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Immune pre-stimulation by
injected yeast beta-glucan as a
strategy to prevent calf diarrhea
and bovine respiratory disease
during the first 74 days of age
Fang Yan1, Zhihong Zhang2, Xiaorong Zhan1, Wenqian Yang1,
Junhu Yao1 and Xiurong Xu1*

1College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China,
2Animal Husbandry Division, Junlebao Dairy Co. Ltd., Shijiazhuang, Hebei, China
Introduction: The complexity of intestinal pathogens poses a great challenge to

the prevention of infectious diarrhea in calves. Studies have shown that immune

stimulants such as yeast beta-glucan can induce the innate immune system to

acquire memory and improve their non-specific defense functions. This trial was

conducted to evaluate the prophylactic effect of intraperitoneal injection of yeast

b-glucan after birth on diarrhea in Holstein calves during the first 74 days of age.

Methods: A total of 52 healthy newbornHolstein calves (bodyweight 39.3 ± 0.82 kg)

were enrolled and randomly assigned into two groups (n = 26 in per group): 1)

placebo group (CON), and 2) intraperitoneal injection with yeast b-glucan solution

(0.1 g/mL, 50 mg/kg body weight) at 3 and 6 days of age (IP). The CON group

received an equal volume of sterile saline at the same time. Body weight was

measuredmonthly, and health checks and fecal consistencywere evaluated daily for

every calf. Jugular blood and rectal feces were collected at 7 and 30 days of age.

Results: IP induced inflammation in calves, which was manifested as obvious

increased levels of serum cytokines (IL-1b, IL-6, and TNF-a), immunoglobulin (IgG

and IgM), and oxidative stress after 24 h, and the antimicrobial substance (defensin

and secreted immunoglobulin A) in feces also significantly increased, but stimulation

didn’t lead to a higher level of serumdiamine oxidase (DAO). The pre-stimulation had

no positive effect on growth performance or feed efficiency, but reduced the

frequencies of diarrhea and bovine respiratory disease, especially during 31-60 d.

Furthermore, the pre-stimulation increased the levels of serum IL-6, fecal defensin

and secreted immunoglobulin A, while decreased the levels of serum DAO and

malonaldehyde at 30 d. In addition, compared with the ones in the CON group,

calves in the IP group showed a better rectal bacterial structure at 30 d, with a more

enrichment of beneficial bacteria such as Bifidobacterium.
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Discussion: Our findings suggested that early stimulation with yeast b-glucan
could be a promising strategy for reducing the frequencies of both diarrhea and

BRD in calves.
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Introduction

The prevalence of diarrhea and bovine respiratory disease

(BRD) was 18.9% and 11.3% in the United States of America,

29% and 39% in Canada, and 17.9% and 6.0% in Australia,

respectively (Windeyer et al., 2014; Urie et al., 2018; Abuelo et al.,

2019). Those two diseases accounted for 56.0% and 33.4% of the

incidence of calves, respectively, and were the main diseases of

calves. The number of calf deaths caused by diarrhea or BRD

accounts for 32.0% and 14.1% of the total number of deaths,

respectively (Urie et al., 2018).

Pathogen infections are the primary reason behind calf

diarrhea, involving a diverse range of pathogens such as viruses,

pathogenic bacteria, and parasites (Kolenda et al., 2015), including

some newly discovered pathogens (Netea et al., 2016). This

complexity makes it challenging to comprehensively vaccinate

against infective diarrhea in calves. In recent years, the theory of

trained immunity has been deeply studied, which brings new

strategies to the prevention of unpredictable or complex

infections in animals, especially young ones. Trained immunity

refers to the development of immune memory by innate immune

cells in response to infection by a pathogen or stimulation of its

antigenic components to provide enhanced protection against later

exposure to homologous or heterologous infections (Netea et al.,

2020). This process is distinct from adaptive immunity, which

involves the production of specific antibodies and memory T

cells. The inducers of trained immunity include some pathogens

(Quintin et al., 2012; Schrum et al., 2018) and their attenuated

strains (Ifrim et al., 2014; Saeed et al., 2014), non-live ones (Brandi

et al., 2022; Juste et al., 2022), or cell wall components (Briard et al.,

2021; Brandi et al., 2022; Vuscan et al., 2024). In addition, yeast b-
glucan, a cell wall component of fungi with b-1,3/1, 6- glycosidic
linkages (Han et al., 2020), has also been shown to have the function

of inducing immune memory in innate immune cells. Yeast b-
glucan or beta-glucans from other organisms have been extensively

studied as a prebiotic when added to animal feed daily (Ding et al.,

2019; Pornanek and Phoemchalard, 2021; Goh et al., 2023). Reis

et al (Reis et al., 2022) found that adding 2 g/d algal beta-glucan to

milk replacer increased the weight of calves at 8 weeks and reduced

the fecal scores during the first 28 days of age in Holstein dairy

calves. As trained immunity inducers, studies have confirmed that

two-time injections of yeast b-glucan induced macrophages in the

blood of goats to acquire immune memory (Angulo et al., 2020). In
02
newborn calves, in vivo b-glucan oral administration induced a

trained phenotype in innate immune cells, leading to immune

metabolic changes, upon ex vivo challenge with Escherichia coli

(Angulo and Angulo, 2023). However, the effect of yeast b-glucan-
induced trained immunity on the prevention of diarrhea and bovine

respiratory disease (BRD) in dairy calves is unclear.

Therefore, this study aimed to evaluate the effects of

intraperitoneal injection of yeast beta-glucan at birth on diarrhea

and BRD frequency in Holstein dairy calves during lactation and

early weaning. In addition, the differences of three inflammatory

factors in serum and defense proteins secreted by intestinal

epithelial cells in feces between the two groups after immune

stimulation and combined stress were detected, to explore

whether the effect of pre-stimulation on the intestinal health of

calves involved the mechanism of trained immunity. Our study may

provide a new strategy for improving calf health.
Materials and methods

Animal feeding and experimental design

A total of 52 healthy Holstein heifer calves (3 d of age; BW =

39.3 ± 0.82 kg) were weighed, and housed in a naturally ventilated

barn with individual shelter (3.0 m × 1.2 m × 1.8 m; length × width

× height). At enrollment, the calf ID, date, and time of day (morning

or evening) were recorded. Buckets with water and calf starter were

available in each shelter. Screened wood shavings with a minimum

theoretical length cut of 50 mm were used to minimize dustiness in

the housing environment. The bedding was refreshed every 7 d to

keep the pens visibly clean and dry. Calves were equally divided into

two groups (n = 26 in per group) and randomly assigned to one of 2

treatments as follows: 1) placebo group (CON), and 2)

intraperitoneal injection with yeast b-glucan solution (0.1 g/mL,

50 mg/kg body weight) at 3 and 6 days of age (IP). The CON group

received an intraperitoneally equal volume of sterile saline at the

same time. The experiment lasted until the 74th day of age. The

experimental design is shown in Figure 1A.

Calves were fed milk 2 times daily (06:00 and 16:00) with 6 L/d,

10 L/d, and 12 L/d offered from d 2-7, d 8-20, d 21-50, respectively.

At 20–23 days of age, 155 g/L commercial milk replacer with 23.4%

crude protein (CP) and 13.7% fat is used to gradually replace milk

according to the actual dry matter of milk. Calves were weaned over
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FIGURE 1

The effect of intraperitoneal injection of yeast b-glucan on calves after 24 h. (A) Schematic diagram of the experimental procedure. (B) The
concentration of IgG in the serum of calves at 2 days of age. (C) The concentration of IL-1b, IL-6, and TNF-a in the serum of calves after
intraperitoneal injection 24 h. (D) The immunoglobulin levels in the serum of calves after intraperitoneal injection 24 h. (E) The serum DAO levels
were measured by ELISA to evaluate the degree of intestinal injury. (F) The antioxidant status of calves after intraperitoneal injection 24 h. (G) The
Defensin, LZM, and sIgA levels in the rectal contents of calves were measured by ELISA to evaluate the degree of immune response. All data is
shown as mean values ± standard error of the mean (SEM). Control group n = 12, IP group n = 15; Statistical significance was determined by the
unpaired, two-tailed Student’s t-test with a 95% confidence interval, *P < 0.05, **P < 0.01, ***P < 0.001. CON, control group, IP, Intraperitoneal
injection group; IL, interleukin, TNF-a, tumor necrosis factor-a; IgG, immunoglobulin G, IgM, immunoglobulin M; MDA, malonaldehyde, T-AOC, total
antioxidant capacity; DAO, diamine oxidase; LZM, lysozyme; sIgA, the secreted immunoglobulin A. ns, no significance.
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10 d from d 51-60, receiving a total of 10 L in 2 meals/d from d 51-

52, 8 L from d 53-54, 6 L from d 55-56, 4 L from d 57-58, and 2 L

from d 59–60 until weaned. The composition of the milk replacer

and starter concentrate is shown in Table 1 and Table 2.
Samples collection and handling

At 7 and 30 days of age, blood samples were collected from all

calves by jugular venipuncture using tubes (BD Vacutainer,

Franklin Lakes, NJ) at 08:00 h, subsequently centrifuged at 3000

× g for 15 min at 4°C to obtain serum. Fecal samples were collected

by rectal massage in a 5 mL frozen tube at the same time. The serum

and fecal samples were quickly frozen in liquid nitrogen and then

kept at -40°C for subsequent analysis.
Frontiers in Cellular and Infection Microbiology 04
Growth performance and health recording

To avoid the stress associated with weighing, we minimized

animal weighing, and calves were weighed with mechanical scales

(ICS-300; Coimma Limited) at birth, 30, and 60 days of age before

the morning feeding. Milk replacer intake, Calf-starter intake, fecal

consistency, and BRD score were measured daily. Feed refusals were

removed before the provision of fresh starter feed. Individual feed

intake was determined daily by weighing the amounts of starter feed

offered and the amounts refused using a calibrated electronic scale

(model PX3000; Pand Iran Co., Isfahan, Iran). Average Daily Gain

(ADG) was calculated as the difference between body weight (BW)

taken at 30-d intervals divided by 30. The total dry matter (DM)

intake was calculated as the milk replacer DM plus the starter feed

DM. The estimation of feed efficiency was calculated as the ratio of

ADG to the total DM intake.

The health status of the calves was performed daily during the

entire experimental period. Diarrhea was diagnosed based on fecal

consistency. All calves were rectally stimulated to defecate, and fecal

consistency was scored on a scale of 0 to 3, where 0 = normal

consistency, 1 = semiformed or pasty, 2 = loose feces, and 3 =

watery feces (Renaud et al., 2020). A fecal score ≥ 2 was considered

as diarrhea. BRD and interventions were performed daily on all

calves by the same trained veterinarian after the morning feeding.

Signs of BRD were scored daily on each calf according to the

previous study (McGuirk and Peek, 2014). Briefly, abnormal nasal

discharge, coughing, ear tilt, eye discharge, and an elevated rectal

temperature (TS-101 Colors Techline digital, Techline São Paulo)

were recorded. The presence of at least 2 categories of abnormal

scores was required for a diagnosis of BRD. The cumulative

frequency of diarrhea for each group was calculated as previously

described (Zou et al., 2021): The frequency of diarrhea (%) =

(number of calves with diarrhea × days of diarrhea)/(total

number of calves × examined days) × 100. Antimicrobial therapy

was administered only when the animal showed fever or depression

symptoms, such as recumbence, and decreased or refused milk

intake. All calves with a positive diarrhea bout received

antimicrobial intervention on the day of initial diagnosis;

sulfamethoxazole and trimethoprim were administered

intramuscularly with a dosage calculated by BW (1 mL/15 kg;

Trissulfim, Ourofino Animal Health) according to the herd

veterinarian protocol. For BRD, florfenicol + flunixin meglumine

was administered intramuscularly with the dosage calculated by

BW (1 mL/15 kg florfenicol; Florkem, Ceva Sante Animale; 1 mL/45

kg flunixin meglumine; Flumax, J.A. Saúde Animal) according to

the herd veterinarian protocol. Medications used, dosage, and

duration of treatments were recorded for individual calves.
Detection of serum oxidative stress
indicators

After removing the serum from -40°C, thaw it on ice.

The Malonaldehyde (MDA) concentration in the serum was

determined using a commercially available kit (Nanjing Jiancheng
TABLE 1 Nutrient compositions (%, DM basis) of the milk replacer (MR).

Items Value1

DM (%, as fed) 94.1

Ash 6.50

Gross energy (GE, MJ/kg of DM) 19.5

CP 23.4

EE 13.7

Ca 0.98

P 0.71
1Commercial milk replacer (Beijing Precision Animal Nutrition Research Center).
Items: DM, Dry matter; CP, Crude protein; EE, Ether extract.
TABLE 2 Ingredients and nutrient composition of the starter feed (%,
DM basis).

Items Value2

Ingredients

Corn 36.5

Soybean meal 30.0

Wheat bran 23.4

Limestone 0.1

Premix1 10.0

Nutrition composition

DM 87.63

CP 23.06

EE 3.41

CF 4.92

Ca 1.06

P 0.73
1Provided per kg of diet: VA 15–000 IU, VD3 5–000 IU, VE 50 mg, Fe 9 mg, Cu 12.5 mg, Mn
130 mg, Zn 100 mg, Se 0.3 mg, I 1.5 mg and Co 0.5 mg.
2Commercial calf starter feed (Charoen Pokphand Group agriculture and animal husbandry
food enterprises).
Items: DM, Dry matter; CP, Crude protein; EE, Ether extract; CF, Crude fiber.
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Bioengineering Institute, A003-1, Nanjing, China) based on

thiobarbituric acid (TBA) reactivity. Briefly, after mixing

trichloroacetic acid with the homogenate and centrifuging, a

supernatant was obtained, and TBA was added. The developed

red color of the resulting reaction was measured at 532 nm with a

spectrophotometer. Other procedures were carried out following

the manufacturer’s protocols. Total antioxidant capacity (T-AOC)

was detected by a colorimetry kit (Nanjing Jiancheng

Bioengineering Institute, A015-1, Nanjing, China) following the

manufacturer’s protocols. Hydroxy free radical scavenging activity

in the serum was determined using a commercially available kit

(Angle Gene Biotechnology, AK319, Nanjing, China) based on the

fenton microplate process. The developed color of the resulting

reaction was measured at 536 nm with a spectrophotometer.
Detection of serum cytokines,
immunoglobulins, and diamine oxidase
concentrations

Cytokines (IL-1b, IL-6, and TNF-a), immunoglobulins

(immunoglobulin G (IgG) and immunoglobulin M (IgM)), and

diamine oxidase (DAO) in the serum were detected using a double-

antibody one-step sandwich commercial ELISA kits (Jining

Biotechnology, Nanjing, China) with the batch numbers JN21039,

JN21752, JN20906, JN7372, and JN7340 respectively. The assays

were performed using a double-antibody one-step sandwich ELISA

format. The antibody was pre-coated with respective trapping

antibodies sourced from commercial producer. The procedures

were carried out following the manufacturer’s protocols. The

absorbance (OD value) is measured at a wavelength of 450 nm

using a microplate reader to calculate the sample concentration.
Detection of intestinal antimicrobial
substance concentrations

After taking the fecal samples out from a -80°C environment, thaw

them on ice. After weighing, add them to the corresponding volume of

sterile PBS (generally at a weight-to-volume ratio of 1:9, for example, 1 g

of rectal feces sample corresponds to 9 mL of PBS) in a sterile centrifuge

tube, and grind thoroughly on ice. Finally, centrifuge the homogenate at

5000×g for 5 to 10 minutes, and collect the supernatant for detection.

Defensin, LZM, and secreted immunoglobulin A (sIgA) in

the rectal feces were detected using commercial ELISA kits

(Jining Biotechnology, Nanjing, China) with the batch

numbers JN1350, JN2132, and JN2203 respectively according

to the manufacturer’s instructions.
16S rRNA gene sequencing of intestinal
bacteria

Fifteen healthy calves that had not been treated with antibiotics

before 30 days of age were randomly selected in each group for
Frontiers in Cellular and Infection Microbiology 05
detecting the bacterial structure in the rectal feces of calves on 30 d.

Bacterial genomic DNA from rectal feces samples was extracted

using the CTAB according to the manufacturer’s instructions. The

barcoded PCR primers F341 (5′-CCTAYGGGRBGCASCAG-3′)
and R806 (5′-GGAC TACNNGGGTATCTAAT-3′) were used to

amplify the V3-V4 region of the 16S rRNA gene. PCR amplification

was performed in a total volume of 25 mL reaction mixture

containing 25 ng of template DNA, 12.5 mL PCR Premix, 2.5 mL
of each primer, and PCR-grade water to adjust the volume. The

PCR conditions to amplify the prokaryotic 16S fragments consisted

of an initial denaturation at 98°C for 30 s; 32 cycles of denaturation

at 98°C for 10 s, annealing at 54°C for 30 s, and extension at 72°C

for 45 s; and then final extension at 72°C for 10 min. The PCR

products were detected with 2% agarose gel electrophoresis.

Throughout the DNA extraction process, ultrapure water, instead

of a sample solution, was used to exclude the possibility of false-

positive PCR results as a negative control. The PCR products were

purified by AMPure XT beads (Beckman Coulter Genomics,

Danvers, MA, USA) and quantified by Qubit (Invitrogen, USA).

The amplicon pools were prepared for sequencing and the size and

quantity of the amplicon library were assessed on Agilent 2100

Bioanalyzer (Agilent, USA) and with the Library Quantification Kit

for Illumina (Kapa Biosciences, Woburn, MA, USA), respectively.

The libraries were sequenced on the NovaSeq PE250 platform

according to the manufacturer’s recommendations, provided by

LC-Bio. Alpha diversity and beta diversity were calculated by

normalizing to the same sequences randomly. For alpha diversity,

Chao1 and Shannon’s indices were used to evaluate the differences

in microbial richness and diversity, and PCA based on unweighted

UniFrac distances and PCoA based on bray-Curtis metrics were to

examine the community structures of the feces microbiotas. The

graphs were computed using normalized data in R (version 4.1.2)

with the vegan package. To compare the abundances of the

microbiome between the CON group and IP group, a Linear

Discriminant Analysis Effect Size (LEfSe) was performed with

LDA > 3 (P < 0.05) as the critical value. These data are available

in NCBI with PRJNA1155013.
Statistical analyses

Data were managed in Excel (Microsoft) spreadsheets. All

statistical analyses were performed considering the calf as the

experimental unit and using SPSS Statistics V21.0. The

experimental design used was a randomized block, considering

birth date, and birth weight as blocking factors. Baseline

measurements were compared using one-way ANOVA after

confirming normality (Shapiro-Wilk test P > 0.05 for all

variables) and homogeneity of variances (Levene’s test). No

significant differences were observed between groups for any

baseline parameter (all ANOVA P > 0.05). Measurements for

serum analytes, rectal temperature, and respiration frequency at

all time points were analyzed for normality using a Shapiro-Wilk

test, with Q-Q plots visually confirming distributions, for

homogeneity of the variances using the Levene test. The
frontiersin.org
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treatment means were compared using the Tukey-Kramer

adjustment test. The threshold of significance was set at P < 0.05.

The figures for data visualization were performed using GraphPad

Prism 9.0 (GraphPad Software Inc., San Diego, CA). The data were

presented as mean ± SEM. A P < 0.05 was considered as statistically

significant, and P-values between 0.05 and 0.10 represent a

statistical trend. The asterisks indicate statistical significance (∗, P
< 0.05; ∗∗, P < 0.01; ∗∗∗, P < 0.001).
Result

Animal inclusion/exclusion criteria

Inclusion Criteria: A total of 52 Holstein heifer calves (3 d of

age; body weighing 38–40 kg at enrollment. Clinically healthy (no

diarrhea/respiratory) with normal rectal temperature (<39.5°C) and

success-of-passive-transfer (IgG >10 g/L). Exclusion Criteria:

Animals with congenital defects, or fecal score >2 at baseline. No

animals died during the experiment, and all animals were included

in the statistics of diarrhea and BRD incidence frequency (n = 52).

However, animal individuals with more than 2 cases illness

requiring antibiotics were excluded and the final sample size
Frontiers in Cellular and Infection Microbiology 06
during laboratory testing was: control group: n = 12 (original n=

26–14 exclusions). IP Group: n= 15 (original n = 26–11 exclusions).

Excluded animals are not included in statistical analyses.
Transient inflammatory response

We first measured the serum IgG levels of all the calf subjects at

the time of their inclusion in the trial. The results are shown in

Figure 1B, and there was no significant difference in the initial

immune status between calves in the IP and CON group (P > 0.05).

The short-term effects (24 hours after the second injection) of IP are

shown in Figures 1C-F. In the IP group, the cytokines IL-1b (P =

0.019), IL-6 (P = 0.001), and TNF-a (P = 0.005), and the IgG (P =

0.020) and IgM (P = 0.007) were significantly increased.

Additionally, serum MDA content and hydroxyl free radical

scavenging ability were also significantly elevated (P < 0.001)

(Figure 1F), but there was no significant difference in DAO

content between the two groups (P = 0.263) (Figure 1E). In the

rectal contents, the levels of antibacterial substances secreted by

intestinal epithelial cells, namely defensin (P = 0.005) and sIgA (P <

0.001), were significantly increased, while there was no significant

difference in LZM content (P > 0.05).
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FIGURE 2

Pre-stimulation with yeast b-glucans decreased the frequency of diarrhea and BRD in calves. (A) The frequency of diarrhea and (B) BRD during 0–74
days of age. (C) The frequency of diarrhea and (D) BRD 2 weeks before and after 30 days of calves. All data is shown as mean values ± standard
error (SEM). n = 26 in per group; Statistical significance was determined by the Chi-squared test with a 95% confidence interval, *P < 0.05, ***P <
0.001. CON, control group, IP, intraperitoneal injection group, BRD, Bovine Respiratory Disease. ns, no significance.
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Frequency of diarrhea and BRD

As presented in Figures 2A, B, the overall frequency of diarrhea

and BRD were both reduced by IP, especially from 31–60 days

period the frequencies of both diseases were observed significantly

lower (P < 0.001). Moreover, the frequency of diarrhea (P = 0.041)

and BRD (P = 0.019) in the CON group of calves significantly

increased when comparing the 2 weeks before and after reaching 30

days of age. Whereas in the IP group, the frequency of both diseases

remained stable with no significant increase during the same period

(P > 0.05) (Figures 2C, D).
Growth performance

As outlined in Table 3, there were no significant differences in

the intake (milk replacer, calf-starter feed, and total DM), ADG, and

feed efficiency between the CON group and the IP group

throughout the entire 0–60 d period (P > 0.05).
Frontiers in Cellular and Infection Microbiology 07
Oxidative stress status

The difference in oxidative stress levels between the two groups

at 30 days of age was shown in Figures 3A-C. The hydroxyl radical

scavenging ability of calves in the IP group was significantly higher

than that in the CON group (P < 0.001) (Figure 3A), while the level

of MDA in the IP group was lower than CON group (P = 0.076)

(Figure 3B), but there was no obvious difference in serum total

antioxidant capacity (T-AOC) between the two groups (P >

0.05) (Figure 3C).
Concentrations of serum cytokines,
immunoglobulins, diamine oxidase, and
defensive proteins in rectal contents

At 30 days of age, the serum IL-6 level in the IP group was

significantly higher than that in the CON group (P < 0.001), while

the serum DAO content was significantly lower (P = 0.023)
TABLE 3 Effects of prestimulation with yeast b-glucans on the growth performance of calves.

Items Experimental groups SEM P-value

CON IP

0-30d

Milk replacer intake, L/d 8.509 8.431 0.086 0.372

Calf-starter intake, kg/d 0.035 0.039 0.005 0.680

Total DM intake*, kg/d 1.272 1.263 0.015 0.566

ADG(kg) 0.945 0.954 0.031 0.879

Feed efficiency1 0.744 0.756 0.051 0.801

31-60d

Milk replacer intake, L/d 9.356 9.562 0.117 0.086

Calf-starter intake, kg/d 0.120 0.085 0.009 0.056

Total DM intake*, kg/d 1.467 1.464 0.028 0.918

ADG(kg) 1.037 1.031 0.030 0.917

Feed efficiency 0.698 0.703 0.048 0.934

0-60d

Milk replacer intake, L/d 8.945 8.997 0.081 0.524

Calf-starter intake, kg/d 0.078 0.060 0.012 0.154

Total DM intake*, kg/d 1.366 1.356 0.019 0.609

ADG(kg) 0.991 1.002 0.015 0.465

Feed efficiency 0.723 0.733 0.013 0.445
*Total DM intake = milk replacer DM + starter feed DM.
1Feed efficiency was calculated by dividing ADG by average total DMI (milk replacer DM + starter feed DM).
Items: DM, Dry matter; ADG, Average Daily Gain. Experimental groups: CON, Control group; IP, Intraperitoneal injection group.
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(Figures 4A, C). There were no differences in serum levels of IL-1b,
TNF-a, IgG, and IgM between the two groups (Figures 4A, B), but

in the rectal contents, the levels of defensin (P = 0.047) and sIgA (P

= 0.043) were significantly higher than that in the CON group.
Rectal bacterial communities

As shown in Figure 5A, there was no significant difference in the

richness (P = 0.13) and diversity (P = 0.25). However, as presented

in Figure 5B, the IP group was separated from the CON group (P <

0.01), and the individuals of the IP group clustered together, while

those of the CON group scattered.

The relative abundance and composition of the top 10

abundance at the phylum level are shown in Figure 5C. The

rectal bacterial community in calves was dominated by Firmicutes

and Bacteroidota, followed by Actinobacteriota. At the genus level,

Faecalibacterium was the main genera, followed by Collinsella,

Bacteroides, Clostridium, Alloprevotella, Blautia, Bifidobacterium,

Escherichia-Shigella, UCG-005, and Parabacteroides. As shown in

Figure 5D, it was found that Bifidobacterium, megamonas, and

Erysipelatoclostridium were significantly enriched in the IP group (P

< 0.05), while Alistipes, Pedobacter, Colidextribacter, Odoribacter,

Intestinimonas, Fusobacterium, and UCG-005 in the CON group

were significantly more abundant than those in the IP group (P

< 0.05).
Functional prediction

The results in Figure 6 showed that at level 3 of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, bacterial

functional characteristics were mainly enriched in immune

pathways, such as signal transduction mechanisms, bacterial

secretion system, replication, recombination, and repair proteins.
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The differences in metabolic pathways of functional genes in

bacterial flora between the two groups showed that the two

functional pathways of butyrate metabolism (P < 0.05) and

tryptophan metabolism (P < 0.01) in the IP group were

significantly weakened. At the same time, amino acid degradation

pathways, including valine, leucine, and isoleucine degradation (P <

0.05), and lysine degradation (P < 0.01) in the IP group were

less active.
Discussion

The suckling period is critical for calves. The immune system of

animals at this period is undeveloped, therefore, animals are very

susceptible to infection at this stage. Pathogenic infection often

leads to diarrhea and BRD in calves despite the use of several

vaccines and antibiotic alternatives (Vlasova and Saif, 2021). These

two diseases are the most common ones in calves and are the

leading causes of mortality (Abuelo et al., 2019). Moreover, severe

diarrhea or pneumonia, even if well treated, may affect a calf’s later

growth performance and milk production in adulthood (Abuelo

et al., 2019). Therefore, research on the effective prevention of

intestinal or respiratory infections in calves is urgent for both dairy

and beef cattle farming. In this study, we investigated the effect of

twice intraperitoneal injection of yeast b-glucan during the first

week of birth on the prevention of diarrhea and BRD of dairy calves

and proved that the treatment decreased both the frequency of

diarrhea and BRD during the first 74 days of age.

Yeast b-glucan is generally considered both a prebiotic and

immune-modulator. Several studies have shown the positive effects

of oral supplementation on calf health and growth performance as

prebiotics (Ma et al., 2015; Xiao et al., 2016);. Based on the theory of

trained immunity of fungal b-glucan (Kalafati et al., 2020), we

hypothesized that intraperitoneal injection of it early in life might

induce the innate immune system to produce immune memory and
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The effect of pre-stimulation with yeast b-glucans on oxidative stress level of calves. (A-C) The antioxidant status in the serum of calves. All data is
shown as mean values ± standard error (SEM). Control group n = 12, IP group n = 15; Statistical significance was determined by the unpaired, two-
tailed Student’s t-test with a 95% confidence interval or One-way ANOVA analysis, ***P < 0.001. CON, control group, IP, intraperitoneal injection
group. MDA, Malonaldehyde, T-AOC, total antioxidant capacity. ns, no significance.
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effectively prevent intestinal infections, thereby reducing the

frequency of diarrhea and even BRD during the early life of

calves. As expected, yeast beta-glucan pre-stimulation had a

positive effect, significantly reducing the frequency of diarrhea
Frontiers in Cellular and Infection Microbiology 09
between 31 and 60 days of age. From the detected intestinal

damage marker, it can be inferred that pre-stimulation with yeast

b-glucan showed a systemic prophylactic effect, which improved the

intestinal health status of calves later.
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The effect of pre-stimulation with yeast b-glucans on the cytokines, immunoglobulins, DAO in serum, and intestinal antimicrobial substance Levels
in rectal contents. (A) The concentrations of IL-1b, IL-6, and TNF-a in the serum were measured by ELISA to evaluate the degree of immune
response. (B) The immunoglobulin levels and (C) DAO levels in the serum of calves were measured by ELISA to evaluate the degree of immune
response and intestinal injury. (D) The Defensin, LZM, and sIgA levels in the rectal contents of calves were measured by ELISA to evaluate the degree
of immune response. All data is shown as mean values ± standard error (SEM). Control group n = 12, IP group n = 15; Statistical significance was
determined by the unpaired, two-tailed student’s t-test with a 95% confidence interval or One-way ANOVA analysis, *P < 0.05, ***P < 0.001. CON,
control group, IP, intraperitoneal injection group. TNF-a, Tumor necrosis factor-a; IL, Interleukin; DAO, diamine oxidase; LZM, lysozyme; sIgA, the
secreted immunoglobulin A. ns, no significance.
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The systemic preventive mechanism might be complex but

should include the immune memory acquired by the body’s

innate immune cells due to the pre-stimulation. Studies in

experimental mice or rats have shown that pre-stimulation with

special antigens enables bone marrow stem cells and progenitor
Frontiers in Cellular and Infection Microbiology 10
cells to acquire immune memory for several months to a year (for

the PROMISE- EBF Study Group et al., 2015), and the acquired

memory can be passed on to differentiated bone marrow cells

including innate immune cells in the blood and resident ones in

tissues (Mitroulis et al., 2018; Wang et al., 2023), such as ILC3 in
A

B

C D

FIGURE 5

The effect of pre-stimulation with yeast b-glucans on the rectal bacterial community of calves. (A) Chao1 and Shannon index on the ASVs level. (B)
Principal Component Analysis (PCA) and Principal coordinate analysis (PCoA) based on bray-curtis. (C) Microbial composition at the phylum level and
genus level. (D) Linear discriminant analysis effect size of fecal bacterial microbiota (LDA > 3, P < 0.05).
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intestine (Serafini et al., 2022) and alveolar macrophages in lung

(Jeyanathan et al., 2022), and thus improve the ability of various

tissues to fight later infections. Guerra-Maupome et al (Guerra-

Maupome et al., 2019) reported that in vivo stimulation with Bacille

Calmette-Guerin induced a trained innate immune phenotype in

calves, characterized by increased levels of several inflammatory

factors upon re-stimulation. In the present study, the levels of serum

IL-6 and rectal defensin secreted by intestinal epithelial cells in pre-

stimulated calves were significantly higher than those in the CON

group at 30 days of age, suggesting that pre-stimulation might

induce related cells to acquire immune memory in calves.

The classical study of trained immunity consists of three stages,

namely pre-stimulation, resting period, and re-stimulation (Netea

et al., 2020). In feeding experiments, it is difficult to determine when

infection occurs after pre-stimulation in each calf. However, in our

experiment, all of the investigated calves underwent a series of

stresses before and after 30 days of age, including milk replacement,

abrupt drop in temperature, and taking off the waistcoat. The

frequency of diarrhea and BRD in the CON group increased

significantly two weeks after 30 days of age, indicating that this

series of stresses worsened the intestinal and respiratory health of

the calves. Stresses been proven to be associated with an increased

risk of infection (Nabenishi and Yamazaki, 2017; Qiao et al., 2023),

and thus the combined stress could be considered as the re-

stimulation phase of the classical trained immunity studies.

Elevated pro-inflammatory factors generally indicate an

inflammatory response, but are also often a signal of a positively

enhanced defense response of innate immune cells, as proven by

trained immunity studies, where increased gene expression and

release of cytokines, such as TNF-a, IL-1b, and IL-6 indicates a
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more effective defense response (Arts et al., 2018). In this study, the

lower frequency of diarrhea and BRD and higher serum IL-6,

defensin, and sIgA levels in the pre-stimulation group suggested

that pre-stimulation increased the immune response of calves to

above stresses, and thus improved their intestinal and respiratory

health. Previous studies detected that in vitro training with yeast b-
glucan enhanced the production of TNF-a and IL-6 in

macrophages and monocytes upon secondary stimulation

(Angulo et al., 2020; Paris et al., 2020). Similarly, an in vivo study

showed up-regulation of gene transcription and higher production

levels of TNF-a and IL-6 in mice trained with b-glucan upon an ex

vivo challenge with E. coli (Geervliet et al., 2020). Although the fact

that the expression of TNF-a at 30 days of life was unaffected by our

treatment seemed to make it complicated to explain, there is

evidence that the inflammatory factors that are elevated in

response to later re-stimulation vary from one trained immune

study to another, due to different stimulants, different cell types,

different hosts, or different re-challenge studied (Mitroulis et al.,

2018; Jeyanathan et al., 2022).

Pieces of evidence proved that oral administration of yeast b-
glucan daily results in an improved gut microbial balance. For

instance, Zhou et al. (Horneck Johnston et al., 2024) observed the

counts of pathogenic E. coli decreased and the counts of commensal

Lactobacillus increased in yeast b-glucan supplemented calves

compared with controls, and Virginio Junior et al (Virginio

Junior et al., 2021) reported that the administration of b-glucan
daily increased the abundance of Alloprevotella, a genus associated

with improved intestinal barriers and tighter epithelial junctions in

the lower gut. Our study also showed that pre-stimulation with

yeast b-glucan optimized the bacterial structure in the rectal content
FIGURE 6

The functional prediction of rectal bacterial community of calves. Differential species T-test analysis of rectal bacterial community of calves at the
phylum level. Statistical significance was determined by the unpaired, two-tailed student’s t-test with a 95% confidence interval or One-way ANOVA
analysis. *P < 0.05, **P < 0.01.
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of calves, including enhancing the abundance of some beneficial

bacteria and stabilizing the bacterial community, as the intestinal

bacterial structure tended to be consistent among individual calves

in the pre-stimulated group. However, the addition of yeast b-
glucan as an immune stimulant and prebiotics has different

mechanisms of influence on the intestinal microflora. The former

affects the intestinal microflora mainly by regulating the immune

response of the intestine and even the body (Novak and Vetvicka,

2008; Quintin et al., 2012), while the latter’s main function is to

promote the proliferation of beneficial bacteria as a fermentation

substrate, although some studies have reported that it is also

involved in regulating the intestinal mucosal immunity

(Samuelsen et al., 2014; So et al., 2021). Despite the improved

intestinal health status, the present study found that ADG and feed

efficiency of calves were not improved by the pre-stimulation with

yeast b-glucan. However, positive effects of oral administration with

b-glucan daily on ADG and feed efficiency were found (Abo

Ghanima et al., 2020; Reis et al., 2022). We speculated that the

reasons for the different effects of the two supply modes of beta-

glucan on growth performance may involve the following aspects:

firstly, as an immune stimulant, the total amount of b-glucan
consumed during the present trial is far lower than the total

amount as a daily supplement of prebiotics; Secondly, compared

with the CON group, the obvious immune response of the pre-

stimulated calves was induced during the stimulation period, and

the immune level of the calves was also higher when they were

affected by the combined stress at about 30 days of age. This meant

that during both phases, the pre-stimulated calves might expend

more energy for the immune response, but the daily feed intake

does not increase, and this probably resulted in no increase in daily

gain despite the improved health of the pre-stimulated calf.

Nevertheless, it is necessary to compare the effects of two yeast b-
glucan supply modes on the prevention of diarrhea and BRD in

calves in the same feeding trial, as well as subsequent effects on

calves, including their adult performance.

Pre-stimulation through intraperitoneal injection will induce

inflammatory response. As we observed, the level of the three

detected inflammatory factors in serum increased 24 h after the

stimulation with yeast b-glucan. From the theory of trained

immunity and its research reports, the inflammatory response

caused by pre-stimulation is a condition for the relevant cells to

acquire trained immunity (Netea et al., 2020; Ochando et al., 2023).

Studies in mice and rats showed that the induced inflammatory

response is generally transitory and disappears within two or three

days (Cheng et al., 2014; Horneck Johnston et al., 2024). It can be

seen that the stimulation did not cause the increase of DAO in

serum, and it was speculated that the inflammatory response

induced by pre-stimulation did not cause damage to the intestinal

tissue of calves in the present study. However, the sharply increased

MDA level in serum indicated that the oxidative stress level of the

body increased due to the stimulation. Of course, the level of serum

oxidative stress in our pre-stimulated calves tended to be lower than

that in control calves at 30 days of age, indicating better physical
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health of pre-stimulated calves later. Nevertheless, whether the

transitory negative effects of pre-stimulation on calves are related

to the absence of positive effects on growth performance, and

whether reducing the injected dose of yeast beta-glucan can

achieve the same defensive effect while eliminating oxidative

stress in calves, remains to be explored.

In summary, the present study showed that intraperitoneal

injection of yeast-derived b-glucan early in life effectively reduced

the frequency of diarrhea and BRD from d 31 to 60, improved the

intestinal health status of suckling Holstein dairy calves and

suggested the involvement of trained immunity. However, more

works are needed to investigate whether pre-stimulation with yeast

b-glucan or other stimulants has long-term health benefits or future

product performance of calves. In addition, the cytokine changes

caused by training immunity may not only be manifested in IL-1b,
IL-6, and TNF-a, but also may include IL-8, IL-10, and IFN, etc. The

selection of markers for training immunity needs further

optimization. Furthermore, the better supplementation method,

time, and dosage of stimulants, etc. all need further studies.
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