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Bacterial infections remain a significant cause of morbidity and mortality globally.

Compounding the issue is the rise of antimicrobial-resistant strains, which limit

treatment options. Macrophages play key roles in the immunity and

pathogenicity of intracellular infections, such as those caused by

Mycobacterium tuberculosis and Salmonella. Recent advancements have

enabled us to better understand how the host orchestrates immune responses

to fight these infections and, specifically how the infected cell rewires its

metabolism to face this challenge. The engagement of the host cell in specific

metabolic pathways impacts cell function and behaviour, and ultimately,

infection outcomes. In this perspective, we summarise key findings regarding

the metabolic adaptations in macrophages induced by Mycobacterium

tuberculosis and Salmonella infections. We also explore how cross-pathogen

studies can deepen our insights into infection biology to improve

therapeutic design.
KEYWORDS
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Introduction

Bacterial infections are significant contributors to deaths worldwide. The most recent

report from the World Health Organization highlights that in 2019, approximately 13.7

million deaths were due to 33 bacterial pathogens, collectively making bacterial infections

the second leading cause of death globally (Ikuta et al., 2022). Amongst these, infections

caused by intracellular bacteria are major contributors, including Mycobacterium

tuberculosis (M.tb), Chlamydia trachomatis, Listeria monocytogenes and Salmonella

enterica (World Health Organization, 2024; Kirk et al., 2015). In this review, we focus

on M.tb and Salmonella enterica, since together they are responsible for almost 20 million

cases yearly, with nearly 1.5 million deaths (World Health Organization, 2023). Moreover,
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both microorganisms share similarities in the immune response

they elicit. For example, the induction of IFN-g+ CD4 T cells and the

formation of granuloma-like structures are hallmark features of

infection. An inability to induce these signature responses leads to

uncontrolled pathogen growth in both infections (Perez-Toledo

et al., 2020; Ramirez-Alejo and Santos-Argumedo, 2014), which

highlights the importance of macrophages in the containment

of infection.

Elie Metchnikoff discovered macrophages and their phagocytic

capacity at the end of the 19th century (Metchnikoff, 1905). Since

then, cumulative research has evidenced the vast macrophage

heterogeneity. Different macrophage subsets in distinct body

locations and at a specific moment will exist within the spectrum

of fighters against infection and guardians of homeostasis. Research

on how intracellular pathogens infect and survive within

macrophages can reveal novel insights into the fundamental

biology of such host cells. Lately, the increased interest in

understanding the contribution of metabolism in macrophage

physiology has also started to shed light on the role of

immunometabolism in infection control. Specifically, the process

of autophagy enables cell survival and proper cellular function,

bridging quality control, cellular metabolism and innate immune

defences. Studies in different pathological contexts have started to

elucidate how autophagy and glycolysis may modulate each other.

In ageing, autophagy can reset glycolysis, boosting the regenerative

potential of old hematopoietic stem cells (Dellorusso et al., 2024).

Our understanding of the crosstalk between autophagy and

metabolic rewiring in infection settings is limited. Studies on viral

immunity have reported autophagy positively (Lee et al., 2020) and

negatively (Oh et al., 2021) regulating glycolysis. In this paper, we

will discuss current advances in metabolism in the context of

Salmonella and M.tb infection to try and complement our

understanding of infection biology by comparing two

microorganisms that seem so different and are yet so similar in

the responses they elicit.
M.tb rewires carbohydrate and lipid
metabolism in infected macrophages

The lungs of M.tb-infected hosts present high glycolytic activity,

evidenced by transcriptomic, proteomic and metabolomic studies

quantifying expression of glycolytic enzymes and lactate, the end-

product of glycolysis (reviewed in Llibre, Grudzinska et al. (Llibre

et al., 2021). Studies using avirulent (HR37Ra, Bacille Calmette-

Guerin) or g-irradiated mycobacteria (e.g. iH37Rv) suggested a

shift towards predominantly glycolytic macrophages upon infection

(MOI 1-5) (Gleeson et al., 2016; Braverman et al., 2016). This was

assessed by bioenergetic profiling (i.e. extracellular flux analysis via

the Seahorse platform), and by performing lactate measurements in

supernatants as a surrogate of glycolytic activity. More recent studies

have shed light on the intricacies and nuances of this macrophage

metabolic rewiring (Brown et al., 2025). Glycolysis is critical for

effective macrophage TB immunity, and virulent M.tb has evolved
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specific prevention strategies (Cumming et al., 2018; Hackett et al.,

2020; Olson et al., 2021). Mechanistically, glycolysis might be

essential to produce specific antimycobacterial molecules such as

IL1b or nitric oxide (NO) (Tannahill et al., 2013; Gleeson et al., 2016;

Huang et al., 2018; Hackett et al., 2020) or to trigger and/or regulate

specific immune defence pathways such as autophagy via lactate (O

Maoldomhnaigh et al., 2021; Sun et al., 2023). This glycolytic

engagement by the infected macrophage helps the host clear the

infection, and the strategies employed by M.tb to circumvent this

metabolic shift might be key for mycobacterial persistence.

Lipid metabolism is profoundly reprogrammed upon M.tb

infection, inhibiting catabolic pathways and activating de novo

lipid synthesis and uptake [reviewed in Laval et al. (Laval et al.,

2021)]. This causes the development of a foamy, lipid-rich

macrophage phenotype, which is a hallmark of TB granulomas

(D’Avila et al., 2006; Peyron et al., 2008). There is strong evidence

supporting the use of host lipids (cholesterol and fatty acids) by

M.tb to eat (Pandey and Sassetti, 2008), survive (Daniel et al., 2011)

and specifically impair key host immune defence mechanisms (e.g.

autophagy, phagosome maturation) (Singh et al., 2012; Chandra

and Kumar, 2016) (Figure 1). Therefore, on one hand, the

mycobacterial-induced host lipid rewiring enables pathogen

survival and immune evasion. On the other, lipid droplets and

lipid mediators (e.g. prostaglandin E2, Leukotriene B4) are key in

generating effective anti-mycobacterial responses within the

macrophage (Mayer-Barber et al., 2014; Mayer-Barber and Sher,

2015; Bosch et al., 2020; Sorgi et al., 2020). Furthermore,

cholesterol-derived compounds such as oxysterols and vitamin D

can restrict mycobacterial growth (Bah et al., 2017; Varaksa et al.,

2021; Foo et al., 2022). Thus, the host lipid metabolic adaptation in

response to infection is also essential for effective protective

responses. The specific factors that tilt the balance in favour of

the host or the pathogen are still not fully understood. Other

relevant metabolic adaptations (e.g. amino acids, TCA cycle

intermediates, ions) are beyond the scope of this Perspective and

have been excellently reviewed elsewhere (Neyrolles et al., 2015;

Hackett and Sheedy, 2020).

The new macrophage metabolic landscape triggered by

infection results in changes regarding the accumulation and

availability of specific metabolites. These are the primary sources

of post-translational modifications and epigenetic regulation, which

regulate essential cellular processes such as autophagy (Sun et al.,

2023; Huang et al., 2024; Shu et al., 2023; Nieto-Torres et al., 2023;

Park et al., 2022). Thus, the predominance of specific metabolic

pathways will dictate gene expression profiles that may impact cell

function and behaviour and, ultimately, infection outcome.
Salmonella rewires carbohydrate and
lipid metabolism in infected
macrophages

Salmonella enterica are important pathogens for human and

animal health. Notably, serovars Typhimurium (STm) and
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Enteritidis are linked to non-typhoidal salmonellosis (NTS), which

occasionally develops into invasive disease (iNTS), especially in

young children and immunocompromised individuals, with

mortality rates reaching up to 25% (Feasey et al., 2012). As with

M. tb, the interaction between STm and macrophages has a
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profound impact on the successful establishment of infection and

the outcome for the host.

Recent research has highlighted how STm affects metabolic

reprogramming and the subsequent impacts on infection outcomes.

In vitro, through the Salmonella Pathogenicity Island-I (SPI-I)
FIGURE 1

M. tuberculosis (M.tb) and S. Typhimurium (STm) induce metabolic changes in infected macrophages that impact infection outcomes. (A) In
macrophages, infection with M.tb decreases the reliance on oxidative phosphorylation (OXPHOS) while enhancing glycolysis. This metabolic shift
leads to increased levels of metabolites, such as lactate. Additionally, M.tb infection causes a reprogramming of lipid metabolism in the host. This
creates a dichotomy: on one hand, the reprogramming results in the production of lipid droplets, which M.tb can exploit to survive within the
infected macrophage. On the other hand, it can lead to the production of prostaglandin E2 (PGE2) or the oxysterol 7-a,25-dihydroxycholesterol (7-
a,25-OHC), both of which can promote the activation of autophagy. Moreover, agonists of the PPARa receptor, such as GW7647 and Wy14643, can
also stimulate autophagy. Although not directly shown in the context of M.tb infection, lactate has the potential to activate autophagy, which is an
important process for bacterial control. (B) In the infected macrophage, STm is located within the Salmonella-containing vacuole (SCV). By
expressing type III secretion system (T3SS) effectors, such as SopE2, STm alters the macrophage’s metabolism, shifting it towards glycolysis, which
leads to an accumulation of succinate. STm senses the succinate and respond by promoting the expression of additional T3SS effectors to enhance
its replication. Additionally, through TLR2 signalling and the action of another T3SS effector, InvG, STm can reprogram the host’s lipid metabolism to
exploit it and further boosts its replication. Ultimately, compounds that promote autophagy, such as gefitinib, Vitamin D, and fangchinoline, can
promote bacterial killing through the induction of LC3-associated Phagocytosis (LAP). Created in BioRender. Perez toledo, M. (2025) https://
BioRender.com/y2oepra.
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effector SopE2, STm represses serine synthesis in peritoneal

macrophages. The result is an increase in glycolysis, which is

accompanied by a significant accumulation of glycolytic products,

such as pyruvate, lactate, and phosphoglycerates, as well as TCA

intermediates, such as fumarate, a-ketoglutarate, and succinate

(Jiang et al., 2021). The bacteria can then uptake some of these

intermediates and use them as carbon sources, which results in

increased intracellular replication. Moreover, this effect has also

been shown in vivo, where mice infected with STm and

supplemented with lactate showed increased bacterial burdens in

the spleen and liver 3 days post-infection (Wang et al., 2023). The

authors attributed this effect to a switch of macrophages towards an

M2-like anti-inflammatory phenotype, which has been associated

with more permissiveness to STm infection (Pham et al., 2020;

Panagi et al., 2020). Recent work by Rosenberg et al. reported that

succinate, which accumulates due to the macrophage glycolytic shift

and the concomitant truncation of the TCA cycle, is sensed by STm

and induces the expression of type 3 secretion system (T3SS)

effectors, such as sseL, steC, ssrB, and pipB2, resulting in increased

bacterial burdens (Rosenberg et al., 2021). However, not everything

is bad news for the host. Khatib-Massalha et al. showed that

infection with STm increases lactate levels in the bone marrow.

This increase leads to increased permeability of the bone marrow,

thus increasing neutrophil mobilisation through lactate signalling

via the GPR81 receptor (Khatib-Massalha et al., 2020).

Similarly to what has been observed with M.tb infection in

macrophages, STm can also interact with the mammalian lipid

metabolism to induce the production of lipid droplets (LDs).

Experiments with monocyte-derived human macrophages

supplemented with oleic acid showed that STm infection induced

the production of LDs shortly after infection. However, this did not

result in better control of bacterial infection (Bosch et al., 2020). A

more recent study elegantly dissected the mechanism of LDs

formation following STm infection, which required the T3SS

effector invG and TLR2 signalling (Kiarely Souza et al., 2022).

Moreover, this work also showed that the bacteria may benefit

from forming LDs, as pharmacologically inhibiting key enzymes

involved in forming LDs reduced bacterial burdens (Figure 1)

(Kiarely Souza et al., 2022).

So far, most of the evidence shown here suggests a deleterious

role for macrophages engaging in glycolysis in the outcome of STm

infection, contrasting with the existing evidence in M.tb infection.

However, this could be the result of an oversimplification of the

models used, e.g. Most studies shown here use human or mouse-

derived bone marrow macrophages. As not all macrophages are the

same (Huang et al., 2018; Gordon and Taylor, 2005; Heieis et al.,

2023; Russell et al., 2025), future studies could benefit from

considering how the intrinsic differences in macrophage

populations can affect their response to metabolic changes

induced by pathogens. However, both STm and M.tb appear to

exploit the changes in lipid metabolism within infected

macrophages to their advantage. Further research on this shared

pathway will be crucial for identifying potential targets for

infection control.
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Autophagy in the context of
intracellular pathogens such as STm
and M.tb

In the previous sections, we have summarised some key

immune-metabolic events in host macrophages after Salmonella

and M.tb infection, including changes in glycolysis and lipid

metabolism. Immune metabolism comprises the metabolic

adaptations of the host cell to face challenges such as infection.

Additionally, it covers how cellular engagement on particular

metabolic pathways results in the accumulation of specific

metabolites (e.g. lactate, succinate, prostaglandins, oxysterols),

which can directly act as signalling molecules, fuel, and/or

substrates for post-translational and epigenetic modifications.

Furthermore, metabolism and immunity converge in essential

biological processes to regulate and tackle cellular stress. The

process of autophagy perfectly illustrates this. Also known as self-

eating, this cellular housekeeping strategy clears the cytoplasm from

waste and defective macromolecules and organelles, acting as a

quality control for the cell and enabling survival. Autophagy is not

only key for metabolic homeostasis but also constitutes an innate

immune defence mechanism of paramount relevance for

controlling intracellular pathogens, directing them to

autophagolysosomal degradation.

The role of autophagy as a key mechanism of M.tb defence

within macrophages was first described using a combination of

RAW cells (Herb et al., 2024) and murine and human monocyte-

derived macrophages (Gutierrez et al., 2004). Since then, different

studies have assessed the interplay and function of canonical and

non-canonical autophagy in the immune responses of macrophages

to M.tb infection. Evidence for both protective (Golovkine et al.,

2023) and non-protective (Kimmey et al., 2015) roles of autophagy

in the outcome of M.tb infection has been described. Similarly,

autophagy has been reported to be an essential mechanism for

intracellular control of STm. STm is targeted by autophagy when

bacteria escape the Salmonella-containing vacuole (SCV) into the

cytosol. This triggers the ubiquitination of cytosolic bacteria and the

recruitment of LC3 and other autophagy proteins, restricting

intracellular bacterial growth (Birmingham et al., 2006). However,

STm can also exploit the autophagy machinery to promote SCV

maturation, thus inducing the activation of T3SS effectors that

supports bacterial replication (Figure 1) (Kreibich et al., 2015).

The macrophage metabolic rewiring that occurs uponM.tb and

Stm infection has the potential to modulate autophagy. For

instance, the formation and maturation of autophagosomes, as

well as endosome-lysosomal degradation need lactylation of

specific core autophagy proteins (e.g. PIK3C3/VPS34, TFEB, a

master regulator of autophagy) (Sun et al., 2023; Huang et al.,

2024). Although not specifically assessed in the context of infection,

lactate has been shown to promote autophagy in different contexts,

including retinal degradation (via upregulation of the LCII/II ratio),

high intensity interval training (via ERK1/2/mTOR/p70S6K

activation, and neurodegeneration (through cytosol acidification)
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(Zou et al., 2023; Pirani et al., 2024; Fedotova et al., 2022). Distinct

lipid mediators also have the potential to modulate autophagy. For

example, LTB4 suppressed autophagy in mouse lung macrophages

(Zhang et al., 2019a), and PGE2 induced autophagy in PBMCs from

healthy donors and TB patients stimulated with M.tb cell lysate

(Pellegrini et al., 2021). The oxysterol 7a,25-dihydroxycholesterol
(7a,25-OHC) reduced mycobacterial growth through increased

autophagy via GPR183 signalling in human monocytes (Bartlett

et al., 2020). These examples illustrate how infection triggers host

cell’s metabolic adaptations, resulting in changes in the intracellular

pool of available metabolites which can regulate key biological/

immunological processes such as autophagy.

Researchers from both the TB and Salmonella fields have

exploited the zebrafish model to elucidate both mechanisms of

bacterial virulence and host protective responses. The autophagy

receptors p62 and Optineurin were shown to be essential for

protection against mycobacterial infection and to act

independently (Zhang et al., 2019b; Xie and Meijer, 2023).

However, the same p62 and Optineurin receptors were shown to

be interdependent when promoting autophagy in the context of

Salmonella infection. Lc3-associated phagocytosis (LAP) was

identified as the primary autophagy-related process behind

macrophage control for STm infection (Masud et al., 2019a,

2019b). Although the specific role of LAP in the context of

mycobacterial infection has not been tested explicitly in the

zebrafish model, LAP could not clear M.tb infection in a mouse

model of TB (Koster et al., 2017). We can learn much about the

biological nuances of crucial immune defence mechanisms (i.e.,

autophagy) by using the same model but different pathogens or

distinct models with the same pathogen. Although further research

is needed, distinct roles for specific components of the autophagy

machinery might be pathogen-specific, knowledge that could be

harnessed therapeutically.
Discussion

The threatening increase in antimicrobial resistance has

prompted the search for alternative therapeutic strategies, including

host-directed therapies (HDTs). In contrast to conventional

antibiotic drugs, which target the pathogen, HDTs modulate

specific host factors to pursue various aims. For instance, we might

want to dampen inflammation to prevent immune-driven tissue

pathology, enhance the bactericidal capacity of the infected

macrophage, or disrupt the granuloma structure to expose the

bacteria to conventional antibiotic treatments (Young et al., 2020).

HDTs have dramatically changed the treatment and outcomes of

specific cancers (i.e. checkpoint inhibitors such as anti-PD1 or anti-

CTLA4 antibodies) (Robert, 2020); unfortunately, their use in

infectious diseases has limitedly reached clinical practice.

The first step in designing and using novel HDTs is to have an

accurate mechanistic understanding of the host pathway that needs

targeting. For instance, anti-mycobacterial autophagy can be
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promoted via modulation of different host factors, including

nuclear receptors such as peroxisome proliferator-activated

receptor (PPAR) and estrogen-related receptor (ERR) (Kim et al.,

2019), vitamin D (Yuk et al., 2009; Campbell and Spector, 2012) and

AMPK (Yang et al., 2014; Singhal et al., 2014; Parihar et al., 2014;

Guerra-De-Blas et al., 2019). Specifically, the compounds GW7647

and Wy14643, which are PPARa activators, have been shown to

successfully reduce bacterial burdens in M. tb-challenged bone

marrow derived macrophages, presumably through the activation

of autophagy and increased phagosome maturation (Kim et al.,

2017). Although these specific PPAR agonists have not been

evaluated in the context of STm infection, there is evidence that

suggests that PPAR inhibition instead of activation results in better

bacterial control and reduced immunopathology (Taddeo et al.,

2024). However, the use of an inverse agonist of ERRg (GSK5182)
resulted in lower intracellular burdens in STm infected

macrophages, although this was the result of iron metabolism

modulation, which is out of the scope of our paper (Kim et al.,

2014). Vitamin D induced intestinal epithelial autophagy during

Salmonella infection (Huang, 2016; Huang and Huang, 2021). The

Epidermal growth factor receptor (EGFR) inhibitor Gefitinib

reduced Salmonella survival in macrophages and mice via host

metabolic reprogramming, including autophagy (Sadhu et al.,

2021). Also, fangchinoline, a phytochemical with anti-proliferative

properties, promoted Salmonella killing in vitro and in vivo through

autophagy (He et al., 2025). While most studies were performed in

vitro using a combination of monocytic cell lines and primary

mouse or human macrophages, some of them used in vivo models,

including mice and zebrafish (reviewed in Adikesavalu et al. and

Wu et al. (Wu et al., 2020; Adikesavalu et al., 2021). Furthermore,

molecules such as vitamin D and AMPK modulators, such as

metformin, have been and continue to be tested in clinical trials.

Some (not all) studies show promising results in using these

compounds in combination with conventional antibiotic

treatment to improve TB outcomes (Salahuddin et al., 2013;

Padmapriydarsini et al., 2022; Sutter et al., 2022; Biswal, 2021).

Still, more research is needed to find effective HDTs to aid the fight

against TB.

The terminology we use in science significantly shapes our

understanding of the entities we study. Terms like T cells, B cells,

and macrophages can limit our perspective, especially when new

cell types are discovered that do not fit into existing classifications.

This issue also affects how we approach the study of diseases. In

cancer, for instance, concentrating on tumour types based on their

tissue location may be less beneficial than focusing on the

underlying mechanisms that cause the cancer, such as mutations

in the p53 or BRCA genes. Consequently, therapies aimed at

addressing the pathological mechanisms driven by mutations in

p53 could potentially be applied to various cancer types associated

with this same mutation. A comprehensive, mechanistic

understanding of the metabolic rewiring undergone by host

macrophages upon infection, and how these shape protective

responses, is a first key step for the identification of novel host
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therapeutic targets. Furthermore, the way we use language

regarding pathogens and the host cellular pathways they elicit,

could also open new avenues for novel treatments. For instance,

instead of referring to infections caused by Mycobacteria,

Salmonella, Burkholderia, or Leishmania, we could categorise

them, as pathogens that promote lipid droplet formation to their

advantage, (e.g. STm and M. tb), or as pathogens that are LAP-

susceptible or LAP-resistant. This shift in how we use language,

driven by a deeper understanding of the fundamental biological

changes triggered by infection, could revolutionize the development

or repurposing of host-directed therapies for infections that

continue to claim millions of lives worldwide each year.
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