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Tuberculosis is a widely spread disease caused by Mycobacterium tuberculosis

(Mtb). The pathogenicity of the pathogen is closely associated with the immune

defense mechanisms of the host cells. As key cellular degradation and metabolic

centers, lysosomes critically regulate tuberculosis infection. When Mtb invades

the host, it is taken up by macrophages and enters phagosomes. Subsequently,

the phagosomes fuse with lysosomes and form phagolysosomes, which

eliminate the pathogenic bacteria through the acidic environment and

hydrolytic enzymes within lysosomes. However, Mtb can interfere with the

normal functions of lysosomes through various strategies. It can secrete

specific factors (such as ESAT-6, ppk-1, and AcpM) to inhibit the acidification

of lysosomes, enzyme activity, and the fusion of phagosomes and lysosomes,

thereby enabling Mtb proliferation within host cells. An in-depth exploration of

the mechanism of the interaction between Mtb and lysosomes will both uncover

bacterial immune evasion strategies and identify novel anti-tuberculosis

therapeutic targets.
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1 Introduction

Tuberculosis is mainly caused by the intracellular pathogen Mycobacterium

tuberculosis (Mtb). It most commonly infects the lungs but can also affect other organs,

including the intestines and bones. It seriously threatens human health and poses a heavy

burden on global health services. According to the “Global Tuberculosis Report 2024”

released by the World Health Organization (WHO), it was estimated that 10.8 million

people worldwide suffered from TB and approximately 400,000 had drug-resistant

tuberculosis (DR-TB); additionally, the disease caused 1.25 million deaths globally

(Organization, W.H, 2023). Factors such as poverty, malnutrition, HIV infection,

smoking, diabetes, chemotherapy, and weakened immunity all significantly increase

individuals’ susceptibility to infections (Chai et al., 2018; Luies and du Preez, 2020).

Fortunately, TB is a preventable and generally curable disease, and currently, the first-line
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2025.1582037/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1582037/full
https://www.frontiersin.org/articles/10.3389/fcimb.2025.1582037/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2025.1582037&domain=pdf&date_stamp=2025-05-14
mailto:fgz62691@163.com
https://doi.org/10.3389/fcimb.2025.1582037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2025.1582037
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Bao et al. 10.3389/fcimb.2025.1582037
drugs for TB treatment include isoniazid, rifampicin, pyrazinamide,

ethambutol, and streptomycin (Zumla et al., 2013). However, the

emergence of multidrug-resistant tuberculosis (MDR-TB) has

presented new challenges to the treatment of TB. Thus, in-depth

study of the interaction between Mtb infection and the host is

conducive to our exploration of new treatment approaches.

Lysosomes are organelles discovered by de Duve in 1955

through specific enzyme staining with the aid of light

microscopes and electron microscopes (de Duve, 2005).

Lysosomes are acidic organelles encapsulated by a single

membrane with a pH value of approximately 4.6. The

endolysosomal system in cells consists of early endosomes (EE),

recycling endosomes (RE), late endosomes (LE), and lysosomes

(LY), and it is crucial for a variety of cellular functions, including

membrane trafficking, protein transport, autophagy, and signal

transduction (Luzio et al., 2007). The lysosomes contain a variety

of hydrolases, including acid phosphatase, protease, lipase, and

glycosidase, and the acidic interior optimally activates these

hydrolases and facilitates the breakdown of intracellular waste

and exogenous pathogens (Appelqvist et al., 2013). In addition,

lysosomes can also eliminate pathogens through various pathways

such as forming phagolysosomes by fusing with phagosomes,

autophagy, and so on (Levine and Kroemer, 2008). As an

organelle widely existing in eukaryotic cells, lysosomes not only

degrade and recycle intracellular waste, organelles, and exogenous

substances, but also regulate cell metabolism, mediate signal

transduction, and participate in immune responses (Saftig and

Klumperman, 2009).

When Mtb invades the body, macrophages serve as the first line

of defense against its infection, swiftly recognizing and

phagocytosing this pathogen (Russell, 2011). Meanwhile,

lysosomes, as extremely crucial degradative organelles within

cells, undertake the vital task of degrading pathogens within

macrophages, playing a pivotal role in defending against Mtb

infections (Armstrong and Hart, 1971). This review aims to delve

deeply into the interaction between lysosome function and Mtb

(show in Figure 1). Through in-depth exploration on the key role of

lysosomes in Mtb, we deeply expect to provide a meaningful

scientific theory for guiding anti-TB research, and thereby

providing corresponding strategies for the treatment of TB.
2 The effect of Mtb infection on
lysosomes

The Esx-1 secretion system (ESX-1), a specialized type VII

secretion system (T7SS) unique to pathogenic mycobacteria

including Mtb, is encoded by the genomic region of difference 1

(RD1) locus (Cole et al., 1998; Behr et al., 1999). On the one hand,

ESX-1 secretes effector proteins, such as ESAT-6 and CFP-10. Both are

immunodominant antigens and major virulence factors of Mtb, which

disrupt the host cell membrane’s integrity to assist Mtb to more easily

invade cells (Simeone et al., 2009). On the other hand, it can assist Mtb

in surviving within cells by damaging phagosome membranes,

preventing the fusion of autophagosomes with lysosomes and so on
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(Simeone et al., 2012) (Lienard et al., 2023). Transcriptomic and

functional studies revealed that CD11c low monocyte-derived cells

(MNC1) display compromised lysosomal activity (reduced TFEB

expression, acidification, and proteolysis) relative to alveolar

macrophages (AMs) and CD11c high counterparts (MNC2).

Paradoxically, MNC1 exhibit superior capacity to harbor viable

Mtb. This paradox is partly explained by Mtb’s ESX-1, which

actively recruits lysosome-impaired MNC1 to lung tissue, creating

protective niches for bacterial persistence. Targeting this host

vulnerability, c-Abl inhibitors (e.g., nilotinib) restore lysosomal

function via TFEB activation, proposing a novel host-directed

therapy (HDT) to eliminate Mtb reservoirs (Zheng et al., 2024).

Moreover, the Mtb Type VII secretion system effector Rv2347c

employs a dual mechanism to subvert host defenses: it employs a

dual mechanism to subvert host defenses, and it not only suppresses

phagosome maturation by downregulating early markers (RAB5/

EEA1), but also compromises lysosomal membrane integrity,

ultimately facilitating bacterial escape from the degradative

compartment (Jiang et al., 2024). MptpB, encoded by Rv0153c, as

an effector molecule of the type VII secretion system of Mtb, is a key

TB virulence factor with phosphoinositide phosphatase activity (Singh

et al., 2005; Beresford et al., 2007). By dephosphorylating PI3P, it

impedes phagosome maturation and lysosome–phagosome fusion,

protecting Mtb from destruction (Beresford et al., 2007). On the basis

of this, the MptpB inhibitor C13 enhances mycobacterial clearance

through dual mechanisms: restructuring PI3P–phagosome

interactions to promote phagolysosomal fusion, evidenced by

increased LAMP-1 colocalization, and exhibiting synergistic

bactericidal activity with frontline antibiotics (rifampin, bedaquiline,

and pretomanid) through accelerated lysosomal trafficking and

intracellular burden reduction (Rodrıǵuez-Fernández et al., 2024).

Similarly, AcpM, encoded by Rv2244, plays a crucial role in the

biosynthetic pathway of the cell wall and closely related to the

pathogenicity and drug resistance of Mtb (Miotto et al., 2022; Ling

et al., 2024). It orchestrates immune evasion through dual

posttranscriptional sabotage: miR-155-5p-mediated Akt-mTOR

activation suppresses TFEB-driven lysosomal biogenesis, while

coordinated repression of TFEB-regulated vesicular trafficking (e.g.,

LAMP1/RAB7) blocks phagolysosomal maturation, creating protected

niches for Mtb persistence (Paik et al., 2022). Instead, the sulfolipid

SL-1 of Mtb is encoded by Rv3821 and Rv3822 (Seeliger et al., 2012). It

suppresses mTORC1 activity to promote TFEB nuclear translocation,

thereby activating lysosomal biogenesis and potentiating lysosomal

function. Intriguingly, SL-1 demonstrates complementary

phagosomal acidification capacity, whereas SL-1-deficient mutants

show impaired lysosomal trafficking concomitant with elevated

intracellular bacterial survival rates (Sachdeva et al., 2020).

Apart from these, research has identified other influencers. For

example, 1-TbAd, an abundant lipid in Mtb that is biosynthesized

involving Rv3377c and Rv3378c, has been proven to be a naturally

evolved phagolysosome disruptor (Mayfield et al., 2024) (Buter et al.,

2019). It penetrates lysosomes, protonates, and concentrates within the

acidic lysosomal environment, causing both lysosomal swelling and

pH elevation. This cascade inactivates hydrolytic enzymes while

hindering autophagosome maturation, thereby facilitating Mtb
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infection (Bedard et al., 2023). Beyond that, Rv1096 can inhibit the

maturation of phagosomes, allowing Mtb to escape into the host cell

cytoplasm (Deng et al., 2020). Additionally, PPK, which stands for

“Polyphosphate kinase,” primarily includes ppk-1 (encoded by

Rv2984) and ppk-2 (encoded by Rv3232c) (Singh et al., 2016). They

critically regulate Mtb stress adaptation, enhancing resistance to

thermal, acidic, oxidative, and hypoxic challenges while potentiating

intramacrophage replication through polyP-mediated homeostasis

(Cole et al., 1998; Sureka et al., 2007, Sureka et al., 2009; Singh et al.,

2013). Chugh et al. (2024 PNAS) revealed polyphosphate kinase-1

(PPK-1) as a central metabolic regulator in Mtb pathogenesis through

two complementary mechanisms: PPK-1 deficiency disrupts

phthiocerol dimycocerosate (PDIM) biosynthesis to enhance

phagolysosomal fusion-mediated bacterial clearance, while

pharmacological inhibition of PPK-1 with raloxifene synergizes with

frontline anti-TB drugs (isoniazid/bedaquiline) by subverting bacterial

metabolic networks, collectively demonstrating the potential to

shorten chemotherapy duration and combat MDR-TB through this

dual host–pathogen targeting strategy (Chugh et al., 2024).

In addition to the factors aforementioned in TB, it is noteworthy

that Coronin 1 (Cor1), a 57-kDa trimeric actin-binding protein

essential for leukocyte cytoskeletal dynamics, emerges as a critical

mediator of macrophage–Mtb interactions (Stocker et al., 2018). Its

structural capacity to orchestrate actin remodeling becomes

indispensable for pathogen containment during Mtb phagocytosis

(Jayachandran et al., 2007; Bravo-Cordero et al., 2013). Mtb

strategically hijacks Cor1 to orchestrate phagosomal arrest through a

cAMP–cofilin1 signaling axis. Upon macrophage infection, Cor1

recruitment to phagosomal membranes coincides with cAMP
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elevation, which activates Slingshot phosphatase to dephosphorylate

cofilin1. This cascade induces F-actin depolymerization, disrupting

actin remodeling essential for phagosomal trafficking. Crucially, Cor1-

mediated dual blockade of both actin cytoskeletal dynamics and

vesicular fusion machinery creates protected compartments that

evade lysosomal destruction (Saha et al., 2021). Mtb PknG is encoded

by Rv0410c (Wang et al., 2021). It subverts host autophagy–lysosome

fusion, impairs lysosomal acidification via V-ATPase inhibition, and

destabilizes lysosomal membrane integrity, thereby hijacking

autophagic flux to establish intracellular survival niches while evading

lysosomal degradation, which underscores the therapeutic promise of

dual-targeting PknG kinase activity and lysosomal functional

restoration in TB treatment (Ge et al., 2022). The molecular

mechanisms through which Mtb subverts host lysosomal function via

key virulence determinants, along with corresponding therapeutic

interventions, are systematically shown in (Table 1).
3 The defense mechanisms of
lysosomes against Mtb

3.1 Regulating the homeostasis of
lysosomes

Lysosomal damage is a feature in many diseases and hinders

cellular health. Inner membrane damage causes organelle

instability. How cells stabilize the damaged inner membrane for

repair is unclear. Current research shows that under various

stresses, cells form stress granules. Stress granules modulate
FIGURE 1

Mtb-induced lysosomal modulation and drug interventions following host invasion. This schematic delineates the autophagic and phagocytic
pathways activated during Mtb infection: 1. Pathogen-Driven immune evasion: Mtb virulence factors, such as 1-TbAb, inhibit autophagosome
maturation; 2. Therapeutic interventions: ① lysosomal potentiators like curcumin through upregulating lysosomal biogenesis; ② autophagy enhancers
like Ison@Man-Se NPs through enhancing autophagosome–lysosome fusion.
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mRNA stability and translation to help cells cope with adverse

environments (Protter and Parker, 2016). When host cells are

infected with Mtb, lysosomal inner membrane is damaged. Stress

granules form at the damage site, prevent further membrane

rupture, and assist lysosome repair. They can inhibit Mtb

proliferation and spread (Bussi et al., 2023). Simultaneously,

Galectin-3 (Gal3), which is involved in processes such as cell

adhesion, apoptosis, immune response, and autophagy, recognizes

the glycans exposed after lysosomal inner membrane damage and

recruits ESCRT components (e.g., ALIX and CHMP4) to promote

the repair process (Jia et al., 2020b). The dual repair mechanisms of

Mtb-induced lysosomal membrane damage—stress granule

stabilization and Galectin-3/ESCRT-mediated remodeling and

their role in suppressing bacterial proliferation are shown in

(Figure 2a). Therefore, modulating stress granule formation or

associated pathways can develop treatment strategies, targeting

pathogen and host cell mechanisms to enhance treatment

effectiveness and address drug resistance.

Except for lysosomal damage, lysosomes have abnormal

functions related to various diseases like Gaucher disease (GD),

which is an autosomal recessive genetic disorder classified under

lysosomal storage diseases, and is caused by mutations in the GBA1

gene, disrupting glucocerebrosidase in lysosomes, leading to

accumulation and dysfunctions (Andrzejczak and Karabon, 2024).

However, it is surprising to see that zebrafish with GBA1 deletion

showed resistance to infections by Mtb. GBA1 mutations confer

resistance to mycobacterial infections in zebrafish by enhancing
Frontiers in Cellular and Infection Microbiology 04
lysosomal bactericidal activity through glucosylsphingosine

accumulation in macrophage lysosomes (as shown in Figure 2b).

This lysosomal metabolite exerts bactericidal effects either by

modifying membrane properties or by activating enzymatic

pathways that potentiate macrophage microbicidal capacity (Fan

et al., 2023).
3.2 Affect autophagy

Autophagy is an evolutionarily conserved process where cells

employ lysosomes to selectively degrade damaged, senescent, or

superfluous biomacromolecules and organelles, with the breakdown

products recycled to fuel metabolism and facilitate organelle renewal.

This lysosome-mediated degradation pathway serves as a

fundamental cellular quality control system (Mizushima and

Komatsu, 2011). The autophagic cascade consists of crucial steps:

initiation, isolationmembrane formation, autophagosome generation,

and its fusion with lysosomes, ending in degradation and recycling

(Mariño et al., 2014). The regulation of autophagy can be achieved

through the following key factors: (1) mTOR (mechanistic target of

rapamycin): functions as a central nutrient sensor and master

autophagy regulator. In nutrient-abundant conditions, it

phosphorylates proteins such as the ULK1 complex, inhibiting the

initiation of autophagy. However, in situations of starvation, hypoxia,

stress, or under the influence of drugs, the activity of mTOR

decreases, triggering autophagy (Kim et al., 2011). (2) The AMPK
TABLE 1 The impact of Mtb pathogenic factors on lysosomes.

Virulence Factor Encoding Genes Mechanism of Action
Potential Therapeutic
Targets

ESX-1 Secretion System RD1 (Behr et al., 1999) Secretes ESAT-6/CFP-10 to disrupt host membrane integrity
(Simeone et al., 2009); damaging phagosome membranes, preventing
the fusion of autophagosomes with lysosomes and so on (Simeone
et al., 2012) (Lienard et al., 2023); ESX-1 recruits lysosome-impaired
MNC1 to form protective niches; TFEB suppression reduces
lysosomal biogenesis (Zheng et al., 2024).

Inhibitors of ESX-1 secretion;
c-Abl inhibitors (e.g., nilotinib);
lysosome-targeted nanoparticles.

Rv2347c (T7SS effector) Rv2347c Downregulates RAB5/EEA1 to block phagosome maturation;
disrupts lysosomal membrane integrity (Jiang et al., 2024).

Small-molecule inhibitors of Rv2347c.

MptpB Rv0153c (Singh et al., 2005) Dephosphorylates PI3P to impair phagosome–lysosome fusion
(Beresford et al., 2007).

MptpB inhibitor (e.g., C13)
(Rodrıǵuez-Fernández et al., 2024).

AcpM Rv2244 Suppresses TFEB-mediated lysosomal biogenesis; blocks RAB7/
LAMP1-dependent phagolysosomal fusion (Paik et al., 2022).

miR-155-5p antagonists; Akt-
mTOR inhibitors.

SL-1 (Sulfolipid) Rv3821 and Rv3822
(Seeliger et al., 2012)

Inhibits mTORC1 to activate TFEB, enhancing lysosomal function;
promotes phagosomal acidification (Sachdeva et al., 2020).

SL-1 biosynthesis enzyme inhibitors

1-TbAd Rv3377c and Rv3378c
(Mayfield et al., 2024)

Elevates lysosomal pH to inactivate hydrolases; blocks
autophagosome maturation (Bedard et al., 2023).

1-TbAd synthase inhibitors.

Rv1096 Rv1096 Inhibits phagosomal maturation (Deng et al., 2020). Targeted degradation of Rv1096.

PPK-1 Rv2984 and Rv293232c
(Singh et al., 2016)

Disrupts PDIM biosynthesis to enhance phagolysosomal fusion;
synergizes with isoniazid/bedaquiline (Chugh et al., 2024).

PPK-1 inhibitors [e.g., raloxifene
(Chugh et al., 2024)].

Coronin 1 None (it is a protein
in macrophage)

Activates cAMP–cofilin1 axis to block phagosomal trafficking;
inhibits lysosomal fusion (Saha et al., 2021).

Coronin 1-cAMP
interaction inhibitors.

PknG Rv0410c (Wang
et al., 2021)

Inhibits V-ATPase to impair lysosomal acidification; destabilizes
lysosomal membranes (Ge et al., 2022).

PknG kinase inhibitors; lysosomal
acidification enhancers.
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(AMP-activated protein kinase) signaling pathway dominates cellular

energy homeostasis. Sensing ATP/AMP ratio, it kicks in when energy

wanes (Hardie et al., 2012). Once activated, it curbs mTOR and jump-

starts autophagy via the ULK1 (Unc-51 like autophagy activating

kinase 1) complex and downstream effectors (Kim et al., 2011). (3)

Beclin-1 and the PI3K (phosphatidylinositol 3-kinase) complex:

Beclin-1 and the PI3K complex are pivotal in autophagy onset.

Their interaction yields PI3P, vital for isolation membrane

formation (Tran et al., 2021). (4) TFEB (transcription factor EB): a

transcriptional maestro for autophagy and lysosomal biogenesis that

relocates to the nucleus during nutrient scarcity or stress to activate

both, augmenting intracellular autophagic clearance (Settembre et al.,

2011). (5) Oxidative stress: Oxidative stress tweaks autophagy as ROS

levels vary. Mild ROS prompts autophagy, and excessive amounts

impede and harm cells. Cells deploy antioxidants, e.g., Nrf2, to

balance stress and modulate autophagy, safeguarding cell viability

in complex settings (Finkel, 2011).

TB infection commonly induces lysosomal dysfunction (Berg

et al., 2016; Rombouts and Neyrolles, 2023). Autophagy-related
Frontiers in Cellular and Infection Microbiology 05
genes (ATGs), in conjunction with their associated proteins and

regulatory elements, play pivotal roles in orchestrating cellular

responses to lysosomal damage (Cross et al., 2023). Notably,

during TB-induced lysosomal damage, membrane Atg8ylation

emerges as a central coordinator of stress adaptation. This

ubiquitin-like modification directly recruits stress granule (SG)

proteins NUFIP2 and G3BP1 to damaged lysosomal membranes,

bypassing SG condensate formation. Crucially, NUFIP2 engages the

Ragulator-RagA/B complex to suppress mTOR activity, thereby

activating autophagy and lysosomal repair programs. These

Atg8ylation-driven responses enable cells to survive Mtb infection

by restoring lysosomal homeostasis (Jia et al., 2022). When

lysosomal membrane repair fails, Gal3 recruits ubiquitin ligases

(e.g., TRIM16) to tag damaged lysosomes with ubiquitin signals,

initiating lysophagy for their selective autophagic clearance.

Concurrently, TFEB activation drives lysosomal biogenesis,

ensuring replenishment of functional lysosomes (Jia et al., 2020b).

Furthermore, during lysosomal damage, Galectin-9 (Gal9)

coordinates AMPK activation by stabilizing ubiquitin signals
FIGURE 2

(a) Membrane damage resolution. Mtb disrupts lysosomal integrity via ESX-1 secretion system. Host cells counteract this by mobilizing two repair
pathways: 1. ESCRT machinery (ALIX/CHMP4): Mediates membrane scission and vesicle shedding to restore lysosomal continuity. 2. Galectin-3
(Gal3)–ubiquitin axis: Recognizes exposed glycans on damaged membranes, recruiting TRIM16 ubiquitin ligase to tag compromised lysosomes for
selective autophagy (lysophagy). These coordinated responses inhibit Mtb proliferation by maintaining lysosomal bactericidal capacity. (b) Metabolic
reprogramming in GBA1 deficiency. Loss of GBA1 elevates glucosylsphingosine (GlcSph) levels in lysosomes, which paradoxically 1. Enhances
hydrolase activity: GlcSph stabilizes lysosomal enzymes (e.g., cathepsins), boosting proteolytic degradation of Mtb. 2. Disrupts lipid hijacking:
Counters Mtb’s strategy to exploit MMGT1-GPR156 lipid droplet axis for survival.
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through enhanced lysosomal glycoprotein binding and dissociation

from the deubiquitinase USP9X, thereby driving metabolic and

autophagic adaptation (Jia et al., 2020a). This process directly

induces autophagy, leading to autophagy-mediated clearance of

the membrane-damaged Mtb.

During TB infection, the host cell initiates a series of defense

mechanisms to combat the invading pathogen. For example, during

Mtb infection, NCoR1 (nuclear receptor co-repressor 1) acts as a

metabolic-immune checkpoint in myeloid cells, dynamically

balancing antibacterial responses through AMPK–mTOR–TFEB

axis regulation. Early infection upregulates NCoR1 to activate

AMPK, which inhibits mTOR and releases TFEB, driving

lysosomal autophagy to restrict bacterial growth. NCoR1

depletion disrupts this pathway, accelerating Mtb proliferation,

while AMPK agonists (e.g., AICAR) or mTOR inhibitors (e.g.,

rapamycin) restore lysosomal function and bacterial clearance

(Biswas et al., 2023). In another experiment, an interesting

phenomenon has been observed: Mesenchymal stem cells (MSCs)

expel anti-TB drugs via host ABC transporters, reducing drug

efficacy and promoting Mtb survival. In contrast, Mtb’s own ABC

systems primarily import nutrients (Soni et al., 2020). Targeting

both host drug-efflux pumps and pathogen nutrient-import

pathways may overcome this dual resistance mechanism.

However, recent studies by Aqdas et al. have shed light on a

potential countermeasure. They discovered that co-stimulating

NOD-2/TLR-4 (N2.T4) in mesenchymal stem cells eliminates

intracellular Mtb by enhancing lysosomal degradation (3.8-fold

Mtb-lysosome fusion↑) and amplifying autophagy through NF-

kB/p38 MAPK signaling, achieving 89% bacterial clearance (p <

0.001) and highlighting therapeutic potential (Aqdas et al., 2021).

This finding strongly suggests that N2.T4 co-stimulation holds

great promise as a potential strategy for eradicating Mtb harbored

within MSCs, opening up new avenues for TB treatment research.

(Figure 3) shows the integrated autophagy-lysosomal repair

network during Mtb infection, including Atg8ylation-driven stress

adaptation, Galectin-mediated lysophagy, and NOD-2/TLR-4 co-

stimulation as a therapeutic strategy to enhance bacterial clearance.
3.3 Affect phagosomes, lysosomes, and
their fusion

Lysosomes are often dubbed the “scavengers” in the body. In the

process of lysosomes eliminating foreign substances, the fusion of

phagosomes and lysosomes plays a crucial step (Huynh et al., 2007).

During phagosome–lysosome fusion, the phagosome’s internal pH

is gradually lowered to 4.5 by proton pumps, creating an optimal

environment for enzyme-mediated degradation upon fusion with

lysosomes, which is regulated by GTPase Rab7 and SNARE proteins

such as VAMP8 (Hyttinen et al., 2013). Aylan et al. identified ATG7

and ATG14 as essential regulators of Mtb clearance in human

macrophages through compartment-specific autophagy

mechanisms. ATG14 drives phagosome–lysosome fusion, limiting
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phagosomal Mtb survival, while ATG7 enables autophagosome

formation to restrict cytosolic replication (Aylan et al., 2023). Mtb

subverts macrophage defenses by hijacking the p38 MAPK-CREB

signaling axis. Upon infection, Mtb activates transcription factor

CREB via the p38 MAPK pathway. This CREB-mediated response

suppresses phosphorylation of the necroptotic effectors RIPK3

(receptor-interacting serine) and MLKL (mixed lineage kinase

domain-like protein), thereby dampening necroptotic signaling.

Consequently , the inhibi t ion of necroptosis disrupts

phagolysosome fusion, creating a permissive niche for Mtb to

evade lysosomal degradation and sustain intracellular

proliferation (Leopold Wager et al., 2023). Considering this,

targeting the CREB-mediated pathway with small-molecule

inhibitors or modulators could avert the drug resistance risk of

direct antibacterial therapies. Additionally, uncovering the specific

early genes upregulated by M.tb-induced CREB activation and their

functions may reveal novel therapeutic targets. Moreover, SLAMF1

(signaling lymphocytic activation molecule family member 1) serves

as a critical regulator of Mtb containment in macrophages. Mtb

infection upregulates SLAMF1 expression, which directly enhances

bacterial uptake through receptor-mediated phagocytosis.

Strikingly, stimulation of SLAMF1 with agonistic antibodies

further amplifies this phagocytic capacity. Mechanistically,

SLAMF1 colocalizes with Mtb-containing phagosomes and

dynamically associates with both early (Rab5) and late (Rab7/

LAMP1) endolysosomal markers, driving phagosome maturation

toward bactericidal lysosomal compartments. This SLAMF1-

dependent endolysosomal reprogramming potently restricts

intracellular Mtb survival (Barbero et al., 2021). Similarly, BTLA,

an immunoregulatory receptor highly expressed on lymphocytes

and macrophages, modulates immune responses through

interaction with its ligand HVEM. This BTLA-HVEM signaling

axis critically balances immune activation and tolerance to maintain

homeostasis (Andrzejczak and Karabon, 2024). Subsequent

experiments have indicated that BTLA orchestrates autophagic

clearance of Mtb through AKT/mTOR signaling in macrophages.

Mtb infection upregulates BTLA expression, which suppresses

AKT/mTOR pathway activity to activate autophagic flux. This is

evidenced by increased LC3-II conversion and enhanced

autophagosome–lysosome fusion, culminating in lysosomal

degradation of intracellular bacteria (Liu et al., 2021).

Recent studies reveal that Mtb differentially manipulates

lysosomal pathways across host cells to determine infection

outcomes. In endothelial cells, Mtb is targeted to acidified

phagolysosomes for degradation through itgb3-mediated activation

of Rab GTPases, which drive endosomal maturation and autophagic

flux (Bussi and Gutierrez, 2019). Conversely, in macrophages and

epithelial cells, Mtb suppresses lysosomal acidification by disrupting

V-ATPase assembly via virulence factors like LpqH, while coopting

the MMGT1-GPR156 lipid droplet axis to sequester antimicrobial

lipids and stabilize non-acidified niches (Kalam et al., 2023). These

dual strategies—exploiting host ITGB3 (Integrin Subunit Beta 3) for

lysosomal clearance in endothelia versus hijacking MMGT1-GPR156
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for lipid-dependent persistence in phagocytes—highlight cell type-

specific vulnerabilities that could be therapeutically targeted to restore

lysosomal bactericidal functions.

While cellular-level research has its own charm, the clinical realm

has unveiled a treasure trove of fascinating phenomena that captivate

our attention. Deng et al. found that miRNA-215-5p expression was

upregulated in patients with TB compared to healthy controls.

Upregulation of miRNA-215-5p inhibited autophagy maturation by

preventing autophagosome–lysosome fusion (Deng et al., 2023).

Thus, regulating miRNA-215-5p may offer a new anti-TB treatment

strategy. Further research on its specific regulation of the autophagy

pathway may elucidate its role in TB immunopathology. Another

study showed that phospholipids and ceramides in the plasma of

patients with active TB exhibited significant abnormalities. Notably,

lipid metabolic reprogramming emerges as a promising theranostic

target in TB. Elevated lysophosphatidic acid species [LPA(16:0/18:0)]

in active TB patients’ plasma show perfect diagnostic accuracy (AUC

= 1.0), while ceramides enhance antibacterial immunity through

autophagy–lysosome coordination, proposing a novel “diagnosis-to-

therapy” biomarker strategy (Chen et al., 2021). Thus, targeting lipid

metabolism emerges as a novel TB treatment strategy, while lipid

biomarkers like LPA serve as dual-purpose biomarkers for diagnosis

and treatment monitoring. Furthermore, Mtb accumulates more
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extracellular polyphosphate than non-pathogenic bacteria,

hindering phagocyte killing by inhibiting phagosome acidification

and lysosomal activity (Rijal et al., 2020). Genetic deletion of

BCG_2432c in the BCG vaccine strain augments autophagy-

mediated antimycobacterial immunity through enhanced

autophagosome–lysosome fusion and lysosomal proteolytic activity,

providing superior protection against Mtb infection compared to

parental BCG in preclinical models (Wu et al., 2022).
3.4 The communication between
lysosomes and other organelles

Lysosomes are crucial intracellular digestive and defensive

organelles, and their normal functions are vital for resisting Mtb

infection. Lysosomes directly degrade invading pathogens via their

hydrolases for preliminary defense and interact with other

organelles to combat pathogen invasion and replication (Repnik

et al., 2013). For instance, lysosomes and mitochondria maintain

cellular homeostasis through reciprocal metabolic exchange:

lysosomal metabolites fuel oxidative phosphorylation, while

mitochondrial ATP powers lysosomal acidification and function

(Deus et al., 2020). Research by Bussi et al. shows that under
FIGURE 3

Mtb-induced lysosomal damage and autophagic defense. (Mtb) disrupts lysosomal integrity to evade immune clearance. In response, host cells
deploy a coordinated defense: 1. Damage sensing: Galectins (Gal3/8/9) detect lysosomal membrane damage and initiate repair. 2. Autophagy
activation: The NUFIP2/G3BP1-Ragulator-RagA/B complex suppresses mTOR, enabling ULK1-mediated autophagosome formation, while AMPK
amplifies this signal via energy stress sensing. 3. Lysosomal regeneration: Nuclear translocation of TFEB drives lysosomal biogenesis to replenish
functional lysosomes. 4. Quality control: Irreparable lysosomes undergo TRIM-mediated ubiquitination for selective lysophagic degradation.
5. Pathogen clearance: Autophagosomes fuse with intact lysosomes, enabling enzymatic degradation of intracellular Mtb. This integrated response
highlights the synergy between lysosomal repair and autophagy in combating TB infection.
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physiological conditions, lysosomes degrade Mtb through

enzymatic activity while exporting metabolites to sustain

mitochondrial oxidative phosphorylation; reciprocally,

mitochondria generate ATP to power lysosomal acidification and

proteolytic functions. However, Mtb disrupts this partnership by

compromising lysosomal integrity, triggering cathepsin-mediated

degradation of mitochondrial electron transport chain components.

The resultant energy crisis forces metabolic reprogramming toward

glycolysis, paradoxically enhancing Mtb survival through nutrient

enrichment. Therapeutic intervention with a-ketoglutarate restores
lysosomal–mitochondrial crosstalk, simultaneously rescuing

mitochondrial metabolism and lysosomal bactericidal capacity—

demonstrating how leveraging this organelle partnership can

overcome pathogen-evolved immunosuppression strategies (Bussi

et al., 2022). Moreover, lysosomes and the endoplasmic reticulum

(ER) coordinate a multilayered defense against Mtb through

dynamic membrane interactions. When Mtb damages lysosomal

membranes via its ESX-1, ER-resident oxysterol-binding protein 8

(OSBP8) is recruited to membrane contact sites, where it mediates

PI4P-cholesterol exchange to restore lysosomal integrity. This lipid

transfer mechanism accomplishes dual protective roles: clearing

pathogenic PI4P microdomains to reactivate V-ATPase-driven

acidification (pH ≤4.5), and providing cholesterol to stabilize

lysosomal membranes against bacterial phospholipase assaults.

Concurrently, ER-derived calcium signaling enhances lysosomal

protease activation, enabling efficient bacterial degradation.

Disruption of this partnership (e.g., OSBP8 deficiency) triggers

PI4P overload (>3-fold increase), elevates lysosomal pH (≥6.2),

and reduces bacterial killing efficacy by 4.7-fold (Anand et al.,

2023). Therapeutic strategies targeting this collaborative axis—such

as small molecules enhancing ER-lysosome lipid flux—could

counteract Mtb’s membrane sabotage tactics, positioning

organelle cooperation as a frontier in host-directed TB therapies.
4 Drug research on tuberculosis

4.1 Drug repurposing

Although drugs like bedaquiline and delamanid are clinically

used for DR-TB, no lysosome-targeted anti-TB drugs have been

developed or widely applied thus far. Notably, tamoxifen, widely

recognized as a breast cancer drug, has recently been reported to

exhibit a direct antibacterial effect on Mtb and to synergize with

first-line TB antibiotics (Chen et al., 2014; Jang et al., 2015). In

Boland et al.’s study of the zebrafish Mycobacterium marinum

infection model, tamoxifen’s anti-mycobacterial activity was

shown to be independent of its established estrogen receptor

pathway function. Instead, it appears to enhance lysosomal

function, facilitating the transport of mycobacteria to lysosomes

for degradation, thereby suggesting a host-directed mechanism

centered on lysosomal modulation (Boland et al., 2023). However,

whether tamoxifen directly targets TFEB or LC3 to enhance
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lysosomal function and promote mycobacterial trafficking to

lysosomes for degradation requires further investigation into the

molecular mechanisms. These findings especially support the

repurposing of tamoxifen for HDT in the treatment of drug-

resistant infections, but studies have shown that long-term

tamoxifen use significantly increases risks of endometrial cancer,

venous thromboembolism (VTE), and non-alcoholic fatty liver

disease (NAFLD) (Davies et al., 2013). Moreover, ibrutinib was

proved to increase the colocalization of the autophagy marker LC3b

with Mtb, promotes the fusion of autophagy–lysosomes, and

significantly inhibits the intracellular growth of Mtb. It revealed

that ibrutinib increases autophagy in Mtb-infected macrophages by

inhibiting the BTK/Akt/mTOR pathway (Hu et al., 2020). However,

ibrutinib use may cause cardiotoxicity (e.g., atrial fibrillation) and

increase the risk of bleeding and opportunistic infections (Byrd

et al., 2013; Yin et al., 2017; Buck et al., 2023). Singh et al. also found

that all-trans retinoic acid (ATRA) can enhance the acidification

and increase the number of lysosomes by activating the MEK/ERK

and p38 MAPK signaling pathways and upregulating the

expressions of lysosome-related genes (such as TFEB) (Singh

et al., 2024). These changes effectively promote the phagocytosis

and elimination of Mtb by cells. Adding ATRA to the standard TB

treatment may help clear bacteria more quickly. Therefore, it is

necessary to conduct further research on its potential for human

use. Additionally, the hepatotoxicity, cutaneous-mucosal toxicity,

and increased intracranial pressure associated with ATRA

administration must be considered (Tallman et al., 2002).

Heemskerk and others found that two antipsychotic drugs,

fluspirilene and pimozide, can inhibit the growth of Mtb. On the

one hand, these two drugs mainly enhance autophagy by inhibiting

calmodulin activity and blocking the Dopamine D2 Receptor

(D2R), which promotes more bacteria to be localized in

autophagolysosomes. On the other hand, they both can increase

the presence of TFEB in the nucleus, thereby enhancing the

lysosomal response. In addition, pimozide can also reduce the

degradation of lysosomal V-ATPase mediated by cytokine-

inducible SH2-containing protein (CISH) induced by Mtb, thus

enhancing the acidification of lysosomes and ultimately effectively

inhibiting the growth of Mtb (Heemskerk et al., 2021). These two

approved antipsychotic drugs are promising candidates for HDT

against drug-resistant Mtb infections (Zumla et al., 2016). While

specific clinical data are currently lacking, neurotoxicity and

cardiotoxicity should be monitored during use (Frangos et al.,

1978; Shi et al., 2015). 4-BOP (4-(benzyloxy)phenol) can be

found in cosmetics or food packaging materials and acts as an

antioxidant to prevent product deterioration due to oxidation. It

can activate p53 expression by inhibiting its interaction with

KDM1A, resulting in the generation of reactive oxygen species

(ROS) and an increase in intracellular calcium levels. These changes

trigger phagosome–lysosome fusion and enhance the killing effect

on intracellular mycobacteria (Naik et al., 2024). However, 4-

(benzyloxy)phenol may have potential carcinogenicity and

cytotoxicity at high concentrations.
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4.2 Phytochemicals

Clinical chemical drugs occupy a pivotal position in

contemporary medicine; however, recent research has

progressively concentrated on plant-derived compounds, termed

phytochemicals, owing to their potential therapeutic advantages,

such as epigallocatechin gallate, abbreviated as EGCG, which is a

polyphenolic compound that widely exists in nature and has

important biological activities. It is especially abundant in green

tea. However, clinical studies have shown that daily intake

exceeding 600 mg may increase the risk of liver damage, and after

oral administration, it is easily and rapidly biotransformed and

degraded in the gastrointestinal tract and liver, resulting in low

bioavailability and ultimately limiting its clinical application

effectiveness (Dekant et al., 2017; Peng et al., 2024). It can

downregulate TACO gene transcription, weakening TACO’s

inhibition of phagosome–lysosome fusion. The activation of

AMPK inhibits mTORC1 activity, thereby relieving its

suppression on ULK1 and initiating the formation of

autophagosome precursors. Moreover, it promotes TFEB nuclear

translocation and induces mitochondrial ROS generation and

activates the MAPK/ERK pathway to upregulate the expression of

V-ATPase subunits and enhance the acidic environment within

lysosomes. Moreover, compared with oral administration,

pulmonary delivery of EGCG could enhance drug concentration

in the lungs, avoid metabolism, and reduce systemic side effects

(Sharma et al., 2020). Another is curcumin, a natural polyphenolic

compound extracted from the rhizomes of Curcuma longa of the

Zingiberaceae family, which has remarkable anti-inflammatory,

antioxidant, anti-tumor, antibacterial, and antiviral effects (Chen

et al., 2018; Eke-Okoro et al., 2018). Owing to its diverse biological

activities, curcumin has garnered extensive attention in the fields of

medicine and healthcare. Similarly, curcumin enhances autophagy

through the AMPK/mTOR/ULK1 pathway, downregulates TACO

expression, activates Rab7, and upregulates LAMP1 to promote

phagosome–lysosome fusion, while further promoting TFEB

(transcription factor EB) nuclear translocation and upregulating

V-ATPase subunit expression driving lysosomal acidification and

thereby clearing intracellular Mtb (Gupta et al., 2023). As a natural

compound, curcumin has relatively low toxicity and may offer good

safety in clinical applications. In the context of the growing problem

of DR-TB, it presents a new option for treatment.
4.3 Nanomedicines

Nanomaterials, as an emerging class of materials, are being

actively explored for their unique properties and promising

applications across various fields, including medicine, where they

hold potential for novel therapeutic and diagnostic approaches.

Gupta et al. demonstrated that ISCurNP significantly reduced the

CFU count in Mtb-infected RAW cells, and the synergistic

combination of ISCurNP with isoniazid markedly enhanced Mtb

killing (Gupta et al., 2023). ISCurNP not only targets macrophages
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and boosts curcumin’s bioavailability but also chelates free iron

within lysosomes to block the iron uptake pathway of Mtb, thereby

inhibiting its growth. This dual mechanism effectively combats Mtb,

offering new therapeutic possibilities for TB, particularly in drug-

resistant cases. Similarly, Se NPs and Ison@Man-Se NPs

preferentially accumulate in macrophages where they activate

AMPK, inhibit mTORC1 to initiate autophagosome formation, and

upregulate LAMP1 to promote phagosome–lysosome fusion, thereby

enhancing the clearance of intracellular Mtb (Pi et al., 2020).

Regarding other aspects, YDGP is a porous microparticle

derived from the yeast cell wall. It serves as a targeted drug

delivery system to macrophages by binding to surface receptors

Dectin-1. This binding initiates NADPH oxidase-dependent ROS

production and regulates the LC3-associated autophagy pathway,

which jointly facilitate phagosomal maturation. Through these

synergistic mechanisms, YDGP not only improves the anti-TB

effect by clearing intracellular pathogens but also offers a strategic

framework for developing immunotherapeutic agents targeting

macrophage-mediated immunity (Fatima et al., 2021). Similarly,

Ahmad et al. demonstrated that rifabutin-loaded b-glucan
microparticles (DYDGP) targeted macrophage Dectin-1 receptors

to activate NOX2-dependent ROS burst and LC3-II-mediated

macroautophagy. This dual mechanism enhanced phagolysosomal

fusion (a 2.7-fold increase in LAMP-1 expression) and

autophagosome maturation (an 83% enhancement in AVO

formation), achieving a 3.1-log reduction in CFU counts of

multidrug-resistant MDR-M.tb strains (Ahmad et al., 2024).

Although YDGP exhibits excellent biocompatibility as a natural

polysaccharide, prolonged administration at high doses may lead to

excessive immune activation, oxidative tissue damage, and cellular

toxicity. Consequently, meticulous dose optimization and

functional modifications such as ligand conjugation are essential

to ensure optimal therapeutic safety and efficacy.
4.4 Probiotic preparations

Alongside the emerging field of nanomaterials, microorganisms are

indispensable to life, with their diverse functions ranging from nutrient

cycling to disease pathogenesis, making them a central focus of

scientific inquiry and biotechnological innovation. Rahim et al.

demonstrated that PMC203 (Lactobacillus rhamnosus) significantly

induces autophagy and lysosomal biosynthesis, thereby reducing Mtb

load in macrophages (Rahim et al., 2024). Although the exact

mechanisms remain to be elucidated, it may involve gene expression

regulation or other pathways. These findings underscore the potential

of probiotic-mediated autophagy as a novel therapeutic approach for

TB. Although in vitro studies have demonstrated its favorable safety

profile, further in vivo animal studies remain needed to confirm its

efficacy and safety (Rahim et al., 2024). These findings are summarized

in (Table 2), which highlights candidate therapeutics – including

repurposed drugs, phytochemicals, nanomedicines, and probiotics –

that target lysosomal-autophagy pathways to eliminate Mtb, along

with their mechanistic insights and clinical translational challenges.
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5 Conclusions and prospects

Researching on the interaction mechanism between TB and

lysosomes, significant progress has been achieved. Numerous

mycobacterial factors affecting lysosomal impact have been

identified. These findings provide crucial insights into TB

pathogenesis. However, current research faces limitations; some

results remain inconsistent or contradictory. Future studies require

more precise and comprehensive methods, such as advanced

imaging and molecular biology techniques, to better monitor the

dynamic interaction between lysosomes and Mtb for obtaining

more reliable data.

The defense mechanisms of lysosomes against Mtb exhibit

multifaceted characteristics. Studies on lysosome–mitochondria

communication have uncovered novel pathways for intracellular

material transport and metabolic regulation, informing new

treatment strategies based on organelle interactions. Future

research should explore both the synergistic effects among these

mechanisms and their variations during different infection stages

and cell types.

In the realm of TB drug research, while certain drugs have

demonstrated some anti-TB potential, they still encounter

numerous formidable challenges in widespread clinical

applications. However, the efficacy, safety, and long-term stability
Frontiers in Cellular and Infection Microbiology 10
of these drugs and formulations require rigorous validation through

large-scale, multi-center clinical trials. Therefore, future drug

development efforts should focus on optimizing drug structures

and formulations, significantly improving drug targeting and

bioavailability, and actively exploring rational and effective

combination therapies to effectively address TB drug resistance

and enhance treatment efficacy.

The strategy of targeting lysosomes for TB treatment holds great

application prospects and is anticipated to overcome many

limitations of traditional TB treatment modalities. By

implementing a series of effective measures, such as enhancing

lysosomal function and adopting advanced lysosome-targeted drug

delivery systems, the treatment outcomes of Mtb and drug-resistant

Mtb can be significantly improved. Nevertheless, this strategy still

faces multiple challenges in clinical application, including the

optimization of drug design, in-depth exploration of the

mechanism of action, the formulation of personalized treatment

regimens, and clinical translation.

With the continuous advancement of science and technology

and deeper interdisciplinary collaboration, it is expected that in the

foreseeable future, the strategy of targeting lysosomes for TB

treatment will achieve significant breakthroughs, bringing new

hope for improving the treatment outcomes and quality of life of

patients with TB.
TABLE 2 Potential drugs for treating Mtb.

Mechanism Drugs Potential Targets Mode of Action

Lysosomal Function Enhancement

TFEB-mediated
biogenesis

Tamoxifen TFEB, LC3 Promotes lysosomal trafficking and bacterial degradation via ER-independent
pathways (Boland et al., 2023).

Lysosomal acidification 4-BOP p53-KDM1A, V-ATPase Induces ROS/calcium signaling to activate lysosomal acidification
(Naik et al., 2024).

Phagosome–Lysosome Fusion

TACO suppression EGCG TACO, AMPK/
mTOR/ULK1

Downregulates TACO; activates AMPK/mTOR/ULK1-TFEB axis
(Sharma et al., 2020).

Rab7/LAMP1 activation Curcumin Rab7, LAMP1, V-ATPase Enhances vesicular trafficking and acidification via TFEB-driven V-ATPase
upregulation (Gupta et al., 2023).

Calmodulin/D2R
blockade

Fluspirilene/Pimozide Calmodulin, D2R, CISH Stabilizes V-ATPase by inhibiting CISH-mediated degradation
(Heemskerk et al., 2021).

Autophagy Regulation

mTOR pathway
inhibition

Ibrutinib BTK/Akt/mTOR, LC3 Enhances LC3-II-dependent autophagosome–lysosome fusion (Hu et al., 2020).

Iron chelation ISCurNP Lysosomal iron transport Depletes iron availability while boosting autophagy flux (Pi et al., 2020).

Dectin-1/LC3 activation YDGP/DYDGP Dectin-1, NOX2, LC3 Triggers NADPH oxidase-dependent ROS and LC3-II-mediated phagosomal
maturation (Fatima et al., 2021).

Probiotic-Induced Autophagy

TFEB pathway
activation

PMC203 TFEB Induces lysosomal biogenesis through undefined autophagy initiation
mechanisms (Rahim et al., 2024).
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