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Background: An increasing amount of evidence suggests a potential link

between alterations in the intestinal microbiota and the onset of various

psychiatric disorders, including depression. Nevertheless, the precise nature of

the link between depression and the intestinal microbiota remains largely

unknown. A significant proportion of previous research has concentrated on

the study of gut bacterial communities, with relatively little attention paid to the

link between gut mycobiome and depression.

Methods: In this research, we analyzed the composition and differences of intestinal

fungal communities between major depressive disorder (MDD) and healthy controls.

Subsequently, we constructed a machine learning model using support vector

machine-recursive feature elimination to search for potential fungal markers for MDD.

Results:Our findings indicated that the composition and beta diversity of intestinal

fungal communities were significantly changed in MDD compared to the healthy

controls. A total of 22 specific fungal community markers were screened out by

machine learning, and the predictive model had promising performance in the

prediction of MDD (area under the curve, AUC = 1.000). Additionally, the intestinal

fungal communities demonstrated satisfactory performance in the validation

cohort, with an AUC of 0.884 (95% CI: 0.7871-0.9476) in the Russian validation

cohort, which consisted of 36 patients with MDD and 36 healthy individuals. The

AUC for the Wuhan validation cohort was 0.838 (95% CI: 0.7403-0.9102), which

included 40 patients with MDD and 42 healthy individuals.

Conclusion: To summarize, our research revealed the characterization of

intestinal fungal communities in MDD and developed a prediction model based

on specific intestinal fungal communities. Although MDD has well-established

diagnostic criteria, the strategy based on the model of gut fungal communities

may offer predictive biomarkers for MDD.
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Introduction

Major depressive disorder (MDD) is a multifactorial mental

disorder affecting over 35 million people globally, characterized by

significant and persistent low mood (Cacheda et al., 2019; Oh et al.,

2019). The prevalence of MDD has surged in recent years,

particularly due to the SARS-CoV-2 pandemic, which led to a

27.6% increase in 2020s (Liu L. et al., 2023).

Advances in metagenomics have enhanced our comprehension

of the intestinal microbiome in human health, particularly

regarding its connection to psychiatric disorders. The gut-brain

axis, which links the gut microbiota to brain function, has been

extensively studied, revealing the role of the microbiome in MDD

pathogenesis (Maes et al., 2008; Maes et al., 2012; Maes et al., 2013).

Animal studies have shown that gut microbiome alterations can

induce depressive-like behaviors, which can be mitigated by

probiotics (Clarke et al., 2013; Guida et al., 2018). In humans,

fecal microbiota transplantation from MDD patients to rodents

induces depressive-like phenotypes, highlighting the role of

microbiome in psychiatric disorders (Cheung et al., 2019).

While most research has focused on bacterial dysbiosis in

MDD, fungi , although less abundant (< 0.1% of gut

microorganisms), play a significant role in gut homeostasis and

the host immune system (Qin et al., 2010; Arumugam et al., 2011;

Underhill and Iliev, 2014). Recent studies have found associations

between intestinal fungi and neurological disorders, such as

elevated levels of Candida albicans in MDD patients (Underhill

and Iliev, 2014; Zhang et al., 2021; Begum et al., 2022; McGuinness

et al., 2024). Fungal dysbiosis may thus serve as a non-invasive

biomarker for MDD. As far as we know, no studies have yet utilized

gut fungal-associated features as non-invasive biomarkers

for depression.

Machine learning, which falls under the category of artificial

intelligence, develops predictive models through data analysis. It

has been successfully applied to diagnose and predict various

diseases, including preterm labor, colorectal cancer, and alcoholic

hepatitis (Wang et al., 2024). In this research, we analyzed the

intestinal fungal communities of MDD and healthy individuals,

constructing a predictive model using machine learning algorithms.

We validated this model across diverse cohorts to assess its potential

as a non-invasive biomarker, accounting for factors like gender, age,

body mass index, medication, and geography (Liu Q. et al., 2023).
Methods

Data collection

To avoid introducing bias stemming from the use of various

data processing methods, we chose to employ sequence read

archives (SRA) instead of processing data outcomes from existing

research platforms. In this study, raw metagenomic sequencing data

from NCBI (SRA accession numbers: PRJNA1083304,

PRJNA762199, and PRJNA943232) were uti l ized. The

PRJNA1083304 training dataset included 20 healthy controls and
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16 individuals with MDD. The validation dataset (PRJNA762199)

comprised a total of 36 healthy controls and 36 individuals with

MDD. The validation dataset (PRJNA943232) included 42 healthy

controls and 40 individuals with MDD. All patients in the study

satisfied the diagnostic criteria for MDD and these patients were

first-onset MDD who had not received treatment. All patients were

free of other psychiatric disorders, any somatic illness, and a history

of substance abuse. All patients had no history of antibiotic,

probiotic, prebiotic or synbiotic administration in the week or

three months prior to enrollment.
Data processing

First, the raw data file is converted from SRA format to FASTQ

format using SRA Toolkit’s fastq-dump. The sequencing reads

quality was evaluated using the FASTQC tool (Specific

parameters: time fastqc seq/*.gz -t 64). Sequencing adapters, low-

quality reads, and human DNA contamination were removed using

the Kneaddata and Trimmomatic software (Specific parameters: –

trimmomatic-options “SLIDINGWINDOW:4:20 MINLEN:50” –

bowtie2-options “–very-sensitive –dovetail”). Subsequently, clean

sequences were annotated using Kraken2 using the fungal database

as the reference. Finally, Bracken was used to estimate the

abundance of the gut fungal community.
Data visualization

The data were normalized using the rarefy_even_depth()

function in the R Phyloseq library, and OTUs with relative

abundance less than 0.01% were removed. Alpha diversity was

performed using the vegan package, with P < 0.05 considered

statistically significant, and alpha diversity was visualized using

the ggplot2 and ggpubr packages. The beta diversity was performed

on the basis of the Bray-Curtis distance, visualized by the Principal

Coordinate Analysis (PCoA). Statistical Analysis of Metagenomic

Profiles (STAMP) was used to analyze the differences in gut fungal

community between MDD and healthy controls. Finally, the

support vector machine-recursive feature elimination (SVM-RFE)

model was used to search for potential microbial markers that can

distinguish between MDD and healthy individuals. The SVM-RFE

was then trained on the training set with 10-fold cross-validation.
Results

Clinical characteristics in MDD and healthy
controls

We included multiple metagenomic sequencing data from

different regions as well as countries with the aim of more

accurately characterizing the intestinal fungal community of

MDD patients. In the training cohort, there were no statistically

significant differences between MDD and HCs in sex and body mass
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index (BMI) (P > 0.05). There was a statistically significant

difference in age between MDD and HCs, but the difference in

mean age between the two groups was only 3.31 years. We used the

Hamilton Rating Scale for Depression (HAMD-17) to assess the

level of depression in patients, and the results were statistically

significant (P < 0.001). In the validation cohort, MDD and HCs

were similar in sex, age, and BMI (P > 0.05) (Table 1).
Comparison of the intestinal fungal
community diversity in MDD versus healthy
controls

After analysis of the metagenomic sequencing data, a total of

1,648,320 reads associated with the fungus were obtained from 36

libraries. The species accumulation curve analysis demonstrated

that the curves reached a plateau, indicating that the sample size was

sufficient to elucidate the characteristics of the fungal

microbiome (Figure 1A).

We used the Shannon-Wiener index and Simpson index to

assess the fungal alpha diversity between MDD and healthy

controls. There was no statistically significant difference in the

Shannon-Wiener index and Simpson index between the two

groups (P > 0.05) (Figures 1B, C). This suggested that the species

richness and uniformity are consistent in MDD and healthy

controls. There may be selection bias due to the small sample size

in the study, and the results still need to be further verified by

large samples.

Subsequently, beta diversity was calculated based on the Bray-

Curtis distance and was measured using principal coordinate

analysis (PCoA). The unweighted UniFrac analyses indicated that

the PCoA could distinguish between the healthy controls and MDD

groups at the class, order, family, genus, and species levels

(Figures 1E-I). However, no significant differences were observed
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between the two groups at the phylum level (Figure 1D). The results

of beta diversity indicated that the gut fungal communities of

individuals with MDD and healthy controls are distinct.
Screening for fungal biomarkers to
differentiate MDD from healthy controls

A total of 22 differential fungal communities were identified

using Statistical Analysis of Metagenomic Profiles (STAMP). Six

fungal communities were found to be enriched in MDD, including

Saccharomycetes, Saccharomycetales, Saccharomycetaceae,

Trichocomaceae, Talaromyces, and Talaromyces marneffei.

Conversely, 16 fungal communities were significantly and

markedly reduced, including Leotiomycetes, Helotiales,

S c l e ro t in i a c ea e , Bo t r y t i s , Ce r co spora , Drechmer i a ,

Thermothelomyces, Ustilaginoidea, Botrytis cinerea, Cercospora

beticola, and others (Figures 2A-F).

The support vector machine-recursive feature elimination

(SVM-RFE) algorithm was used to identify fungal biomarkers.

The SVM-RFE algorithm demonstrated optimal classification

accuracy when the number of features was set to 22. Ultimately,

22 distinctive fungal communities were identified (Figure 3A). In

the heatmap, we can observe the difference in the abundance of the

22 fungal communities between MDD and the healthy groups

(Figure 3B). Meanwhile, the PCoA results showed that

characteristic fungal communities could distinguish healthy

individuals with MDD (Figure 3C).

Finally, we assessed the predictive efficacy of fungal

communities for MDD via receiver operating characteristic

(ROC) curves. In the training cohort, the area under the receiver

operating characteristic curve (AUC) was 1.000 (95% CI: 0.9026-

1.0000). This finding suggests that these characteristic fungal

communities can serve as a valuable reference indicator for MDD
TABLE 1 Clinical characteristics in MDD and HCs.

Group Sample size Sex(Male/Female) Age(years) BMI HAMD-17

Training cohort(Shanxi)

MDD (n = 16) 8/8 20.19±4.230 21.68±3.626 26.31±6.620

HCs (n = 20) 7/13 23.50±3.348 22.17±2.115 1.85±2.720

t/c2 – 2.625 0.507 15.054

P 0.500a 0.013b 0.615b 0.000b

Validation cohort(Russia)

MDD (n = 36) 19/17 30.83±10.769 22.39±4.680 21.33±3.610

HCs (n = 36) 19/17 33.97±10.476 24.63±4.765 1.64±1.944

t/c2 0 1.254 1.866 28.822

P 1.000a 0.214b 0.067b 0.000b

Validation cohort(Wuhan)

MDD (n = 40) 5/35 21.15±2.723 20.02±2.114 –

HCs (n = 42) 8/34 22.00±2.828 20.71±2.253 –

t/c2 0.658 1.385 1.42 –

P 0.417a 0.170b 0.160b –
aP value for chi-square test.
bP values for two-sample t-test.
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(Figure 4A). To further substantiate the predictive efficacy of fungal

communities, external validation was performed using two

independent cohorts from Russia and Wuhan, with the objective

of confirming the reliability of the model. The AUC of the Russian

validation cohort was 0.884 (95% CI: 0.7871-0.9476) with good

predictive ability (Figure 4B). The AUC for the Wuhan validation

cohort was 0.838 (95% CI: 0.7403-0.9102) with good predictive

ability (Figure 4C).
Discussion

In this research, we analyzed the intestinal fungal communities

in MDD and identified 22 differential fungal communities at

various taxonomic levels using STAMP. We developed an SVM-

RFE machine learning model to screen potential fungal markers

related to MDD, offering a novel approach to predict depression

(Hu et al., 2019).

The gut-brain axis, which forms a bidirectional regulatory

system between the brain and the gut through neuroendocrine,
Frontiers in Cellular and Infection Microbiology 04
neuroimmune, and neuroanatomical pathways, has received

increasing attention in neurodevelopmental, psychiatric, and

neurodegenerative disorders (Zhang et al., 2018; Hu et al., 2019).

Gut flora is capable of producing neurotransmitters, short-chain

fatty acids, branched-chain amino acids, and gut hormones, which

can influence brain function and behavior. The ability of gut flora to

regulate tryptophan metabolism and synthesize neurotransmitters

like dopamine, norepinephrine, gamma-aminobutyric acid, and

acetylcholine underscores its role in mental health (Wu et al.,

2020; Prochazkova et al., 2021). Chemicals released from gut

microorganisms can directly alter the electrical activity of the

vagus nerve and vagus-innervated brain regions, potentially

contributing to depression (Plaza-Dıáz et al., 2019; Namgung

et al., 2022; Rea et al., 2022).

Although the association between depression and gut bacteria is

well-documented, the role of fungi remains to be further explored

(Song et al., 2019; Tian et al., 2022). The fungal microbiome, though

a minor component of the intestinal microbiota (Qin et al., 2010;

Arumugam et al., 2011), plays a pivotal role in host health and

microbe-microbe interactions (Nash et al., 2017). Clinical studies
FIGURE 1

(A) Species accumulation curve of the intestinal fungal communities. (B, C) Alpha diversity reflected the richness and evenness between MDD and
healthy controls. Statistical analysis was performed using the Kruskal-Wallis test and Wilcoxon test. Ns represents not statistically significant. Yellow
represents healthy controls (n=20) and blue represents the MDD (n=16). (D-I) Beta-diversity analysis of the intestinal fungal communities between
MDD and healthy controls by using principal coordinate analysis (PCoA) based on Bray-Curtis. The significance of clustering was determined using
analysis of similarities (ANOSIM). Red represents healthy controls (n=20) and blue represents the MDD (n=16). P < 0.05 was considered
statistically significant.
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FIGURE 3

(A) SVM-REF algorithm screening for characteristic fungal communities. (B) Heat map of the 22 characteristic fungal communities. (C) PCoA of the
22 characteristic fungal communities.
FIGURE 2

(A-F) The composition and differences of the intestinal fungal communities between MDD and healthy controls using STAMP (two-sided Welch
t-tests).
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have revealed significant changes in gut fungal communities in

individuals with neuropsychiatric disorders, including depression

(Hao et al., 2023).

The study of the gut mycobiome has been limited due to

technical and analytical challenges (Jiang et al., 2020). However,

advancements in bioinformatics have facilitated the identification of

fungi, expanding our understanding of their role in human health

and disease (Taylor and Houston, 2011; Jha et al., 2021). Our

metagenomic analysis of 16 MDD patients and 20 healthy

individuals revealed significant differences in gut fungal

community composition, despite no significant difference in alpha

diversity. The result may be influenced by a number of factors,

including differences in strain abundance, disease assessment, and

flora dynamics (Richard et al., 2015; Wang et al., 2015; Vižlin et al.,

2024). In a systematic review of clinical trials and observational

studies, researchers compiled data from 35 studies, and about 2/3 of

the studies showed no significant difference in alpha diversity

between MDD and HCs. Recent studies of the human gut

microbiome suggest that alpha diversity metrics have limited

utility in distinguishing between healthy and diseased

populations. The results of several studies have shown significant

differences in beta diversity between MDD and HCs. These studies

are consistent with the results of our study (Larsen and Claassen,

2018; Alli et al., 2022).

Given the dynamic nature of the gut fungal community, a single

fungal taxon cannot serve as a reliable biomarker for disease

diagnosis (Strati et al., 2017). Therefore, we trained machine

learning (ML) algorithms based on differential gut fungal

communities to improve disease prediction (Wang et al., 2024).

Recent similar studies have effectively utilized SVM-RFE to identify

COMMD9, CSF3R, and NUB1 as potential biomarker genes for

predicting sepsis, uncovering new mechanisms in disease

pathogenesis that may offer opportunities for therapeutic

intervention (Wang et al., 2023). Similarly, SVM-RFE was

employed to identify 12 Helicobacter pylori (HP) hub genes

closely associated with gastric cancer, which may aid in the
Frontiers in Cellular and Infection Microbiology 06
molecular diagnosis and personalized treatment of gastric cancer

(Luo et al., 2023). We constructed an SVM-RFE model, which

demonstrated excellent predictive performance in discriminating

between MDD patients and healthy individuals. A total of 22 fungal

biomarkers were identified, of which 6 were significantly increased

in MDD. These 6 fungal species play important roles in immune

regulatory and anti-inflammatory effects (Table 2) (Nagpal et al.,

2020; Bukavina et al., 2022; Lei et al., 2022; Shuai et al., 2022; Zhang

H. et al., 2022; Zhang et al., 2023). The metabolic activity of fungal

communities may be associated with the development of major

depressive disorder. Further studies of gut fungal communities are

needed to determine how fungi affect host health.
FIGURE 4

(A) ROC curve (AUC) in training cohort from Shanxi (HCs n=20; MDD n=16). (B) ROC curve in the validation cohort from Russia (HCs n=36; MDD
n=36). (C) ROC curve in validation cohort from Wuhan (HCs n=42; MDD n=40).
TABLE 2 Features or functions of characteristic fungal communities
in MDD.

Species Features or Functions

Saccharomycetes A major component of the human gut microbiota and
exhibit immune regulatory and anti-inflammatory effects
by inducing interleukin-10 production.

Saccharomycetales Saccharomycetales were significantly positively correlated
with short-chain fatty acids (SCFA) production.

Saccharomycetaceae Fungi such as Saccharomycetaceae play an important role
in autoimmune responses through interactions
with bacteria.

Trichocomaceae The abundance of Trichocomaceae is significantly
increased in the gut of patients with psychiatric disorders
such as mild cognitive impairment.

Talaromyces Studies have shown that Talaromyces produce kinds of
secondary metabolites, some of which have biological
activities such as anti-inflammatory, bacteriostatic, and
antitumor activities.

Talaromyces
marneffei

Talaromyces marneffei is the only pathogenic fungus in
its genus that inhibits the host pro-inflammatory
response through Mp1p binding to arachidonic acid,
thereby evading the host immune response.
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Cross-regional validation, considering dietary and geographic

factors, further demonstrated the model’s validity and applicability.

Consistent with gut bacteria, gut fungi exhibit dynamic changes

throughout an individual’s life, influenced significantly by

geography, diet, and host factors such as gender, age, and drug

use (Yan et al., 2024). A large-scale population-based survey across

China, encompassing six ethnic groups, underscored the substantial

impact of geography and ethnicity on gut fungal composition

(Zhang F. et al., 2022). In our study, validation cohorts from

diverse regions demonstrated robust results, highlighting the

potential of gut fungi as microbial markers for depression and the

broad applicability of our methodology across different

geographic areas.
Conclusion

In this research, we elucidated the characterization of the gut

fungal communities of patients with MDD, used the SVM-RFE

algorithmic model to screen for fungal markers associated with

MDD, and validated the prediction effect in a cohort from different

regions. Notably, despite the possibility of misdiagnosis, our study

demonstrates the potential of using gut fungal communities to train

supervised SVM-RFE models for depression diagnosis. We hope

that this study will better assist clinicians in diagnosing depression

for the further benefit of patients. The limitation of this study is the

lack of data on metabolites from the mycobiome. Due to the limited

sample size, further research is necessary to ascertain the

generalizability of the study’s findings.
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