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Yiying Hua1, Faguang Jin1* and Yongheng Gao1*

1Department of Pulmonary and Critical Care Medicine, Tangdu Hospital, The Fourth Military Medical
University, Xi’an, China, 2Department of Pulmonary and Critical Care Medicine, The 940th Hospital of
the Joint Logistics Support Force of People’s Liberation Army (PLA), Lanzhou, China, 3Department of
Urology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China, 4Department of
Pulmonary and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
Background: SARS-CoV-2 exhibits rapid transmission with a high susceptibility

rate, particularly among the elderly. Pulmonary fibrosis (PF) following SARS-CoV-

2 infection is a life-threatening complication. However, predictive models for PF

in older patients are lacking.

Methods: Data from patients with COVID-19 aged 60 and above, collected

retrospectively between November 2022 and November 2023 across two

independent hospitals, were analyzed. Patients from Tangdu Hospital were

divided into training and validation cohorts using a 7:3 allocation ratio, while

those from The 940th Hospital of the Joint Logistics Support Force of the

People’s Liberation Army (PLA) served as the test cohort. Identify the most

valuable predictors (MVPs) for PF using Least Absolute Shrinkage and Selection

Operator (LASSO) regression, and construct a nomogram based on their

regression coefficients derived from logistic regression. The calibration, clinical

utility, and discriminatory ability of the nomogram were evaluated using the

Hosmer-Lemeshow test, decision curve analysis (DCA), and Receiver Operating

Characteristic (ROC) curve, respectively.

Results: Neutrophil percentage, C-reactive protein (CRP), gender, diagnostic

classification, and time from symptom onset to hospitalization were identified as

the MVPs for PF. The nomogram was developed based on these predictors, In all

the three cohorts, the nomogram showed good calibration, clinical utility and

discriminatory ability, with Area Under the Curve (AUC) of 0.777, 0.735 and 0.753,

respectively. Furthermore, based on the principle of optimizing the balance

between sensitivity and specificity, 131.026 was determined as the optimal

cutoff value for the nomogram. Accordingly, patients with a nomogram score

of 131.026 or higher were classified into the high-risk group.
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Conclusions: This study presents the first nomogram for predicting PF in elderly

patients following SARS-CoV-2 infection, which may serve as a clinical tool for

risk assessment and early management in this population.
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Introduction

SARS-CoV-2 exhibits rapid spread and extensive transmission,

with heightened susceptibility within populations compared to

other influenza viruses. Symptoms following infection are more

pronounced (Pavia et al., 2024). Among those infected, a significant

proportion will demonstrate lung imaging changes and may

develop pulmonary fibrosis (PF) (Cui et al., 2023). Current

clinical diagnosis of PF relies on a comprehensive evaluation

involving high-resolution computed tomography (HRCT) and

pulmonary function tests, though their sensitivity is limited in the

early stages of the disease. During the initial infectious phase, prior

to fibrotic formation, HRCT typically reveals non-specific

alterations, such as ground-glass opacities (Sverzellati et al., 2021).

Patients with subclinical or mild symptoms are often less inclined to

undergo systematic imaging, complicating early detection.

Pulmonary function tests, including forced vital capacity (FVC)

and diffusing capacity for carbon monoxide (DLCO), also exhibit

insufficient sensitivity and specificity in the early stages (Guiot et al.,

2024), especially when no significant fibrotic changes in lung

architecture are observed. This diagnostic uncertainty complicates

differentiation between viral pneumonia and the progression of

interstitial lung disease in the early pathological phase.

PF is a life-threatening condition that severely impacts patients’

quality of life. Treatment options remain limited, with early

diagnosis and intervention being the primary strategies to reduce

the clinical burden of PF (Li et al., 2023). Recent research has

highlighted a close association between age and the development of

PF following SARS-CoV-2 infection (Ribeiro Carvalho et al., 2024),

with advanced age identified as a risk factor influencing disease

severity and prognosis (Cui et al., 2022). Furthermore, many elderly

patients do not present typical symptoms such as fever or

respiratory distress in the early stages of the disease (Graham

et al., 2020), resulting in delayed diagnosis and missed

opportunities for early intervention. Early identification and

targeted management of elderly patients with SARS-CoV-2

infection, particularly those at high risk of developing PF, are

critical to preventing PF onset and reducing associated mortality.

Current prediction models for assessing post-SARS-CoV-2

infection risks primarily focus on the risk of death following

severe infection and the survival rates of patients with SARS-

CoV-2 pneumonia (Dong et al., 2021; Yang et al., 2021).

However, prediction models specifically targeting PF progression
02
in the elderly after SARS-CoV-2 infection remain lacking, resulting

in delayed identification of PF in these patients and impacting their

survival prognosis (Hirawat et al., 2023). This underscores the

urgent need for early warning research focused on PF

development in the elderly and the creation of prediction models

that integrate relevant variables to assess the risk of progression to

PF after SARS-CoV-2 infection.

Consequently, this study explored the risk factors associated

with PF progression in elderly SARS-CoV-2-infected patients and

developed a high-performance prognostic model that integrates

multidimensional predictors, including clinical characteristics,

laboratory parameters, and temporal factors. The resulting early

warning system facilitates the timely prediction of PF outcomes in

elderly patients with COVID-19, playing a pivotal role in

optimizing clinical management, improving prognosis, and

enhancing quality of life.
Methods

Study design and population

This study retrospectively analyzed patients aged 60 years or

older who were infected with the novel coronavirus and treated at

Tangdu Hospital of The Fourth Military Medical University and

The 940th Hospital of the Joint Logistics Support Force of the

People’s Liberation Army (PLA) between November 2022 and

November 2023. Inclusion criteria were: (1) A diagnosis of novel

coronavirus infection according to the “Diagnosis and Treatment

Protocol for SARS-CoV-2 Virus Infection (Trial Version 9)”; (2)

Being aged 60 years or older; (3) The availability of complete

imaging and laboratory test results. Exclusion criteria included:

(1) Having a history of idiopathic or secondary PF; (2) Currently

using drugs that may induce PF (e.g., amiodarone) or treatments

that may induce PF (e.g., radiotherapy); (3) Missing clinical or

imaging data; (4) A clinical diagnosis of critical illness. A total of

661 patients from Tangdu Hospital were randomly divided into

training and validation cohorts in a 7:3 ratio, while 196 patients

from the 940th Hospital served as the test cohort. Data entry was

performed by two individuals and verified for accuracy. Any

missing or erroneous data were promptly identified and

corrected. Chest HRCT scans were assessed by two senior clinical

doctors specializing in respiratory medicine, with disagreements
frontiersin.org
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resolved through discussions led by the chief physician of chest

imaging until consensus was reached.
Research procedures

This study collected a range of potential predictive factors,

including age, gender, height, weight, surgical history, blood

transfusion history, past medical history (e.g., chronic obstructive

pulmonary disease [COPD], asthma, pulmonary tuberculosis,

diabetes, hypertension, coronary heart disease, autoimmune

diseases), C-reactive protein (CRP), D-dimer, white blood cell

count, lymphocyte count, neutrophil count, eosinophil count,

percentage of neutrophils, percentage of lymphocytes, and the

time from symptom onset to hospitalization. The time from

symptom onset to hospitalization was categorized into three

segments: TIME 1 ≤ 1 week, 1 week < TIME 2 ≤ 2 weeks, and 2

weeks < TIME 3.
Statistical analysis

The Kolmogorov-Smirnov test was utilized to assess the

distribution characteristics of the data. For normally distributed

continuous variables, descriptive statistics were expressed as mean

± standard deviation (�x ± s). Group comparisons were conducted

using the independent-sample t-test with a two-sided hypothesis,

where a P-value < 0.05 was considered statistically significant. For

non-normally distributed data, results were presented as median
Frontiers in Cellular and Infection Microbiology 03
and interquartile range (IQR), and comparisons were performed

using the Mann-Whitney U test. Categorical variables were

reported as frequency and percentage, with the chi-square test

used to compare categorical data between groups.

To reduce dimensionality and identify the most valuable

predictors (MVPs), the study employed Least Absolute Shrinkage

and Selection Operator (LASSO) regression analysis combined with

10-fold cross-validation. MVPs, based on regression coefficients,

were integrated into a binary logistic regression model to develop a

nomogram. The discriminatory ability of individual or combined

variables for PF following SARS-CoV-2 infection was assessed using

the receiver operating characteristic (ROC) curve. Meanwhile, the

Hosmer-Lemeshow goodness-of-fit test was used to evaluate the

calibration of the nomogram, accompanied by the calibration plot.

The decision curve analysis (DCA) was used to determine the utility

of the nomogram in clinical decision-making. Statistical

significance was set at a two-sided P-value < 0.05. All statistical

analyses were performed using the Statistical Package for the Social

Sciences (SPSS) version 26.0 software and R version 4.2.3 software.
Results

General characteristics

The research flow chart is depicted in Figure 1. This study

included 463, 198, and 196 cases in the training, validation, and test

cohorts, respectively. Among these, 177 cases (38.2%), 76 cases

(38.4%), and 82 cases (41.8%) developed PF. A representative
FIGURE 1

The flow chat of this study. The training and validation cohort (7:3) were collected in Hospital 1. A testing cohort for the model was collected in
Hospital 2.
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HRCT image of PF in SARS-CoV-2-infected patients is shown in

Supplementary Figure 1. LASSO regression analysis with 10-fold

cross-validation was employed to identify the MVPs for PF.

Furthermore, according to the ‘one standard error’ method, 5

MVPs for PF were identified, which were the percentage of

neutrophils, CRP, gender, diagnostic classification, and the time

from the onset of symptoms to hospitalization (Figure 2).

In the training cohort, the Area Under the Curve (AUC) values

of these 5 predictors and their 95% confidence intervals (CI) were

0.675 (0.625 - 0.724), 0.662 (0.612 - 0.712), 0.586 (0.533 - 0.638),

0.675 (0.623 - 0.726), and 0.611 (0.559 - 0.664) respectively. In the

validation cohort, the corresponding AUC values and their (95%

CI) were 0.644 (0.564 - 0.724), 0.672 (0.596 - 0.748), 0.575 (0.494 -

0.656), 0.669 (0.590 - 0.748), and 0.582 (0.500 - 0.664). In the test

cohort, the AUC values and (95% CI) of the 5 predictors were 0.672

(0.596 - 0.747), 0.656 (0.577 - 0.734), 0.567 (0.486 - 0.648), 0.639

(0.560 - 0.718), and 0.627 (0.548 - 0.706).

Table 1 presents the distribution of characteristics for both the

training and validation cohorts, as well as the training and

test cohorts.
Nomogram development

Multivariate logistic regression analysis confirmed that the

percentage of neutrophils, CRP, gender, diagnostic classification,

and the time from symptom onset to hospitalization were

independent predictors for PF in elderly patients with SARS-CoV-2

infection. A nomogram was developed using the regression

coefficients (0.034, 0.009, 0.637, 1.319, and 1.185) of these

predictors, implemented via the “rms” package in R software
Frontiers in Cellular and Infection Microbiology 04
(Figure 3). In the nomogram, the length of the lines corresponds to

the weight of each predictor, with the percentage of neutrophils having

the highest weight, followed by CRP and diagnostic classification.

Gender has the least impact. The percentage of neutrophils was

assigned 100 points, and the remaining four predictors were

assigned 62.72, 26.74, 55.35, and 49.74 points, respectively, based on

the ratio of regression coefficients. The total score was calculated by

summing the points for all five predictors, with the corresponding risk

of PF determined by the vertical line corresponding to the total score.
Multiple validations of the Nomogram

In the internal validation using the training cohort, the

nomogram accurately predicted the likelihood of developing PF

after SARS-CoV-2 infection, with an AUC of 0.777 (95% CI, 0.734 -

0.820; Figure 4A). The Hosmer-Lemeshow test yielded c2 = 4.393, P

= 0.820, and the calibration curve demonstrated good agreement

between the observed and predicted probabilities (Figure 4B). DCA

revealed that the nomogram’s net benefit significantly exceeded that

of each independent predictor (Figure 4C).

In the external validation, the nomogram’s AUC for 198 elderly

patients was 0.735 (95% CI, 0.663 - 0.807) (Figure 5A). The

Hosmer-Lemeshow test result was c2 = 3.456, P = 0.903

(Figure 5B). DCA confirmed that the nomogram provided

superior clinical prediction performance compared to individual

predictors (Figure 5C). To further evaluate the model’s validity and

generalizability, a test cohort was established with 196 patients from

a different hospital. In this cohort, the AUC was 0.753 (95% CI,

0.685 - 0.821; Figure 5D), and the Hosmer-Lemeshow test result

was c2 = 10.123, P = 0.257 (Figure 5E), indicating good accuracy.
FIGURE 2

Feature screening was performed using the LASSO regression analysis combined with the 10-fold cross-validation method. (A) The interrelationships
among the logarithm (l), Mean Squared Error (MSE), and the number of variables in the model. (B) The LASSO coefficient curves of the candidate
features. The intersecting curves indicate the number of features retained at a specific log(l) value. Based on the standard error, 5 key predictors
with non-zero coefficients were selected.
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TABLE 1 Characteristics analysis of research participants.

Variable Training (n=463) Validation (n=198) P

Gender 0.533

Male 304 (65.66) 125 (63.13)

Female 159 (34.34) 73 (36.87)

Age 72 (67-80) 69 (66-77) 0.201

BMI 23 (21.22-25.1) 23.59 (20.76-25.95) 0.255

Operation
history 224 (48.38) 92 (46.46) 0.652

BTH 29 (6.26) 14 (7.07) 0.700

COPD 35 (7.56) 7 (3.54) 0.052

Diabetes 114 (24.62) 44 (22.22) 0.508

Hypertension 221 (47.73) 91 (45.96) 0.676

CHD 103 (22.25) 31 (15.66) 0.054

AID 18 (3.89) 14 (7.07) 0.081

Cough 420 (90.71) 175 (88.38) 0.360

Fever 389 (84.02) 162 (81.82) 0.487

Diagnostic
classification 0.905

Common
type 283 (61.12) 122 (61.62)

Heavy type 180 (38.88) 76 (38.38)

Time 0.592

≤7 Days 162 (34.99) 75 (37.88)

(7–14 ] Days 171 (36.93) 65 (32.83)

>14 Days 130 (28.08) 58 (29.29)

WBC (×109) 6.19 (4.66-8.57) 5.99 (4.77-8.39) 0.948

NEUT (×109) 4.67 (3.15-7.14) 4.46 (3.4-6.56) 0.732

LYM (×109) 0.82 (0.51-1.175) 0.91 (0.63-1.23) 0.076

EOS (×109) 0.02 (0-0.075) 0.04 (0-0.09) 0.071

LYMs% 13.9 (7.25-21.2) 15.9 (10.8-21.6) 0.129

NEUT% 76.3 (67.5-85.35) 74.1 (67.1-81.1) 0.087

RBC (×1012) 4.01 (3.53-4.38) 3.99 (3.42-4.31) 0.543

Hb (g/L) 124 (109-134) 122 (106-133) 0.706

Ddimer
(ug/ml) 1.341 (0.842-2.94) 1.21 (0.844-2.548) 0.193

PCT (ng/ml) 0.1 (0.05-0.255) 0.1 (0.06-0.23) 0.795

CRP (mg/L) 12.66 (5.125-33.065) 11.09 (4.8-25.79) 0.142

(Continued)
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TABLE 1 Continued

Variable Training (n=463) Testing (n=196) P

Gender 0.336

Male 304 (65.66) 57 (69.5)

Female 159 (34.34) 25 (30.5)

Age 72 (67-80) 75 (68-81) 0.052

BMI 23 (21.22-25.1) 23 (22.58-24.91) 0.101

Operation
history 224 (48.38) 95 (48.47) 0.983

BTH 29 (6.26) 7 (3.57) 0.164

COPD 35 (7.56) 17 (8.67) 0.630

Diabetes 114 (24.62) 40 (20.41) 0.240

Hypertension 221 (47.73) 95 (48.47) 0.860

CHD 103 (22.25) 35 (17.86) 0.210

AID 18 (3.89) 3 (1.53) 0.120

Cough 420 (90.71) 171 (87.24) 0.180

Fever 389 (84.02) 175 (89.29) 0.080

Diagnostic
classification 0.406

Common type 283 (61.12) 113 (57.65)

Heavy type 180 (38.88) 83 (42.35)

Time 0.861

≤7 Days 162 (34.99) 71 (36.22)

(7–14 ] Days 171 (36.93) 68 (34.69)

>14 Days 130 (28.08) 57 (29.08)

WBC (×109) 6.19 (4.66-8.57) 5.86 (4.15-8.22) 0.060

NEUT (×109) 4.67 (3.15-7.14) 4.335 (2.905-6.33) 0.099

LYM (×109) 0.82 (0.51-1.175) 0.82 (0.55-1.15) 0.787

EOS (×109) 0.02 (0-0.075) 0.02 (0-0.06) 0.342

LYMs% 13.9 (7.25-21.2) 15.5 (8-22.25) 0.086

NEUT% 76.3 (67.5-85.35) 76.5 (66-86.75)) 0.862

RBC (×1012) 4.01 (3.53-4.38) 4.19 (3.89-4.665) <0.001

Hb (g/L) 124 (109-134) 130.5 (119-144.5) <0.001

Ddimer (ug/ml) 1.341 (0.842-2.94) 1.345 (0.665-3.13) 0.119

PCT (ng/ml) 0.1 (0.05-0.255) 0.0985 (0.0515-0.255) 0.720

CRP (mg/L) 12.66 (5.125-33.065) 11.475 (3.915-33.66) 0.389
frontie
NEUT stands for neutrophil count, NEUT% for neutrophil percentage, LYM for lymphocyte
count, LYM% for lymphocyte percentage, EOS for eosinophil count, Hb for hemoglobin, BTH
for blood transfusion history, COPD for chronic obstructive pulmonary disease, CHD for
coronary heart disease, and AID for autoimmune disease.
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Additionally, the calibration curve demonstrated high predictive

consistency. DCA further suggested that the prediction model

showed similar efficacy across the training, validation, and test

cohorts (Figure 5F).
Determination of the optimal cut-off value
for the nomogram

Using data from all 857 patients in this study, we calculated

the sensitivity, specificity, positive predictive value (PPV),
Frontiers in Cellular and Infection Microbiology 06
negative predictive value (NPV), positive likelihood ratio (LR

+), negative likelihood ratio (LR-), positive utility index (UI+),

negative utility index (UI-), diagnostic odds ratio (DOR), and the

Youden index at various cut-off points of the nomogram

(Table 2). Furthermore, based on the principle of optimizing

the balance between sensitivity and specificity, the optimal cut-off

value of the nomogram was determined to be 131.026 (sensitivity

0.773, specificity 0.621). Elderly patients with a nomogram

score ≥ 131.026 were classified as high-risk for PF, and early

targeted management and intervention were recommended for

these individuals.
FIGURE 3

A nomogram for PF in elderly patients after SARS-CoV-2 infection.
FIGURE 4

Evaluation of the nomogram for PF of the elderly patients infected with SARS-COV-2. The ROC curve (A), calibration plot (B), and DCA (C) of the
nomogram in the training cohort. Calibration plot of the nomogram. The gray dashed line represents ideal calibration. The red and black solid lines
indicate the original model (prone to overfitting) and Bootstrap-corrected model, respectively. In the DCA graph, "All" refers to the assumption that
all patients develop PF, and "None" refers to the assumption that no patients develop PF. 5 key predictors are listed in the annotation: a. Percentage
of neutrophils; b. CRP; c. Gender; d. Diagnostic classification; e. Time from symptom onset to hospital admission. AUC represents the area under
the curve.
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FIGURE 5

The ROC curve (A), calibration plot (B), and DCA (C) of the nomogram in the validation cohort. The ROC curve (D), calibration plot (E), and DCA (F)
of the nomogram in the testing cohort.
TABLE 2 A column chart and corresponding scores for evaluating performance parameters at different critical points.

Cutoff
points

Sensitivity Specificity PPV NPV LR+ LR- DOR UI+ UI-
Youden
index

71.523 0.979 0.142 0.423 0.914 1.141 0.147 7.740 0.414 0.130 0.121

85.563 0.937 0.228 0.438 0.850 1.214 0.275 4.415 0.410 0.194 0.165

99.887 0.919 0.343 0.473 0.869 1.399 0.235 5.953 0.435 0.298 0.262

110.358 0.878 0.441 0.502 0.849 1.569 0.278 5.648 0.440 0.374 0.318

118.053 0.833 0.504 0.519 0.824 1.679 0.332 5.059 0.432 0.415 0.337

126.783 0.806 0.584 0.554 0.824 1.939 0.332 5.838 0.447 0.482 0.390

131.026 0.773 0.621 0.567 0.810 2.038 0.366 5.577 0.438 0.503 0.394

133.045 0.761 0.630 0.569 0.804 2.059 0.379 5.434 0.433 0.507 0.391

138.157 0.716 0.661 0.576 0.784 2.113 0.429 4.924 0.412 0.518 0.377

145.028 0.666 0.713 0.598 0.769 2.317 0.469 4.938 0.398 0.548 0.378

154.221 0.594 0.782 0.636 0.750 2.720 0.519 5.237 0.378 0.586 0.376

162.658 0.533 0.822 0.657 0.734 2.997 0.568 5.276 0.350 0.603 0.355

176.385 0.460 0.881 0.713 0.718 3.870 0.613 6.313 0.328 0.632 0.341

188.851 0.383 0.925 0.766 0.701 5.139 0.666 7.711 0.294 0.649 0.309

210.402 0.191 0.966 0.780 0.650 5.540 0.838 6.613 0.149 0.628 0.157
F
rontiers in Cellul
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PPV, positive predictive value; NPV, negative predictive value; LR+, positive likelihood ratio; LR−, negative likelihood ratio; UI+, positive utility index; UI-, negative utility index; DOR, diagnostic
odds ratio.
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Discussion

Following SARS-CoV-2 infection, most patients exhibit changes

in lung imaging (Xu et al., 2020; Wendisch et al., 2021). According

to the Fleischner Society criteria, abnormal imaging findings in the

residual lung can be categorized into fibrosis and non-fibrosis

(Bocchino et al., 2023). The diagnosis of PF due to SARS-CoV-2

primarily depends on chest HRCT characteristics (Li et al., 2021).

Typical manifestations include traction bronchiectasis and irregular

interfaces (such as streak shadows, reticular patterns,

honeycombing, or structural deformation), accompanied by

symptoms like progressively worsening dyspnea and decreased

oxygenation (Huang et al., 2021; Solomon et al., 2021).

Pathologically, PF is characterized by re-epithelialization,

fibroblast activation, and increased collagen deposition

(Wijsenbeek et al., 2022). SARS-CoV-2 infection accelerates the

development of PF through direct lung tissue damage from viral

invasion, dysregulated immune responses, abnormal extracellular

matrix deposition, and tissue remodeling, mechanisms similar to

those seen with other respiratory viruses. This process involves the

activation of various molecules and signaling pathways, including

TGF-b, TNF-a, IL-1b, IL-6, IL-13, and autophagy inhibition

(Huang and Tang, 2021; Bailey et al., 2024). Once PF develops,

patients often have a poor prognosis and require prompt antiviral

and anti-fibrotic treatments (Soni et al., 2024). The elderly are

particularly vulnerable to SARS-CoV-2 (Liu et al., 2020), with a

higher likelihood of developing severe pneumonia and PF, resulting

in worse overall outcomes (Al-Salameh et al., 2021; Farshbafnadi

et al., 2021). Therefore, early identification of elderly individuals at

high risk for PF, along with the development and implementation of

personalized treatment plans, is crucial for improving the prognosis

of the elderly population infected with SARS-CoV-2.

This study established a risk prediction model incorporating five

risk factors for PF in elderly patients with SARS-CoV-2 infection. The

total prediction score is calculated by summing the scores of these five

independent variables, with the resulting score used to estimate the

probability of PF. Notably, the AUC and DCA demonstrated the high

accuracy of this prediction model. Among the five predictors, male

gender was identified as a significant risk factor for PF after COVID-

19 infection, both in younger and older patients (Ley et al., 2012; Kam

et al., 2019; Johnston et al., 2023). The underlyingmechanism is likely

related to the effect of androgens in exacerbating fibrotic progression

through enhanced inflammatory responses and fibroblast activation

(Becerra-Diaz et al., 2020).

As a key inflammatory mediator, the dynamic changes in serum

CRP levels not only accurately reflect systemic inflammation

intensity (Zhang et al., 2023) but also exert multiple pro-fibrotic

effects during PF. Following SARS-CoV-2 infection, CRP activates

the classical complement pathway by binding to complement

component C1q, while also interacting with Fcg receptors on

macrophage surfaces through its ligand-binding domain. These

mechanisms synergistically enhance monocyte-macrophage

chemotaxis and infiltration into lung tissue, promote the release

of inflammatory cytokines, and ultimately establish a pro-fibrotic

inflammatory microenvironment (Junqueira et al., 2022; Lage et al.,
Frontiers in Cellular and Infection Microbiology 08
2022; Meroni et al., 2023). CRP demonstrates a significant

correlation with mortality prognosis in SARS-CoV-2-infected

patients, with its elevation magnitude positively associated with

both the risk of pulmonary fibrotic lesion development and the

degree of radiographic progression (Xie et al., 2022; Ouyang et al.,

2024). Additionally, CRP has shown strong predictive performance

in forecasting the occurrence of rheumatoid arthritis-associated PF

(Xue et al., 2022). Elevated CRP levels have been independently

linked to reduced 5-year survival rates in patients with PF (Stock

et al., 2024). In the progression of post-SARS-CoV-2 infection PF,

this study revealed a significantly increased risk of fibrotic

development in elderly infected individuals with higher CRP

levels. Notably, CRP was identified as a key factor associated with

the occurrence of SARS-CoV-2-induced PF in elderly patients.

Neutrophils, macrophages, and dendritic cells are crucial lung

cell populations and act as first responders during lung infection or

injury (Chen et al., 2021; Graf et al., 2023). Neutrophils play a dual

regulatory role in the development of PF following SARS-CoV-2

infection. As primary effector cells of innate immunity, neutrophils

exhibit abnormal activation during infection. By releasing

neutrophil extracellular traps (NETs), they contribute to a

thromboinflammatory microenvironment. This process involves

platelet activation and initiation of the coagulation cascade (Lee

et al., 2021; Herro and Grimes, 2024), as well as direct participation

in pathological tissue remodeling during lung injury repair via

NET-mediated cascades (Ackermann et al., 2021). On the pro-

inflammatory level, effector molecules such as cathepsins released

from NETs degrade components of the alveolar epithelial basement

membrane, compromising the integrity of the alveolar-capillary

barrier (Pulavendran et al., 2020). Simultaneously, NETs activate

the NF-kB signaling pathway in lung interstitial fibroblasts through

TLR-9 receptors, inducing excessive secretion of pro-fibrotic factors

like IL-6 (Shao et al., 2022). These mechanisms ultimately drive

abnormal fibroblast proliferation and excessive extracellular matrix

deposition, leading to irreversible fibrotic lesions (Negreros and

Flores-Suárez, 2021). Patients with PF exhibit significantly higher

neutrophil ratios compared to non-fibrotic controls (Lang et al.,

2021). Notably, a neutrophil ratio exceeding 68.3% has been

identified as an independent risk factor for predicting poor

prognosis in patients with idiopathic PF (Cheng et al., 2023). This

study also confirmed that elderly patients with PF have significantly

higher neutrophil proportions compared to those without fibrosis.

The time from symptom onset to hospitalization is another

important, yet often overlooked, factor that significantly predicts

SARS-CoV-2-induced PF in the elderly. Among critically ill patients,

lung parenchymal damage tends to be more severe, and delayed

hospital admission may contribute to prolonged viral replication and

uncontrolled inflammatory responses (Smulowitz et al., 2021).

Delayed admission has been identified as a significant predictor of

increased mortality rates in severe cases (Akhtar et al., 2021).

This study highlights that combining clinical features with

laboratory indicators enhances clinicians’ ability to assess the risk

of PF in elderly SARS-CoV-2-infected patients. Through

multivariate logistic regression analysis, key factors contributing

to the development of PF were identified, including percentage of
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neutrophils, CRP, gender, diagnostic classification, and the time

from symptom onset to admission. These factors are commonly

available and easily accessible. Moreover, the prediction model

developed in this study simplifies complex clinical data into an

intuitive nomogram, which was validated using ROC curve,

calibration curve, and DCA, ultimately demonstrating good

predictive efficacy. Most existing prediction models for PF focus

on the general population, often neglecting the unique

characteristics of the elderly (Lee et al., 2022; Ouyang et al., 2024;

Xu et al., 2024). While previous studies have identified potential risk

factors, such as comorbidities, obesity, and abnormal laboratory

indicators (D’Agnillo et al., 2021; Schuliga et al., 2021),

comprehensive validation of their predictive value remains

insufficient. In contrast, this study specifically targets the elderly

population, addressing a critical gap in population-specific

prediction models. By innovatively incorporating the temporal

dimension (time from symptom onset to hospital admission)

along with laboratory indicators in the nomogram, this approach

allows for real-time clinical assessment. This approach facilitates

early intervention, such as initiating antifibrotic therapies

(Pirfenidone/Nintedanib) in combination with pulmonary

rehabilitation for high-risk patients. The model shows consistent

stability through both validation and external testing phases,

underscoring its robust clinical generalizability. Clinicians can

thus use this model to more effectively and efficiently predict the

risk of PF in elderly patients infected with SARS-CoV-2.

This study has several limitations. First, it is a retrospective study,

with data primarily collected from electronic records, which are

inherently limited. Additionally, as the data were sourced from two

different hospitals within the similar healthcare system, the

generalizability of the findings to broader populations requires

further validation in future studies. Second, some patients may

have received pre-admission interventions, such as traditional

Chinese medicine therapies, antiviral treatments, or glucocorticoids.

These treatments could influence the intensity of inflammatory

responses and tissue repair processes, potentially affecting the

development of PF. Furthermore, such interventions might have

impacted post-admission laboratory parameters, including serum

inflammatory markers and chest HRCT imaging findings. Despite

these limitations, internal and external validations were performed

using data from the first hospital, along with supplementary data

from the second hospital (collected during the same period), to test

the prediction model, thereby ensuring its accuracy and applicability.
Conclusion

This study developed a nomogram for predicting secondary PF

in the elderly following SARS-CoV-2 infection. Rigorous internal

and external validations demonstrated that the model exhibits

excellent discrimination and calibration, making it a useful,

intuitive, and individualized clinical tool for assessing the risk of

PF in elderly SARS-CoV-2-infected patients. Ultimately, it can

assist clinicians in early management and intervention.
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