCBP2

and viral proteinase-polymerase precursor protein 3CD to form a

ternary complex that is important for viral RNA replication

(Gamarnik and Andino, 2000). 5’-UTR of the Enterovirus 71 RNA

interacts with the hnRNP K and hnRNP A1, which is important for

viral translation and replication (Lin et al., 2008; Levengood et al.,

2013). La protein interacts with both the 3’- and 5’-UTRs of CVB3

independently of the poly(A) tail, and seems to play a role in

mediating cross-talk between the 5’- and 3’-ends of the CVB3

genomic RNA, facilitating viral RNA replication (Cheung et al.,

2007). In coronaviruses, genomic and sub-genomic RNAs consist of

5’- and 3’-UTRs at their terminals and a transcriptional regulatory

sequence (TRS) within the 5’-UTR. TRS helps in template switching

during the synthesis of the negative-strand RNA by base pairing
Frontiers in Cellular and Infection Microbiology 05
between the TRS-L and nascent TRS-BS by the viral transcriptase/

replicase complex (Yang and Leibowitz, 2015).

2.2.2 RNA-protein interactions during progeny
virus assembly and release

Translation of genomic and sub-genomic RNAs produce non-

structural and structural proteins, necessary for replication and

progeny virus assembly, respectively. Replication of the viral

genome produces multiple copies of itself, which need to be

protected from host endonucleases and thus are compactly

packaged inside the viral nucleocapsid shell. The capsid protein of

the virus directly interacts with the viral genomic RNA and on

its own or with the help of M protein (Membrane/Matrix protein

in many RNA viruses), genomic RNA is packaged into the

nucleocapsid shell. Progeny viruses are subsequently released out

by exploiting the host cellular transport machinery. Host RBPs are
FIGURE 2

Simplified illustration of life cycle of +ssRNA viruses. The RNA virus life cycle has four major steps- entry, replication, assembly, and egress. After
entry into the host and uncoating of the viral capsid, viral genomic RNA is translated to produce the non-structural polyprotein (NSP), which is
subsequently processed into individual subunits. Viral RdRp assembles a RNA-protein complex, which interacts with the RNA-protein complexes
assembled at 5’- and 3’- termini of the viral genomic RNA to form the viral replication complex. Viral genomic RNA likely forms a closed loop
structure during replication. Antisense strand (-) as well as sub-genomic (sg) and genomic (g) RNA strands are synthesized by replication. Sub-
genomic RNA is translated to produce the structural proteins (SP) that assembles the viral capsid, which encapsulates the genomic RNA. Progeny
virions are subsequently released outside. A B C D illustrate 5’-UTR-interacting host proteins; a b c d illustrate 3’-UTR-interacting host proteins; h*
illustrate host proteins interacting with the RdRp-bound RNA-protein complex.
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involved in these steps as illustrated in the case of Flaviviruses

(Diosa-Toro et al., 2020).
2.3 Impact of spatial and temporal binding
of RBPs to the viral RNA

Localization of RBPs may be spatially restricted to specific

intracellular organelles such as the ER, Golgi, lysosomes, recycling

endosomes and autophagosomes. RBPs are also abundant in P-

bodies and stress granules. RBPs may also be enriched at an

intracellular site via RNA-protein/protein-protein interactions and

liquid-liquid phase separation. Viruses maymodulate the localization

of RBPs or benefit from the presence of the RBP at a particular site.

The ER and Golgi apparatus are essential for forming viral

replication complexes and the biogenesis of viral membranes in

many cases. HCV and DENV exploit ER-derived membranous webs,

where RBPs like PTB stabilize viral RNA for replication (Anwar et al.,

2009; Chatel-Chaix and Bartenschlager, 2014). Further, DENV 3’-

UTR interacts with G3BP1/2 and DDX6, proteins found in stress

granules and P-bodies, suggesting viral replication complexes localize

between these granules (Ward et al., 2011). On the other hand, WNV

disrupts P-body formation by recruiting DDX6 and other mRNA

silencing components to viral replication sites, where they promote

viral replication (Chahar et al., 2013). Lysosomes, endosomes, and

autophagosomes are also key in viral entry, trafficking, replication,

and survival. During SARS-CoV-2 infections, the autophagy receptor
Frontiers in Cellular and Infection Microbiology 06
SQSTM1 (p62) interacts with the viral RNA, inhibiting autophagy

and generating autophagosomes that serve as replication platforms

(Kamel et al., 2021a). A 2021 study highlighted how autophagosomes

containing DENV proteins and genomic RNA evade immune

detection (Wu et al., 2021). Temporal regulation further

complicates this process, with RBPs binding viral RNA at distinct

stages of infection. For example, ChIRP-MS and qTUX-MS using

SILAC labeling have provided insights into temporal changes in

RNA interactions during SARS-CoV-2 and DENV infections

(Viktorovskaya et al., 2016; Flynn et al., 2021).
3 Regulatory elements in the +ssRNA
virus genome mediate its interaction
with viral proteins and host proteins

In contrast to DNA, RNA-RBP interaction is not necessarily

sequence driven. Although there are well defined sequence motifs

for recognition by specific RBPs, in many cases, RNA folds into

secondary and tertiary structures generating specific conformations

necessary for recognition by RBPs. Therefore, both sequence and

structure of RNA regulatory elements are important for binding

with RBPs. Regulatory elements are present at 5’-end, 3’-end and

internal regions of the genome in +ssRNA viruses, schematically

shown with examples of HCV and SARS-CoV-2 (Figure 3) (Tavares

et al., 2021).
FIGURE 3

Schematic of the RNA regulatory elements present in the genome of HCV and SARS-CoV-2. Stem loops in the 5’ and 3’ UTR (untranslated region)
regions have been indicated in black color. Stem loops present in internal region are represented against corresponding proteins. Top schematic is
for Hepatitis C virus which includes - C, Core/capsid protein; E1 and E2, Envelope glycoproteins; p7, Viroporin; NS, non-structural proteins. The
bottom schematic is for SARS-CoV-2 which includes – ORF 1a to ORF14, Open reading frame; S, Spike protein; E, Envelope protein; M, Membrane
protein; N, Nucleocapsid protein. S, M, E, N are the structural proteins.
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3.1 Regulatory elements at the 5’-UTR

5’-UTR of the +ssRNA viruses may be capped or uncapped. In

the case of capped-RNA, UTR contains multiple stem loop (SL)

structures, followed by Kozak sequence and initiation codon for the

non-structural protein. Stem loops present in the 5’-UTR are

important for protecting the RNA, assembling the translation

initiation complex, and packaging the viral genome. They also aid

in viral transcription and replication process. For example, 5’-UTR

of SARS-CoV-2 spans 265 nucleotides and consists of 5 stem-loop

structures. The transcriptional regulatory sequence (TRS) is present

in the SL-III, which controls the discontinuous transcription (Liu

et al., 2007; Sola et al., 2015; Miao et al., 2021). The SL-V has been

indicated to be involved in viral RNA packaging and translation of

ORF1ab polyprotein (Miao et al., 2021). In addition, both SL-III

and SL-IV are targets for the binding of viral and cellular proteins,

thus may play a role in viral replication (Sola et al., 2011; Madhugiri

et al., 2016).

In the case of uncapped RNA, UTR contains multiple stem loop

(SL) structures, followed by internal ribosome entry site (IRES) and

initiation codon for the non-structural protein. IRES is a stretch of

highly structured RNA elements, which directly recruit the

initiation factors and promote translation through a scanning

independent process, except type I IRES, which depends on the

ribosomal scanning process. There are 5 major types of IRES based

on their RNA structure and mode of ribosome recruitment.

Notably, type I and type II IRES are found in the Picorna viruses

such as PV and the FMDV, respectively. The PV IRES harbors six

stem loops named as domain I to VI. The Domain I forms unique

clover leaf structure and plays a critical role in replication of both

the positive and the negative sense RNA. The domains II to VI are

responsible for the PV IRES function. During PV infections, viral

2Apro cleaves the eIF4E binding N-terminal domain of the eIF4G

without affecting its eIF3/eIF4A binding property. Stable

association of the eIF4G with the PV IRES domain V enables its

association with other initiation factors, leading to formation of the

43S preinitiation complex. The FMDV IRES is a classic example of

the type II IRES. The domain IV of the FMDV IRES binds with

scaffold protein eIF4G. The 3Cpro and Lpro of FMDV cleave the

eIF4G. Importantly, the FMDV IRES skips ribosomal scanning,

instead, IRES proximal stem loop formation brings 84 nucleotides

downstream AUG, close to the first AUG to start the translation by

direct ribosome transfer (Lee et al., 2017). The type III IRES is found

in the 5’-UTR of the Hepatitis A virus genomic RNA (Brown et al.,

1994). It requires eIF4E binding for translation initiation (Ali et al.,

2001). The type IV IRES have been reported in the HCV (Hepatitis

C virus)/HCV-like IRES. The 5’-UTR of HCV contains four

domains: the domain I and II plays important roles in the viral

replication while the domains III and IV are involved in translation

(Khawaja et al., 2015; Kerr and Jan, 2016). The domains II and III

contain several subdomains for interaction with the 40S ribosomal

subunit. The type V IRES includes the long intergenic region (IGR)

IRES, found between two open reading frames in the viral genomes

and conserved in the dicistroviridae family. IGR IRES elements

directly binds to the ribosomes and initiates translation with the
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alanine-tRNAi (ala-tRNAi) instead of the met-tRNAi, without

involving the eIFs (Wilson et al., 2000; Pestova and Hellen, 2003).

Thus, RNA-protein interactions play indispensable roles in the

function of viral IRESs.
3.2 Regulatory elements at the 3’-UTR

3’-UTR of the +ssRNA virus genome usually contains a stretch

of Adenine, followed by multiple SLs, which are important for

binding of the viral RdRp and other virus-encoded and host

factors as well as for RNA-RNA interactions. 3’-UTR is important

for viral replication, translation and evasion of host antiviral

response. For example, SARS-CoV-2-3’-UTR is 228 nucleotides

long and contains 4 SLs. Pseudo-stem-loop (PK), bulge stem-loop

(BSL), and S2M domain (HVR) in the 3’-UTR are supposed to be

important for the life cycle of the virus (Rangan et al., 2020). The 3’-

UTR carries distinct nucleotide combinations such as CTC, TGT,

CGT for every group i.e., SARS-CoV-2, SARS-CoV, and Bat-CoVs,

respectively. These nucleotide combinations overlap with S2m, a

highly conserved RNA motif, which likely have a role in viral

pathogenesis (Kelly et al., 2021). These positions were also found

to overlap with BSL and PK regions of the 3’-UTR among all bCoVs.
The hypervariable region consists of an octa-nucleotide sequence

(5’-GGA AGA GG-3’) that is conserved among coronaviruses (Sola

et al., 2011).

The coordinated interaction between 5’- and 3’-UTR through

host and viral proteins forms the foundation for efficient replication

of the virus (Nicholson and White, 2014). These long-range

interactions create functional ribonucleoprotein complexes

that enable three fundamental processes: genome cyclization,

replication initiation and host immune modulation. The process

begins with genome circularization, as exemplified by flaviviruses

like DENV, where complementary sequences in the UTRs form

panhandle structures that bring the RNA ends into proximity

(Khromykh et al., 2001; Liu et al., 2020). This structural

rearrangement is facilitated by host RNA-binding proteins such

as DDX6, which specifically recognizes and stabilizes pseudoknot

formations in the 3’-UTR to enhance both translation and

replication efficiency (Liu et al., 2020). Similarly, in Hepatitis E

virus, the 3’-UTR stem-loops SL1 and SL2 directly interact with the

viral RdRp to initiate replication (Agrawal et al., 2001), while the 5’-

UTR hairpin recruits the structural protein ORF2, likely for virion

assembly (Surjit et al., 2004). Beyond structural roles, these terminal

interactions serve as regulatory hubs. The polyadenylated 3’-UTR of

HEV performs dual functions, serving as both a replication element

and a potent activator of RIG-I-mediated innate immunity through

its U-rich region (Sooryanarain et al., 2020). This exemplifies how

viral RNA termini have evolved to balance replication needs with

immune evasion strategies. The importance of host RBPs in

maintaining these functional interactions is evident across virus

families. Poliovirus employs hnRNP C as an RNA chaperone to

keep its 3’-UTR in a single-stranded conformation optimal for

replication initiation (Brunner et al., 2005; Ertel et al., 2010), while

mouse hepatitis coronavirus utilizes PTB and hnRNP A1 to
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physically bridge its 5’ and 3’ UTRs (Li et al., 1999; Barton et al.,

2001; Huang and Lai, 2001). Even in bacteriophage systems like Qb,
conserved mechanisms exist where internal-3’-UTR base-pairing,

mediated by host factors, facilitates replicase assembly (Wu et al.,

2009). From flavivirus genome cyclization to coronavirus UTR

bridging, the conserved requirement for 5’-3’ communication

mediated by specific RNA-protein interactions underscores their

fundamental importance in the viral life cycle.
3.3 Cis-regulatory elements in the internal
regions of the +ssRNA virus genome

Internal cis-regulatory elements refer to stable RNA secondary

structures present in between the ORFs or in the coding region

within the viral RNA. The presence of such cis-regulatory elements

have been experimentally shown in the genome of +ssRNA viruses

such as HCV and SARS-CoV-2 (Figure 3) (Tavares et al., 2021). For

example, many cis-regulatory elements are found in the Core, NS4B

and NS5B coding regions in the HCV genome (Tavares et al., 2021).

Cis-regulatory elements are found in the ORF1a, ORF1b, S, ORF3a,

E, M, ORF6, ORF7a/b, ORF8 and N coding region in the SARS-

CoV-2 genome (Tavares et al., 2021). Further, nine TRS elements

are present in the SARS-CoV-2 genome, which are important for

sub-genomic RNA synthesis (Rangan et al., 2020). CRE is located in

the 2C ORF of enteroviruses, the 2A ORF of species A rhinoviruses,

the VP1 ORF of species B rhinoviruses, the VP2 ORF of species C

rhinoviruses and cardioviruses, VP0 ORF of Parechovirus and

upstream of the IRES in the FMDV (Mcknight and Lemon, 1998;

Lobert et al., 1999; Goodfellow et al., 2000; Paul et al., 2000; Gerber

et al., 2001; Mason et al., 2002; Al-Sunaidi et al., 2007; Cordey

et al., 2008).

Another important internal regulatory element in the RNA

virus genome is the frameshifting element. The frameshift element

of SARS-CoV-1 has a pseudoknot (PK) structure. The dimerization

domain of PK is critical for programmed ribosomal frameshifting

(PRF), an essential event for forming ORF1a and ORF1b proteins

from the same genomic region (Kelly et al., 2021). SARS-CoV-2

frameshifting element (FSE) is composed of a stem-loop attenuator,

and a slippery sequence followed by a single-stranded spacer and an

RNA pseudoknot. RNA-RNA interactions between the 3’-end of

ORF1a and 5’-end of the ORF1b generates the FSE-arch, which is

highly conserved among SARS-related coronaviruses and possess

high folding stability in vivo. The FSE-arch likely controls the FSE

activity (Ziv et al., 2020; Zhang et al., 2021).
4 Methods to generate RNA-protein
interactome of +ssRNA viruses

4.1 Generation of RNA-protein interactome
using biological samples

RNA-protein interactions can be experimentally demonstrated

using either RNA-centric or protein-centric approaches. This
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review focuses on RNA-centric methods to identify the RBPs

associated with the viral genomic or sub-genomic RNA. RNA-

centric methods may be broadly classified into in vitro and in vivo

methods. In vivo methods can detect the interaction between the

whole viral genome or parts of viral genome and associated proteins

whereas in vitromethods are generally used to detect the interaction

between parts of viral genome and associated proteins.

4.1.1 In vitro methods to detect RNA-protein
interactions

In-vitro methods such as pull down and microarray-based

binding assays are used to detect the interaction between parts of

a viral genome and associated proteins (Figure 4). These methods

are beneficial when the test RNA or protein is unstable, not

expressed well in vivo or the RNA binding proteins are less

abundant in vivo. In vitro assays are also useful in characterizing

the molecular details of a particular RNA-protein interaction at

nucleotide and amino acid level.

In the case of pull down assay, the 5’- or 3’- end biotin-labeled

RNA is synthesized in vitro and incubated with cellular extract,

followed by isolation of the RNA-protein complex using streptavidin

beads (Zheng et al., 2016). Alternatively, the RNA-protein complex

may be isolated by using a biotin-labeled aptamer sequence against

the test RNA (Srisawat and Engelke, 2001) (Figure 5A). In another

study, Cys4 hairpin loop-tagged RNA has been used to select the test

RNA bound complex, followed by elution of the test RNA-protein

complex using imidazole, which activates the Cys4 endoribonuclease

that cleaves the Cys4 RNA (Lee et al., 2013). The later technique may

be useful in reducing the background signal as endogenously

biotinylated proteins directly bind with the streptavidin beads

irrespective of their RNA binding activity. RNA-protein complex

may be UV crosslinked in an in vitro pull down assay. In a

microarray-based binding assay, individual proteins are spotted on

a microarray slide, followed by hybridization with a labeled test RNA

(such as Cy5-labeled RNA) (Kretz et al., 2013) (Figure 5B). In both

approaches, non-specific proteins are removed by multiple washing

steps and interaction partners are detected by mass spectrometry or

by fluorescence reading in the microarray scanner, respectively.

Microarray-based binding assay detects direct interactions between

the RNA and protein whereas pull down assay can detect both direct

and indirect interaction partners. Although in vitro assays are simple

and straight forward, it is limited by the fact that in vitro synthesized

RNA may not fold properly or lack the native structure and

modifications required for interaction with a particular interaction

partner or protein complex. Further, High or low abundance of the

protein(s) in the cellular extract may influence the result and

proteins spotted on the microarray slides may not be properly

folded or lack the required post-translational modification(s) or

physiological environment required for interaction with the

test RNA.

4.1.2 In vivo methods to detect RNA-protein
interactions

The limitations of the in vitro assays are partly resolved through

in vivomethods, which offer physiological and functional advantages.
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Various technologies to detect RNA-protein interactions in vivo, with

or without crosslinking of the complex are summarized (Figure 4).

Although phase separation-based techniques for isolating RNA-

protein complex have emerged to be a powerful approach to

identify RBPs (Queiroz et al., 2019; Trendel et al., 2019; Urdaneta

and Beckmann, 2020), this review will focus on techniques relevant

to detection of viral RNA binding proteins.
4.1.2.1 In vivo methods to detect RNA-protein
interactions in non-crosslinked samples

Among the crosslinking-independent in vivo techniques, Yeast

three hybrid is a classical genetics technique, useful in detecting direct

interaction between a test RNA and protein(s) in a physiological

environment (SenGupta et al., 1996). Here, host proteins are

expressed in the yeast cells using a cDNA expression library of the

host cell type of interest as a fusion protein with the GAL4-AD

(activation domain of the GAL4 transcription factor) (Figure 6A).

Viral RNA is expressed as a fusion with MS2-binding RNA element

at the 5’- or 3’-end. Specific interaction of viral RNA with a protein

activates the HIS3 (imidazoleglycerol-phosphate dehydratase) and

lacZ(b-galactosidase) reporter genes, allowing growth of the yeast

transformants in histidine deficient medium and colorimetric scoring
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by quantification of b-galactosidase activity, respectively. Interacting
proteins are subsequently identified by isolating the cDNA clone and

sequencing the plasmid DNA. Although the assay is conducted in a

cellular milieu, which likely enables unbiased assessment of the

interaction partners, screening of the cDNA library produces a lot

of false positives and chances of misfolding of the test RNA and prey

proteins cannot be ruled out.

Crosslinking-independent mammalian cell culture based

proximity proteome labeling techniques such as RNA-protein

interaction detection (RaPID) and the RNA proximity

biotinylation (RNA BioID) have been reported (Ramanathan et al.,

2018; Mukherjee et al., 2019; Verma et al., 2021; Kumar et al.,

2023b). Proximity proteome labeling techniques rely on enzymes

such as: Biotin ligases like BASU, BioID (mutant variant of the BirA

enzyme) and its derivatives, which covalently attach biotin to

proteins within 10-20nm radius; or ascorbic acid peroxidase

(APEX) and its derivatives, which converts exogenously supplied

biotin-phenol to biotin-phenoxyl radicals upon treatment with

H2O2, resulting in covalent labeling of proteins. Both BASU and

APEX label the proteins within 20nm radius, however APEX

labeling is very fast (~1 min) compared to labeling by BASU

(several hours) (Rhee et al., 2013; Paek et al., 2017; Samavarchi-

Tehrani et al., 2020). Note that APEX labeling also requires
FIGURE 4

In vitro and in vivo methods to detect RNA-Protein interactions in +ssRNA viruses. RaPID, RNA-Protein Interaction Detection Assay; RNA BioID- RNA
proximity biotinylation; incPRINT- In-cell protein-RNA interaction; MS2-BioTRAP, MS2-in vivo Biotin Tagged RNA Affinity Purification; MTRAP-MS,
MS2-tagged RNA affinity purification and Mass spectrometry; RAP-MS, RNA Antisense Purification followed by Mass Spectrometry; iDRiP,
Identification of Direct RNA-interacting Proteins; TRIP, Tandem RNA Isolation Procedure; PAIR, Peptide-Nucleic acid Assisted Identification followed
by Mass Spectrometry; vRIC-MS, Viral RNA Interactome Capture followed by Mass Spectrometry; VIR-CLASP, Viral Cross-linking And Solid-phase
Purification; CHART-MS, Capture Hybridization Analysis of RNA Targets followed by Mass Spectrometry; ChIRP-MS, Comprehensive identification of
RNA-binding proteins by mass spectrometry.
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treatment of cells with H2O2. Hence, choice of the proximity labeling

enzyme is dependent on the experimental design.

RaPID assay identifies direct and indirect interaction partners of

small RNA fragments (~132 nucleotides), which are expressed as

chimeric RNA in fusion with an aptamer sequence such as Box B

stem loop, which is recognized by the LN peptide (Figure 6B). A

biotin ligase [BASU] fused to the LN peptide is recruited to the Box

B, which biotinylates all proteins in its close proximity (~10-20nm

range), including those associated with the RNA of interest.

Biotinylated proteins are enriched and identified by LC-MS. RaPID

assay has the advantage of detecting weak and transient RNA-protein

interactions, however, the assay depends on overexpression of the

test RNA. To overcome the limitation of overexpression of the test

RNA and improve the efficiency of proximality labeling, Mukherjee

et al., developed the RNA-BioID assay using genetically modified

mouse embryonic fibroblasts (MEF). They used MEFs in which

endogenous b-actin gene copies were replaced by b-actin with 24

MS2 binding sites (MBS) in their distal 3′-UTR and there was stable

expression of a fusion of the nuclear localized signal (NLS), MS2 coat

protein (MCP), GFP, and BirA* (MCP-GFP-BirA*) (Mukherjee

et al., 2019). This approach identified a much higher number of

interaction partners of the b-actin RNA, compared to other affinity-

based methods.
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Another crosslinking independent, RNA-tagging based in vivo

technique is in-cell protein-RNA interaction (incPRINT). Here, the

test protein is tagged with Flag epitope and the test RNA is tagged

with MS2 stem loop sequence, which is expressed in cells along with

MS2-coat protein fused to Luciferase. Test protein is captured from

the cell lysate by Flag affinity beads, followed by Luciferase assay to

detect its interaction with the test RNA (Graindorge et al., 2019)

(Figure 6C). The assay may be scaled up to screen a library of Flag-

tagged proteins against a test RNA.

Recent studies also demonstrated the utility of CRISPR-Cas

targeting system in detecting RNA-protein interactions without

crosslinking of the samples (Han et al., 2020; Lin et al., 2020; Yi

et al., 2020; Zhang et al., 2020; Li et al., 2021). Using guide RNA

(gRNA) specific to the test RNA along with a catalytically dead

Cas13 (dCas13, dCasRx) fused to a biotin ligase (BASU, PUP-IT), it

is possible to biotinylate proteins interacting with any endogenous

RNA, which can be subsequently captured by streptavidin beads

and identified by LC-MS (Figure 6D). Several modifications in the

initial technique have been reported, which further improved the

efficacy of the technique (Labun et al., 2019; Wessels et al., 2020). At

the same time, more research is required to rule out the possibility

of background noise due to off target binding by the gRNA. Note

that, towards reducing the background noise in biotin ligase-based
FIGURE 5

Schematic of in vitro methods to detect RNA-protein interactions. (A) In-vitro pull down assay. (B) Microarray-based binding assay.
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RNA-protein interaction detection techniques, recent studies have

developed split biotin ligases, which gains enzymatic activity only

when associated with the target RNA (Shekhawat and Ghosh, 2011;

De Munter et al., 2017; Schopp et al., 2017; Cho et al., 2020).

4.1.2.2 In vivo methods to detect RNA-protein
interactions in crosslinked samples

Crosslinking of the RNA-protein complex in vivo arrests the

interactions, which helps in capturing of weak and transient

interactions. While crosslinking enhances the stability of the

complex and increases the number of RBPs in the data set, there
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is a possibility of capturing nonspecific proteins due to over

crosslinking and loss of bona fide RBPs due to inefficient

crosslinking of weak interactions in a multiprotein complex. Both

UV and formaldehyde are widely used in different techniques to

crosslink the RNA-protein complexes in vivo. The choice of

technique should be based on approximate information of the

abundance of target proteins and test RNA, the strength of the

RNA-protein interaction and size of the RNA-protein complex. It is

noteworthy that although UV rays irreversibly crosslink nucleotide-

protein interactions at zero distance via a covalent bond, it works

less efficiently and weak interactions might be missed. On the other
FIGURE 6

Non-crosslinked in vivo methodologies to study RNA-protein interactions. (A) Yeast three hybrid (Y3H) assay, (B) RaPID assay and RNA BioID, (C)
incPRINT, (D) dCas13-based technique.
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hand, overexposure to UV may have undesired consequences on

the cellular processes. Hence, optimization of UV cross linking

duration is important for success of the experiment. Formaldehyde

reversibly crosslinks protein-protein, protein-DNA and protein-

RNA interactions within 2A°, via covalent bond. However,

formaldehyde crosslinking is less specific in capturing only RNA-

protein interactions. Both RNA-tag and RNA hybridization based

approaches have been used to detect RNA-protein interactions in

crosslinked samples.

RNA-tag based techniques depend on an aptamer sequence

such as the MS2 stem loop element to capture the target RNA.

RNA-protein interaction is stabilized by UV crosslinking and

interacting proteins are revealed by pull down assay-LC-MS/MS.

Techniques such as MS2-BioTrap, MS2-TRAP andMTRAP-MS are

based on the above principle (Figure 7) (Tsai et al., 2011; Yoon et al.,

2012; Liu et al., 2015).
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RNA hybridization based approach have been employed in

multiple techniques. Capture Hybridization Analysis of RNA Targets

(CHART) and Comprehensive identification of RNA-binding proteins

by mass spectrometry (ChIRP-MS) are two popular RNA

hybridization-based techniques, in which formaldehyde is used to

crosslink the samples (Figure 7) (West et al., 2014; Chu et al., 2015).

Cells are treated with formaldehyde, followed by hybridization with

biotinylated oligonucleotides (c-oligos). RNA-bound RBPs are purified

using streptavidin beads, followed by protein identification by western

blot or LC-MS/MS, for CHART and ChIRP, respectively. ChIRP was

used to compare the RNA-protein interactome of SARS-CoV-2, Zika,

and Ebola viruses (Flynn et al., 2021; Zhang et al., 2022). However, this

technique is limited by the inefficiency of c-oligos to bind the different

target loci with equal efficiency.

Compared to DNA based oligonucleotide probes used in

CHART and ChIRP, antisense RNA based probes are more
FIGURE 7

Schematic of major steps in the in vivo experimental methods involving mass spectrometry analysis to study viral RNA-protein interactions. White
circle indicates formaldehyde crosslinking, white and Blue star indicate UV crosslinking, yellow circle indicates biotin tag.
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specific and expected to show less background noise. However, the

use of RNA probes require more stringent experimental conditions

due to inherently fragile characteristic of the RNA. RNA antisense

purification (RAP), identification of Direct RNA-interacting

Proteins (iDRiP) and tandem RNA Isolation Procedure (TRIP)

are some notable techniques based on antisense RNA hybridization

(Figures 4, 7) (McHugh et al., 2015; Minajigi et al., 2015; Matia-

González et al., 2017).

Further, Peptide-nucleic-acid (PNA) based probe has been used

to detect RNA-protein interactions. In Peptide-nucleic-acid

Assisted Identification (PAIR) assay, PNA is used to hybridize

with the target RNA. PNA contains a photoactivable amino acid

adduct, p-benzoyl phenylalanine (Bpa), which captures the nearby

RBPs by photoactivated cross-linking. UV is used to covalently

cross-link the PNA-Bpa with adjacent RBPs. Finally, PNA-RBP

complexes are isolated using sense oligonucleotide magnetic beads,
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followed by LC-MS mediated identification of bound proteins

(Zeng et al., 2006).

To address the low efficiency of UV cross linking, photoactivable

ribonucleoside-enahnced (PAR) crosslinking techniques such as

Viral RNA Interactome Capture (vRIC) and Viral cross-linking

and solid-phase purification (VIR-CLASP) have been developed.

Here, cellular RNA is metabolically labeled with 4-thiouridine (4SU),

followed by UV cross-linking at 365nm (longer wavelength

compared to conventional UV crosslinking at 254nm) and capture

of the RNA-protein complex. After RNase digestion, quantitative

proteomics is employed to reveal the captured RBPs (Figure 7). vRIC

identified the RNA-protein interactome of SARS-CoV-2 and Sindbis

virus (Kamel et al., 2021a; Kamel et al., 2021b). VIR-CLASP was

used to identify the RNA-protein interactome of pre-replicated

genome of the Chikungunya virus (Kim et al., 2020). Choice of

the nucleoside analogue is decided based on its toxicity on the target
TABLE 1 Advantages and limitations of notable methods to study RNA-protein interactions.

Technique Advantages Limitations

In-vitro methods • Ability to use purified and/or well-defined RNA and protein
components.

• Both direct and indirect interaction can be detected.
• Molecular details and biomolecular characteristics of the

interactions can be easily analyzed.
• Ability to detect the interaction between unstable RNA

and proteins.

• Interactions obtained in such artificial condition may not be
physiologically relevant.

• It may not be possible to generate the in vivo structure of the test
RNA and/or protein in vitro.

Yeast three hybrid • Ability to unbiasedly detect the RNA-protein interactions
between a test in a physiological environment.

• Handy technique to characterize molecular details
by mutagenesis.

• High false positive rate
• Yeast may not be the ideal host for the test RNA-

protein interactions.

RaPID, RNA BioID • In vivo technique, independent of cross-linking of the test
RNA-protein interactions.

• Real time labeling of interacting proteins
• Transient and stable interaction can be detected.

• Test RNA is not in its native state.
• Length of RNA is restricted to around 200 nucleotides.
• Endogenous biotinylated proteins need to be filtered out.
• May not be possible to detect all RBPs present in a

multiprotein complex.

lncPRINT • Mass spectrometry-based analysis is not required to identify
the proteins.

• A limited number of proteins can be identified.

dCas13-based technique • Specificity of CRISPR (Clustered Regularly Interspaced Short
Palindromic Repeats) technology extended to detect RNA-
protein interactions.

• The design of effective gRNA is challenging.
• Proximity-labeling enzyme biotinylates proteins even when it does

not bind to RNA thus increasing non-specificity.

MS2-Bio Trap • Test done in physiological condition.
• High specificity due to UV-crosslinking.

• Test RNA is not in its native state.
• Fusion of test RNA with MS2 RNA might alter its property.

RAP-MS
iDRiP

• Detection of direct RNA-protein interactions.
• Endogenous RNA-protein complex can be purified intact.
• High specificity.
• Test done in physiological condition.

• A high number of cells is required.
• Technically demanding.

PAIR-MS • Peptide-nucleic-acid (PNA) probe used.
• High specificity.
• Photoactivated cross-linking and UV cross linking.

• Synthesis of probe is costly.

vRIC-MS
VIR-CLASP

• Entire viral RNA interactome can be captured.
• High specificity.
• Photoactivated cross-linking and UV cross linking.

• Selecting the right nucleoside analogue may be challenging due to its
toxicity on the target cell and efficiency of its incorporation into the
target RNA.

CHART-MS
ChIRP-MS

• RNA-protein interaction are detected in a cellular environment.
• Handling is easy due to the use of DNA based probe.

• Additional RNase H step is required to identify free sites for probes.
• Inefficiency of C-oligos to bind the different target loci with an

equal efficiency.
• Formaldehyde cross linking is less specific.
• DNA probes show high nonspecific signal.
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cell and efficiency of its incorporation into the target RNA. A

comparison of the advantages and limitations of different methods

is summarized in Table 1.
4.2 Generation of RNA-protein
interactome using predictive modeling

Predictive modeling relies on two essential components:

algorithms and the data used to train them. In the case of RNA-

protein prediction models, large-scale interaction data are required,

typically generated through experimental means. Over the years,

various databases containing such data have been established

through wet lab experiments, literature mining, or computationally

predicted interactions (Table 2). For instance, the ENCODE

database contains eCLIP datasets from 223 experiments conducted

in HepG2 and K562 cell lines, capturing interactions with 150 RBPs.

This repository of extensive experimental evidence contributes to the
Frontiers in Cellular and Infection Microbiology 14
robustness of the models, particularly as they rely on algorithms that

require substantial data inputs. Using the above-mentioned source

data, advanced computational tools have been developed to

understand the intricacies of RNA-protein interactions and

generate the RNA-protein interactome. Several studies have been

dedicated to developing sophisticated algorithms that utilize

sequence information to identify critical features indicative of

RNA-protein binding affinity (Horlacher et al., 2023). The

primitive approaches relied on sequence similarity, identifying

patterns in sequences and their known interactions. While these

models have low computational costs, they lack robustness.

Understanding the fact that proteins adopt 3D structures before

performing functions, alternative approaches leveraged upon

structural information to provide a better understanding of

potential affinities. Both methods have advanced significantly over

time. However, fully deciphering structural information is complex

due to the dynamic nature of proteins, making it challenging to

comprehensively capture their true behavior. To address this, hybrid
TABLE 2 Web-based resources for extracting RNA binding proteins, arranged in reverse chronology.

Method Year Description Evidence Reference

HydRA 2023 It is an ensemble RBP classifier, combines intermolecular protein interactions and internal
protein sequence patterns, employing SVMs, CNNs, and Transformer-based models to predict
RNA-binding capacity with high specificity and sensitivity.

Prediction (Jin et al., 2023)

Pprint2 2023 It utilizes machine learning and deep learning for predicting RNA-interacting residues
in proteins.

Prediction (Patiyal et al., 2023)

RBPbind 2022 It predicts RNA-protein interaction probabilities, incorporating sequence specificity from
RNAcompete experiments into Vienna RNA package recursions, enhancing accuracy.

Prediction (Gaither et al., 2022)

RBPmap 2021 It uses sub-sequence that notably aligns with the RBP motif and additionally weaker matches
surrounding the motif.

Prediction (Paz et al., 2022)

RBPsuite 2020 It is a deep learning based method for predicting RBP binding sites on both linear and
circular RNAs.

Prediction (Pan et al., 2020)

RBinds 2020 It integrates RNA structure into networks for binding site prediction, with visualization and
simulation tools.

Prediction (Wang and Zhao, 2020)

ENCODE 2020 Experimental evidence in K562 and HepG2 cells through mapping and analysis of 1223
replicated datasets encompassing 356 RBPs.

Experimental (Van Nostrand et al., 2020)

NPInter v4.0 2020 It hosts more than 600000 interaction of non-coding RNA with proteins. Experimental (Teng et al., 2020)

SMARTIV 2018 It predicts motifs from enriched k-mers, integrating information from ranked RNA sequences
and their predicted secondary structure.

Prediction (Polishchuk et al., 2018)

RNAct 2018 It provides an easy-to-use view of protein-RNA interactions in model organisms. Experimental (Lang et al., 2019)

omiXore 2017 It identifies RNA binding sites by discriminating interacting protein-RNA pairs using UV
cross-linking data.

Prediction (Armaos et al., 2017)

BindUP 2016 It predicts nucleic acid binding function using protein electrostatic features and structural
properties, providing visualizations of electrostatic surface patches.

Prediction (Paz et al., 2016)

CLIPdb 2015 It hosts 395 publicly available CLIP-seq data sets for 111 RBPs from four organisms: human,
mouse, worm and Yeast.

Experimental (Yang et al., 2015)

RAID 2014 It hosts more than 6100 RNA-associated interactions obtained by manually reviewing more
than 2100 published papers.

Experimental (Zhang et al., 2014)

PRIDB 2011 The Protein–RNA Interface Database (PRIDB) is a comprehensive database of protein–RNA
interfaces extracted from complexes in the Protein Data Bank (PDB).

Experimental (Lewis et al., 2010)

RBPDB 2010 It is a collection of experimental observations of RNA-binding sites, both in vitro and in vivo,
manually curated from primary literature of four metazoan species (human, mouse, fly
and worm).

Experimental (Cook et al., 2010)
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methods combining sequence and structure-based approaches

have emerged to balance complexity and computational costs. A

chronological list of such methods, along with their methodological

descriptions, is listed (Table 3).

Although such algorithms are not exclusively designed to predict

viral RNA and protein interactions, researchers have advanced these

tools to predict inter-species interactions with promising results

(Kazachenka et al., 2018). This endeavor involves a pipeline

approach, employing established RBP interaction prediction

algorithms (Figure 8). For algorithm training, datasets such as

those from the ENCODE project has been used in this pipeline

(Van Nostrand et al., 2020). First, the dataset undergoes pre-

processing, wherein a defined window is established around each

peak, facilitating the identification of potential binding sites for

subsequent analysis. Later, this data is compared with peak

information from RBPs used as controls, with a two-fold change

along with statistical significance is considered. Sampling and

randomization strategies are employed to mitigate false positives.

Diverse algorithms, including recurrent neural networks (RNNs),

extended short-term memory networks (LSTMs), and convolutional

neural networks (CNNs) are utilized, employing supervised

training methodologies with hyper-parameters such as sequence

window size, algorithm layers, and learning rate. A negative

sampling strategy is adopted for extracting sequence-level binding

information, where the center of the window serves as the nucleotide

of interest. Predictions are generated for randomized sequences, and

a score is computed like a p-value. A high score indicates similarity

in binding affinity between randomized and actual sequences,
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suggesting that binding may not be solely sequence or site-driven.

This holistic approach yields a nuanced understanding of the RNA-

protein interactome within the context of the entire genome.
4.3 Validation of the RNA-protein
interactome data generated in silico or
through Omics based technologies

Validation of the interactions between RBPs and their targets is

crucial for distinguishing biologically meaningful associations

from non-specific or background signals inherent in techniques

like RNA-protein crosslinking or affinity purification. To

minimize experimental noise, stringent controls such as mock

immunoprecipitations (IPs), untagged viral RNA controls, or

genetically modified cell lines with targeted RBP knockouts—are

essential for establishing a reliable baseline. Mass spectrometry-based

peptide identification platforms, including Mascot, MaxQuant, and

FragPipe, enhance specificity by resolving ambiguous spectral data,

while the CRAPome database helps systematically filter out common

contaminants. Further, computational tools like Differential

Enrichment analysis of Proteomics data (DEP), SAINTq, MIST

score, and CompPASS, may be used, which apply stringent

statistical criteria to enrich high-confidence interactors. A

comprehensive computational pipeline processes raw affinity

purification-mass spectrometry (AP-MS) data, performs quality

control, and ranks biologically relevant bait-prey pairs across

replicated experiments using these scoring methods (Verschueren
TABLE 3 Recent evolution of methods (from sequence-based to structural approaches) for predicting RNA-binding protein affinity.

Method Year Evidence Architecture Reference

BERT-RBP 2022 Sequence Language model (Yamada and Hamada, 2022)

DeepPN 2022 Sequence CNN, GCN (Zhang et al., 2022)

MultiRBP 2021 Sequence, structure CNN (Karin et al., 2021)

PRISMNet 2021 Sequence, structure CNN (Xu et al., 2023)

RNAprot 2021 Sequence, genomic annotation conservation LSTM (Uhl et al., 2021)

Multi-resBind 2021 Sequence, genomic annotation CNN (Zhao and Hamada, 2021)

RBP-ADDA 2021 Sequence Adversarial domain adaptation (Liu et al., 2022)

ResidualBind 2021 Sequence CNN (Koo et al., 2023)

kDeepBind 2021 Sequence k-mer embedding CNN (Tahir et al., 2021)

RBPSpot 2021 Sequence, structure Embedding DNN (Sharma et al., 2021)

DeepCLIP 2020 Sequence CNN, BLSTM (Grønning et al., 2020)

DeepRiPe 2020 Sequence, genomic annotation CNN (Ghanbari and Ohler, 2020)

RPI-NET/RNAonGraph 2020 Sequence, structure GNN (Yan et al., 2020)

DeepRKE 2020 Sequence, structure Embedding, CNN, BLSTM (Deng et al., 2020)

iDeepMV 2020 Sequence Multi-view CNNs ensemble (Yang et al., 2021)

DeepA-RBPBS 2020 Sequence, structure CNN, biGRU (Du et al., 2022)

MSC-GRU 2020 Sequence CNN, biLSTM (Shen et al., 2019)
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et al., 2015). Post-processing filters such as false discovery rate (FDR)

thresholds, fold-change cutoffs relative to controls, and consistency

across replicates further help to eliminate spurious interactions.

In addition, an unbiased and independent method should be

employed to reproduce the RNA-protein interactions identified in

one method. For example, a combination of biochemical and

imaging techniques are ideal for validating a subset of the

interactome data. Super-resolution microscopy and advanced

imaging techniques now allow real-time visualization of RBP-viral

RNA dynamics within organelles, uncovering transient interactions

previously missed. For example, the localization of HEV in recycling

endosomes was studied using these imaging technologies (Bentaleb

et al., 2022) and DENV and HCV replication and assembly were

visualized using transmission electron microscopy (Chatel-Chaix

and Bartenschlager, 2014). These methods are robust and broadly

applicable across +ss RNA viruses, providing valuable insights into

how different viruses manage viral RNA within cells, and identifying

conserved or distinct mechanisms for potential antiviral targets.

RNA-SELEX (Systematic Evolution of Ligands by Exponential

Enrichment) has emerged as a powerful tool to identify the specific

RNA targets through iterative rounds of selection and amplification

(Ellington and Szostak, 1990; Tuerk and Gold, 1990). SELEX has

been used for determining the binding site of a protein on RNA

(Manley, 2013). RNA-based Capture-SELEX has been used for

selecting small molecule-binding aptamers (Ye and Jankowsky,

2020). Analogous to SELEX, another notable method, named

massively parallel RNA assay combined with immunoprecipitation
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(MPRNA-IP) has been developed for high-throughput analysis of

RNA–protein interactions in vivo (Lee et al., 2024). These methods

are useful for improving the accuracy of molecular characterization

and validation of the RNA-protein interactions.

Importantly, vast datasets generated in SELEX have expanded

the scope of machine learning models by incorporating information

about the intermediate interaction steps, in contrast to traditional

machine learning (ML) models, which often rely on the final binding

information, overlooking the iterative modification in interaction.

ML models can learn patterns from SELEX data to predict which

RNA sequences will likely bind a given protein with high affinity. It

can also help identify sequence motifs, secondary structures, or

physicochemical properties important for binding. Databases like

HTPSELEX has been developed for training models and tools like

DeepPBS (a geometric deep-learning model), GraphProt, BindSpace

have been developed to predict RNA-protein binding (Maticzka

et al., 2014; Yuan et al., 2019; Mitra et al., 2024). These advanced

methods have leveraged the richness of SELEX datasets.
5 Importance of RNA-protein
interactome of viruses in decoding the
viral life cycle and antiviral discovery

It is important to evaluate the functional significance of the

RNA-protein interactions to understand the molecular details of the
FIGURE 8

Schematic of computational methods to study RNA-protein interactions.
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viral life cycle and identify new targets for antiviral development.

Suitable experimentally amenable tools such as non-infectious

replicon of the virus or infectious/attenuated virus strains are

useful resources for such studies.
5.1 Approaches to decode the life cycle of
+ssRNA viruses using the viral RNA-protein
interactome dataset

The RNA-protein interactome of a +ssRNA virus constitutes a

set of proteins that directly or indirectly associate with the viral

genome. These proteins need to be prudently analyzed to interpret

and extrapolate their biological functions in the infected cells. This

information forms the basis to hypothesize a mechanism of viral life

cycle and pathogenesis, which is subsequently evaluated by suitable

experimental models. Enrichment analysis has emerged as a

standard approach to analyze large gene lists to produce a data-

driven information that is easier to interpret. This analysis involves

statistical testing of pathways and processes for over-representation

in the experimental gene list compared to what would be expected

by chance. Several common statistical tests are utilized, considering

factors such as the number of genes detected in the experiment,

their relative rankings, and the number of annotated genes. Some

well-known web-based applications for such analysis include the

Kegg pathway, Reactome pathway, GSEA (gene set enrichment

analysis), Panther, and Gene Ontology (Subramanian et al., 2005;

Thomas et al., 2022; Aleksander et al., 2023; Kanehisa et al., 2023;

Milacic et al., 2024). These tools facilitate the identification of key

pathways, functions and processes that are highly influenced by the

identified set of genes. Moreover, RBP2GO and the RBP Image

Database play crucial roles in elucidating the role of RBPs in viral

infections (Caudron-Herger et al., 2021; Benoit Bouvrette et al.,

2023). RBP2GO and the RBP Image Databases provide ontological

information about the functions, processes, and cellular locations of

RBPs, shedding light on their involvement in viral replication, RNA

processing, and host immune responses. Once a hypothesis is

formulated based on the acquired knowledge, appropriate

experimental models are designed to validate the predictions.
5.2 Methods to unlock the therapeutic
potential of RNA-protein interactome of
+ssRNA viruses

As mentioned above, functional analysis of RNA-protein

interactome data provides significant insight into the life cycle and

pathogenesis of the corresponding virus. Such intricate understanding

of viral lifecycle helps to identify and experimentally validate potential

antiviral targets. Both the interactome data and the antiviral targets

may be considered for screening antiviral drugs. Computational or

experimental model-based screening methods may be followed to

identify antiviral drugs either by de novo [identification of antiviral
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potential of a new chemical entity (NCE)] or drug repurposing

[identification of a new therapeutic application of an existing drug]

approach. De novo drug discovery is extremely expensive and time

consuming whereas the drug repurposing strategy holds the potential

of immediate therapeutic impact at a much lower cost. The main

advantage of repurposed drugs is attributed to their prequalification

through safety and toxicity tests in preclinical and human trials.

Multiple computational methodsmay be pursued to discover antiviral

drugs. Once a drug candidate is identified, it should be validated using

wet lab experiments before proceeding with preclinical studies.

5.2.1 Computational methods for capturing drug
targets

The in silico drug discovery pipeline begins with target

identification, which is very challenging, as proteins may require

one or more interaction partners to execute essential functions. To

address these limitations, different algorithms are employed to

prioritize network nodes/proteins based on sensitivity or their

potential to induce phenotypic changes. Some notable tools

include CaNDis, CytoHUBBA, and NetEPD (Table 4). Another

important aspect is identifying proteins that can control the

information flow in the network, which can be obtained using

tools like konnect2prot and NetControl4BioMed (Table 4).

Sometimes, we are also interested in exploring proteins with

similar functions to known therapeutic candidates for various

reasons, such as being non-targetable or crucial for the system. In

such cases, we can use guilt-by-association-based methods like

Netpredictor to identify proteins with similar functions.

Later, the identified target needs to be modulated (activated or

inhibited), which often requires small molecules, due to their

various pharmacokinetic properties. These molecules could be

newly synthesized or already available drugs. Such choices are

made based on factors like time, cost, availability etc.

5.2.2 Data driven screening methods for small
molecule identification

The data-driven drug discovery process depends on online

resources, including clinically oriented drug databases (for example,

PharmGKB and RxList) and chemically oriented drug databases (for

example, Zinc, TTD and PubChem). While clinically oriented drug

databases provide in-depth clinical information, chemically oriented

drug databases generally provide nomenclature and structural

properties of the compounds (Table 5).

Both these databases have been used by several laboratories as

source data for developing drug discovery tools. For example, Drug

Bank was developed by combining the attributes of clinically and

chemically oriented drug databases to serve as a handy yet

comprehensive tool to search drug molecules and get details of

their sequence, structure, mode of action, targets as well as

biological or physiological consequences of drug action (Knox

et al., 2024). Drug central is a platform on similar line (Avram

et al., 2023). ChEMBL is another notable online tool that consolidates

the bioactivity information of drugs (Zdrazil et al., 2024).
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TABLE 4 Useful web-based resources for antiviral discovery (chronologically sorted).

Name Year Description Reference

cytoHUBBA 2014 It is a Cytoscape plugin offering diverse topological analysis methods for ranking
network nodes, with the newly proposed “maximum neighborhood component” (MCC),
demonstrating superior precision in predicting essential proteins from the Yeast
PPI network.

(Chin et al., 2014)

Netpredictor 2018 R package for prediction of missing links in any given unipartite or bipartite network
using random walk restart algorithm.

(Seal and Wild, 2018)

NetEPD 2020 It is a web service integrating diverse databases and computational methods for accurate
prediction of essential proteins.

(Zhang et al., 2020)

CaNDis 2021 It is a server for exploring a human causal interaction network, expanded with disease
and FDA-approved drug data to construct a disease-disease network.

(Škrlj et al., 2021)

NetControl4BioMed 2021 It generates directed protein-protein interaction networks and used in controllability
analysis of target structural network.

(Popescu et al., 2021)

Konnect2prot 2022 Build a functional network with context specificity and identifies important proteins that
spread information in the network.

(Kumar et al., 2023a)
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TABLE 5 Online drug databases and tools for antiviral discovery.

Name Year Description Reference

(A) Clinically oriented drug databases

PharmGKB 2000 It serves as an openly accessible online repository dedicated to consolidating, curating,
integrating, and disseminating information pertaining to the influence of human genetic
variability on drug response.

(Whirl-Carrillo et al., 2021)

RxList 1995 It is an online medical resource dedicated to offering detailed and current
pharmaceutical information on brand and generic drugs.

(RxList)

(B) Chemically oriented drug database

TTD 2014 The Therapeutic Target Database (TTD) systematically collects nine categories of
established druggability characteristics for a wide range of targets, aiding in the
identification and validation of innovative drug targets. Top of Form

(Zhou et al., 2024)

ChemSpider 2007 This database houses data on a vast array of molecules, exceeding 100 million,
aggregated from over 270 distinct sources. Each molecule is assigned a unique
identifier, known as the ChemSpider Identifier.

(Pence and Williams, 2010)

PubChem 2004 It has an extensive collection of over 293 million substance descriptions, featuring 111
million distinct chemical structures and encompassing 271 million bioactivity data
points derived from approximately 1.2 million biological assay experiments.

(Kim et al., 2023)

ZINC 2004 It hosts a library of more than 230 million readily available compounds in 3D formats
for docking purposes. Additionally, it offers access to over 750 million purchasable
compounds, facilitating rapid analog searches within a minute.

(Sterling and Irwin, 2015)

(C) Online drug discovery tools

Drug Central 2016 It is a publicly accessible drug information resource that includes 4950 drugs and
related additional data sources such as FDA Adverse Event Reporting System (FAERS)
and L1000 gene perturbation profile distance matrices.

(Avram et al., 2023)

ChEBI 2009 This database compiles data on compound bioactivity against drug targets, with
bioactivity measurements reported in Ki, Kd, IC50, and EC50 values.

(Degtyarenko et al., 2007)

STITCH 2008 Search Tool for Interacting Chemicals (STITCH) consolidates dispersed data on
protein-small molecule interactions into a single, user-friendly resource, now expanded
to cover 430,000 chemicals. The latest release introduces a network view showcasing
binding affinities, facilitating quick insights into chemical effects on interaction partners.

(Szklarczyk et al., 2016)

DrugBank 2006 The latest version of the database contains 4563 FDA approved drugs and 6231
investigational drugs, along with information on drug-drug and drug-food interactions.

(Wishart et al., 2008)
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5.2.3 In silico methods for discovery of small
molecules: structural and machine learning
approach

It is a proven fact that the proteins are dynamic in nature and so

targeting a static snapshot may not be a very comprehensive

approach. Therefore, multiple computational tools have been

developed to virtually decipher the three-dimensional (3D)

structure of biological molecules in their functionally active state

and analyze the interaction among different biological molecules

such as RNA-protein interactions, protein-drug interaction and

RNA-drug interaction. The hallmark of computational structural

study is its ability to generate and analyze multiple interconverting

states by studying its thermodynamic properties. Molecular docking

and molecular dynamics (MD) simulation techniques are used to

characterize the complexities of RBP-drug interactions. Additional

methods such as advanced quantum mechanics/molecular

mechanics computation, Martini coarse-grained force field

molecular modeling and Elastic network models may be adapted

to analyze RNA-protein-drug interactions (Monticelli et al., 2008;

Pokorna et al., 2018). Further, quantitative structure-activity

relationship (QSAR) modeling have played a significant role in

computer-aided designing of drug molecules. Recent advances in

high-performance computing (HPC) and artificial intelligence (AI)

technologies have propelled the transition of QSAR to deep QSAR (a

combination of QSAR, more complex statistics and machine

learning techniques), which is more robust in structure-based

virtual screening (Gini et al., 2019; Selvaraj et al., 2023). Both

clinical and chemically oriented drug databases may be used in

this approach.

In silico analysis offers the advantage of simultaneous analysis

and optimization of 3D structure of the interaction partners as well

as drug molecules, which significantly expedites the optimization

process. However, such an approach has inherent limitations such

as the requirement of high computing power, lack of knowledge

regarding 3D structural details of many biological molecules,

inability to integrate biological information, and high false

positive rate of molecular dynamic simulation analysis. Some of

the above-mentioned limitations have been resolved by developing

the computational analysis of novel drug opportunities (CANDO)

platform (Minie et al., 2014). CANDO is a model independent

approach to drug discovery. It leverages the evolutionary basis of

protein and small molecule interactions and also considers the

known biological data about interaction partners. Importantly, all

the analyses do not require high computational power. CANDO

platform has been used to identify several drug candidates against

COVID-19 (Mangione et al., 2022).

5.2.4 Experimental validation of drug candidates
After identifying a suitable antiviral target in the RNA-protein

interactome data and in silico screening of drug libraries shortlists

potential antiviral candidates, which may be evaluated through

suitable wet lab-based assays. If a known drug molecule is identified,

its antiviral potential against the corresponding virus may be
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directly evaluated. Alternatively, small molecule libraries of NCEs

(new chemical entities) or FDA (Federal Drug Agency, USA)

approved drugs may be screened against a specific target using

appropriately validated assays. Potential drug molecules may be

characterized by NMR (nuclear magnetic resonance), X-ray-

crystallography and structural mass spectrometry (Britt et al.,

2021). Once the antiviral potential of the drug molecule is

evaluated in cell-based models and small animal models (if

available), its efficacy may be evaluated through subsequent pre-

clinical studies and clinical trials.
6 Conclusion

A thorough understanding of the RNA-protein interactions

prevalent in the life of +ssRNA virus is fundamental to decoding

the life cycle and mechanism of viral pathogenesis, knowledge of

which is essential for developing specific antivirals. Recent studies

have revealed the RNA-protein interactome of a few +ssRNA viruses

such as SARS-CoV-2, Dengue Virus and Zika virus. These studies

have demonstrated the power and functional utility of omics-based

technologies in interrogating the RNA-protein interactome of

+ssRNA viruses and provided convincing proof regarding the value

of such technologies in gaining deeper insight into the life cycle and

pathogenesis mechanism of +ssRNA viruses. Future research should

aim at developing more sophisticated and advanced methods,

including kinetic models. Further, considering the dynamic nature

of the interaction between the RNA, protein and drug, differential

equation-based mathematical models should be useful in

characterizing them. Finally, the development of more efficient X-

ray-crystallography and structural mass spectrometry methods

should help in the antiviral discovery process. By coupling the data

identified from RNA-protein interactome analysis with the drug

discovery pipeline, it should be possible to develop potent antivirals

against pathogenic +ssRNA viruses of medical importance.
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et al. (2019). b-Actin mRNA interactome mapping by proximity biotinylation. Proc.
Natl. Acad. Sci. 116, 12863–12872. doi: 10.1073/pnas.1820737116

Nagy, P. D., and Pogany, J. (2012). The dependence of viral RNA replication on co-
opted host factors. Nat. Rev. Microbiol. 10, 137–149. doi: 10.1038/nrmicro2692

Nicholson, B. L., and White, K. A. (2014). Functional long-range RNA–RNA
interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 12, 493–504.
doi: 10.1038/nrmicro3288

Paek, J., Kalocsay, M., Staus, D. P., Wingler, L., Pascolutti, R., Paulo, J. A., et al.
(2017). Multidimensional tracking of GPCR signaling via peroxidase-catalyzed
proximity labeling. Cell 169, 338–349. doi: 10.1016/j.cell.2017.03.028

Pan, X., Fang, Y., Li, X., Yang, Y., and Shen, H. B. (2020). RBPsuite: RNA-protein
binding sites prediction suite based on deep learning. BMC Genomics 21, 1–8.
doi: 10.1186/s12864-020-07291-6

Papon, L., Oteiza, A., Imaizumi, T., Kato, H., Brocchi, E., Lawson, T. G., et al. (2009).
The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis
virus (EMCV) infection. Virology 393, 311–318. doi: 10.1016/j.virol.2009.08.009

Patiyal, S., Dhall, A., Bajaj, K., Sahu, H., and Raghava, G. P. (2023). Prediction of
RNA-interacting residues in a protein using CNN and evolutionary profile. Briefings
Bioinf. 24, bbac538. doi: 10.1093/bib/bbac538

Paul, A. V., Rieder, E., Kim, D. W., van Boom, J. H., and Wimmer, E. (2000).
Identification of an RNA hairpin in poliovirus RNA that serves as the primary template
in the in vitro uridylylation of VPg. J. Virol. 74, 10359–10370. doi: 10.1128/
JVI.74.22.10359-10370.2000

Paz, I., Argoetti, A., Cohen, N., Even, N., and Mandel-Gutfreund, Y. (2022).
RBPmap: a tool for mapping and predicting the binding sites of RNA-binding
proteins considering the motif environment. Post-Transcriptional Gene Regul. 2404,
53–65. doi: 10.1007/978-1-0716-1851-6_3. Available at: https://www.springer.com/
series/7651

Paz, I., Kligun, E., Bengad, B., and Mandel-Gutfreund, Y. (2016). BindUP: a web
server for non-homology-based prediction of DNA and RNA binding proteins. Nucleic
Acids Res. 44, W568–W574. doi: 10.1093/nar/gkw454

Pence, H. E., and Williams, A. (2010). ChemSpider: an online chemical information
resource. J. Chemical Education 87(11). doi: 10.1021/ed100697w
frontiersin.org

https://doi.org/10.1093/nar/gky967
https://doi.org/10.1128/JVI.02677-08
https://doi.org/10.1016/j.tim.2017.01.010
https://doi.org/10.1093/nar/gkae334
https://doi.org/10.1073/pnas.1302807110
https://doi.org/10.1002/feb2.2017.591.issue-20
https://doi.org/10.1128/JVI.02491-09
https://doi.org/10.1128/JVI.02491-09
https://doi.org/10.4161/rna.25107
https://doi.org/10.4161/rna.25107
https://doi.org/10.1093/nar/gkq1108
https://doi.org/10.1128/JVI.73.1.772-777.1999
https://doi.org/10.1016/j.celrep.2021.109091
https://doi.org/10.1016/j.celrep.2021.109091
https://doi.org/10.1080/15476286.2021.1873620
https://doi.org/10.1080/15476286.2021.1873620
https://doi.org/10.1101/2020.02.28.970442
https://doi.org/10.1099/vir.0.2008/003673-0
https://doi.org/10.1099/jgv.0.000443
https://doi.org/10.1371/journal.pcbi.1009863
https://doi.org/10.1261/rna.261807
https://doi.org/10.3389/fcimb.2020.00453
https://doi.org/10.1007/s12010-015-1680-5
https://doi.org/10.1111/febs.v286.16
https://doi.org/10.1073/pnas.96.20.11560
https://doi.org/10.1038/nrm2178
https://doi.org/10.1371/journal.ppat.1003721
https://doi.org/10.1016/j.coviro.2015.02.005
https://doi.org/10.1016/bs.aivir.2016.08.007
https://doi.org/10.3389/fphar.2022.970494
https://doi.org/10.1101/pdb.prot072934
https://doi.org/10.1126/science.aab3369
https://doi.org/10.1128/JVI.76.19.9686-9694.2002
https://doi.org/10.1016/j.ymeth.2016.10.005
https://doi.org/10.1186/gb-2014-15-1-r17
https://doi.org/10.1186/gb-2014-15-1-r17
https://doi.org/10.1038/nature14443
https://doi.org/10.1017/S1355838298981006
https://doi.org/10.1080/15476286.2020.1814556
https://doi.org/10.1093/nar/gkad1025
https://doi.org/10.1126/science.aab2276
https://doi.org/10.1126/science.aab2276
https://doi.org/10.1016/j.drudis.2014.06.018
https://doi.org/10.1038/s41592-024-02372-w
https://doi.org/10.1021/ct700324x
https://doi.org/10.1073/pnas.1820737116
https://doi.org/10.1038/nrmicro2692
https://doi.org/10.1038/nrmicro3288
https://doi.org/10.1016/j.cell.2017.03.028
https://doi.org/10.1186/s12864-020-07291-6
https://doi.org/10.1016/j.virol.2009.08.009
https://doi.org/10.1093/bib/bbac538
https://doi.org/10.1128/JVI.74.22.10359-10370.2000
https://doi.org/10.1128/JVI.74.22.10359-10370.2000
https://doi.org/10.1007/978-1-0716-1851-6_3
https://www.springer.com/series/7651
https://www.springer.com/series/7651
https://doi.org/10.1093/nar/gkw454
https://doi.org/10.1021/ed100697w
https://doi.org/10.3389/fcimb.2025.1580337
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ghosh et al. 10.3389/fcimb.2025.1580337
Pestova, T. V., and Hellen, C. U. (2003). Translation elongation after assembly of
ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation
factors or initiator tRNA. Genes Dev. 17, 181–186. doi: 10.1101/gad.1040803

Pokorna, P., Kruse, H., Krepl, M., and Sponer, J. (2018). QM/MM calculations on
protein–RNA complexes: Understanding limitations of classical MD simulations and
search for reliable cost-effective QMmethods. J. Chem. Theory Comput. 14, 5419–5433.
doi: 10.1021/acs.jctc.8b00670

Polishchuk, M., Paz, I., Yakhini, Z., and Mandel-Gutfreund, Y. (2018). SMARTIV:
combined sequence and structure de-novo motif discovery for in-vivo RNA binding
data. Nucleic Acids Res. 46, W221–W228. doi: 10.1093/nar/gky453
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