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Editorial on the Research Topic

Developing therapeutics for antimicrobial resistant pathogens: volume II
Antimicrobial resistance (AMR) is one of the most pressing global public health

challenges, with bacterial AMR alone directly causing 1.27 million deaths worldwide in

2019 and contributing to 4.95 million deaths, excluding those caused by AMR in viruses,

fungi, and parasites (Antimicrobial Resistance, 2022; WHO, 2023). Despite the growing

threat of AMR, the development of new therapeutics has stalled, with no clinical candidates

close to reaching the market (WHO, 2022). In response to this growing threat, we launched

a Research Topic in 2021 titled “Developing Therapeutics for Antimicrobial-Resistant

Pathogens” (Veerapandian et al., 2022). Building on the success of Volume I, we

initiated Volume II in 2024. The latest Research Topic features seven manuscripts

presenting diverse perspectives on combating AMR pathogens.

Carbapenem-resistant Klebsiella pneumoniae is the major public health problem with

high mortality rates (Semet et al., 2024). A comprehensive understanding of its virulence

mechanisms and effective therapeutic strategies is critically needed. Tu et al. elucidated the

molecular characteristics and pathogenic mechanisms of hypervirulent carbapenem-

resistant Klebsiella pneumoniae (CR-hvKP) isolated from a human patient sample.

Whole-genome sequencing identified three plasmids: Plasmid 1, a pLVPK-like virulence

plasmid carrying multiple virulence genes like rmpA, rmpA2, iroB, iucA, and terB; Plasmid

2, which contains transposable elements such as IS15 and IS26; and Plasmid 3, a resistance

plasmid harboring the blaKPC-3 carbapenem resistance gene. Mouse virulence assays with

CR-hvKP demonstrated a high mortality rate and a significant increase in proinflammatory
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cytokine levels, including IL-1b, IL-6, and TNF-a. Interesting
article from Aluisio et al. examined the use of cell-free

supernatant (CFS) from Lactobacillus gasseri against carbapenem-

resistant K. pneumoniae. Whole genome sequencing of the L.

gasseri 1A-TV strain revealed two bacteriocin biosynthetic gene

clusters (BBGCs) namely BBGC1 which encodes two class IIc

bacteriocins, including a gassericin A-like bacteriocin, while
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BBGC2 harbors the class III bacteriocin helveticin J. Notably, 1A-

TV CFS effectively inhibited the growth of all K. pneumoniae

isolates tested. Nuclear magnetic resonance (NMR) analysis of the

L. gasseri 1A-TV strain CFS identified and quantified various

metabolites involved in carbohydrate and amino acid metabolism,

along with organic acids such as ethanol, lactate, acetate,

and succinate.
FIGURE 1

Utilizing omics and microbiome technologies to uncover the molecular mechanisms of therapeutics against AMR. Antimicrobial-resistant (AMR)
pathogens, including bacteria, fungi, viruses, and parasites, can naturally infect humans and various animals, such as livestock (e.g., chickens, cattle,
goats, sheep, and swine), companion animals (e.g., dogs and cats), and wildlife (e.g., birds and wild boars), leading to disease. Additionally, laboratory
animals, including non-human primates, mice, rats, hamsters, guinea pigs, rabbits, zebrafish, Caenorhabditis elegans, and Drosophila melanogaster,
are intentionally infected for research purposes. To combat these AMR pathogens, various therapeutic strategies are employed for treating naturally
infected humans and animals, as well as for research on artificially infected laboratory animals. These strategies include plant-derived antimicrobials,
antimicrobial peptides, nanomaterials, phage therapy, small compound libraries, drug repurposing, vaccines, antibody, and antibiotic-antibody
conjugates. Multi-omics approaches, such as genomics (including transcriptomics and epigenomics), proteomics (including interactomics),
metabolomics (including lipidomics), immunomics, and microbiome analysis, can be utilized to elucidate the mechanisms of these therapeutics,
accelerating the discovery of effective treatment options.
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Use of Antimicrobial peptides (AMPs) are one of the promising

alternative approaches against AMR pathogens (Xuan et al., 2023;

Jeyarajan et al., 2024). Although resistance to AMPs remains

relatively low, the potential for resistance development has been

reported by multiple mechanism employed by pathogens (Band and

Weiss, 2015; Duperthuy, 2020). Hernández-Garcıá et al. examined

resistance mechanisms associated with Murepavadin, a novel

peptidomimetic antibiotic that specifically targets Pseudomonas

aeruginosa LptD. A genome-wide association study (GWAS)

indicated that high resistance to Murepavadin is likely linked to

mutations in lpxL1 and lpxL2, resulting in reduced hexa-acylated

lipid A, which corresponds to lower inflammatory induction and

increased susceptibility to host-derived AMPs.

Combination therapy is an effective approach used recently to

treat various bacterial and fungal infections (Basavegowda and

Baek, 2022; Bonincontro et al., 2023). Zhao et al. demonstrated

that aloe plant extracts containing aloe emodin, emodin, and rhein

exhibit strain-specific antibacterial effects against polymyxin-

resistant Acinetobacter baumannii. Interestingly, combination

therapy synergistically restored the sensitivity of resistant A.

baumannii strains to polymyxins. Moreover, this drug

combination showed low cytotoxicity, promoted wound healing,

and reduced bacterial burden in mice infected with a polymyxin-

resistant A. baumannii strain.

Bioactive compounds from the marine ecosystem remain

largely unexplored. Metabolites from the marine algae is reported

for its antimicrobial activity (Pérez et al., 2016; Makhlof et al., 2024).

Sangavi et al. explored the anticariogenic potential of the

methanolic extract of Padina boergesenii (MEPB). MEPB

effectively inhibited Streptococcus mutans biofilms without

affecting bacterial viability while also impairing key virulence

factors such as adherence, acid production, acid tolerance, glucan

synthesis, cell surface hydrophobicity, and extracellular DNA

(eDNA) production. Its non-toxic nature was confirmed using

human buccal epithelial cells. Additionally, GC-MS/MS analysis

identified palmitic acid, myristic acid, and stearic acid as the major

active constituents of MEPB and the further biofilm inhibition

assays with these compounds demonstrated significant antibiofilm

activity, with palmitic acid reducing biofilm formation by 85%,

myristic acid by 72%, and stearic acid by 83%.

Candida species are known to form polymicrobial biofilms with

various bacteria, including Streptococcus species, Staphylococcus

species, and Escherichia coli, leading to severe clinical outcomes

and challenges to treatment (Veerapandian and Vediyappan, 2019;

Pohl, 2022). Shaik et al. investigated various phthalimide

derivat ives , including N-butylphthalimide (NBP), N-

methylphthalimide (NMP), N-aminophthalimide (NAP), N-

hydroxymethylphthalimide (NHP), N-carbethoxyphthalimide

(NCP), and N-(2-butynyl)phthalimide (N2BP), for their

antifungal activity against Candida albicans and Candida

parapsilosis. These compounds effectively inhibited biofilm

formation, hyphal development, and cell aggregation. Notably,
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NBP significantly downregulated key hyphal- and biofilm-

associated genes (ECE1, HWP1, and UME6) upon treatment.

Furthermore, NBP demonstrated broad-spectrum antibiofilm

activity by inhibiting biofilm formation of bacterial pathogens

such as Escherichia col i , Staphylococcus epidermidis ,

Staphylococcus aureus, and Vibrio parahaemolyticus. Additionally,

NBP effectively disrupted polymicrobial biofilms composed of S.

epidermidis and C. albicans. Veerapandian et al. established a mouse

model of oropharyngeal candidiasis (OPC) and demonstrated that

oral infection with Candida albicans can result in its dissemination

under immunosuppressed conditions, even in the absence of

antibiotics or chemotherapeutic agents. The authors observed

alterations in the gut microbiome that favored the proliferation of

Enterococcus species, C. albicans, and potentially other pathogenic

bacteria in immunosuppressed mice, which may have exacerbated

mucosal damage and facilitated their dissemination.

There are multiple therapeutic strategies available to combat

AMR; however, a deeper understanding of its underlying

mechanisms is still needed. The recent application of omics

technologies has allowed researchers to simultaneously examine

multiple layers of molecular activity (Chen et al., 2023). While

omics data provide valuable insights into molecular changes

following infection, their impact would be significantly greater if

these technologies were also applied to therapeutic treatment

groups for comparison. This approach would help uncover the

molecular mechanisms responsible for the protective effects of

therapeutics against diseases (Yow et al., 2022).

Additionally, microbiome studies will play a crucial role in

advancing newly developed drugs to the next stage. A key concern

when developing new drugs is their potential impact on the host’s

normal flora (Patangia et al., 2022). Integrating microbiome

analysis with assessments of a drug’s antimicrobial efficacy would

provide a more comprehensive understanding of its overall effects.

In summary, we believe that the research articles featured in this

Research Topic enhance our understanding of therapeutics for

combating antimicrobial-resistant (AMR) pathogens and suggest

future directions for addressing AMR challenges.
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