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Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction that is

caused by sepsis without direct brain injury or central nervous system infection

and is manifested as anxiety-like behavior and cognitive dysfunction. The

microbiota-gut-brain axis, on the other hand, is a bidirectional communication

network between the gut and the brain that modulates host behavior and

cognitive function in many ways and is of central importance in the

preservation of general health and homeostasis. Given the functional roles

attributed to the microbiota-gut-brain axis (MGBA), contemporary research is

progressively focused on elucidating relationships between SAE and alterations

in compositional and quantitative intestinal microbiota profiles. This review

consolidates interdisciplinary insights from immunology, microbiology,

neuroendocrine signaling, and neural pathophysiology to evaluate the

mechanistic contribution of the MGBA to the relief of cognitive impairments in

SAE. By unifying these perspectives, with the aim of preventing or enhancing

SAE-related neurological dysfunction for the formulation of MGBA-targeted

therapeutic strategies.
KEYWORDS
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1 Introduction

Sepsis is a life-threatening systemic disorder as a result of an unbalanced host response

to infection that progresses to multi-organ dysfunction by means of pathological immune

activation (Singer et al., 2016). SAE is one of the most significant complications of sepsis

and occurs in 30% to 70% of sepsis patients (Han et al., 2023). Individuals with SAE

commonly present with a spectrum of cognitive impairments, including impaired sustained

attention, memory dysfunction, and spatial disorientation. These neuropsychological

sequelae not only adversely affect the acute recovery phase but also compromise long-

term functional independence and overall quality of life (Zong et al., 2019). Clinical
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investigations demonstrate that individuals with sepsis exhibit a

significantly elevated mortality risk. This risk escalates two- to

threefold in cases where SAE coexists (Chen et al., 2020; Ge et al.,

2022). However, SAE arises from multifactorial interactions among

diverse pathophysiological processes, including excessive glial cell

activation, persistent neuroinflammatory activity, compromised

blood-brain barrier (BBB) integrity, and edematous alterations in

vascular and cellular structures. These mechanisms collectively

disrupt neural homeostasis, contributing to SAE progression

(Centner et al., 2024). The precise molecular mechanisms

underlying cerebral injury in the context of sepsis remain poorly

characterized. This knowledge gap has hindered the development of

targeted therapeutic interventions in clinical practice.

The gastrointestinal system serves as a critical factor in the

sepsis and multiple organ dysfunction syndrome (MODS), acting as

a pivotal driver in critical illness. Mediating this relationship, the

microbiota-gut-brain axis (MGBA) constitutes a bidirectional

communication network that integrates intestinal activity with

central nervous system functions. This axis modulates essential

physiological processes including immune regulation, nutritional

metabolism, and circadian rhythms through three primary

mechanisms: microbial interactions, neurological pathways, and

humoral signaling mechanisms (Qian et al., 2023). Disruption of

gut microbiota in SAE not only induces dysregulated MGBA

signaling and promotes heightened production of pro-

inflammatory mediators but also impairs critical processes

associated with neurotransmitter synthesis, degradation, and

blood-brain barrier permeability (Yan et al., 2023). This series of

alterations has the potential to exacerbate SAE. The currently

employed strategies for managing SAE, based on gut flora

regulation by MGBA, have been proven to be of great value.

Probiotic supplementation, colony transplantation, and other

novel therapeutic approaches are among the potential

interventions that have been explored. This review will focus on

the research progress of MGBA in the field of SAE, with the

objective of providing a new theoretical basis and research

reference for in-depth investigation of the pathogenesis and

therapeutic approaches of SAE.
2 Gut microbiota alterations in SAE

Under physiological conditions, the composition of the gut

microbiota is characterized by stability and diversity. The protective

functions of the microbiota extend even to the nervous system,

where it regulates the differentiation of regulatory T cells and

promotes anti-inflammatory responses through the production of

specific metabolites. Additionally, the microbiota can regulate host’s

mood and cognitive functions by stimulating the enteric nervous

sys tem (ENS) . The ENS, in turn , produces var ious

neurotransmitters, such as 5-hydroxytryptophan (5-HT) and

glutamate, which interact with the cerebral cortex (Ragonnaud

and Biragyn, 2021). The presence of gut microbes has been

demonstrated to stimulate the secretion of glucagon-like peptide-

1 (GLP-1) by endocrine cells. This, in turn, activates the vagus nerve
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within the intestine, thereby facilitating the transmission of signals

to the brain. These signals influence appetite, metabolism, and, thus

regulate energy balance and the psychological state (Zhang

et al., 2022).

However, the diversity of gut microorganisms was significantly

reduced and the community structure was markedly altered

following damage to the gut barrier. For example, the abundance

of the thick-walled phylum is significantly reduced, while the

relative abundance of the facultative phylum increases. This

affects the systemic metabolic and immune status of the host.

During sepsis, the expression of tight junction proteins such as

occludin and claudin is down-regulated and the intestinal barrier

function is disrupted. This leads to a considerable decrease in

butyric acid-producing bacteria, such as Rostridium spp. and

Clostridium perfringens, and an increase in the number of

pathogenic bacteria, such as Enterobacteriaceae. Subsequently,

elevated levels of plasma lipopolysaccharides (LPS) emerge,

inducing systemic inflammatory processes and triggering the

secretion of numerous pro-inflammatory mediators such as

interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a). These
mediators traverse the BBB, leading to excessive activation of

cerebral microglia and astrocytes, thereby instigating

neuroinflammatory cascades. The compromised integrity of the

BBB permits the passage of IL-6 and other inflammatory mediators

into neural tissues, which further stimulates the hyperactivity of

glial cells (Liu et al., 2022; Zhao and Jia, 2024). Pathogenic

communication between systemic inflammatory signaling and

immune activation within the CNS propagates chronic

neuroinflammation. The chronic inflammatory process is a

fundamental mechanism in SAE pathogenesis (Figure 1).
3 Mechanisms of action of MGBA in
SAE

3.1 Neural pathway

The brainstem within the MGBA is integrally involved in

processing mechanical and chemical signals transmitted via vagal

afferent pathways. Research indicates that acetylcholine originating

in the medullary regions interacts with a7 nicotinic acetylcholine

receptors (a7-nAChR) expressed on enteric neurons, astrocytes,

and microglial cells. This interaction modulates neuroinflammatory

responses and synaptic plasticity mechanisms, thereby influencing

higher-order neural functions including cognitive processing and

memory formation. The vagus nerve primarily functions through

the cholinergic anti-inflammatory pathway (CAP). By suppressing

excessive inflammatory activity, significantly mitigates the

likelihood of shock and multi-organ dysfunction linked to septic

conditions (Pontes-Arruda et al., 2011). Extensive research

demonstrates elevated levels of pro-inflammatory cytokines,

including interleukin-1b (IL-1b), TNF-a, and IL-6, in murine

sepsis models. Nevertheless, stimulation of the CAP via GTS-21

dihydrochloride has been observed to effectively mitigate the

decline in these pro-inflammatory mediators (Xie et al., 2020).
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Prior research indicates that intraperitoneal injection of

l ipopolysacchar ide (LPS) in murine models disrupts

acetylcholine-mediated signaling pathways within hippocampal

regions, potentially altering cognitive and behavioral functions

associated with its activity. This decline was associated with

aggravated deficits in neuronal activity and synaptic adaptability

in the hippocampus, which subsequently precipitated the

emergence of cognitive deficits. Cholinergic neurotransmission

could be seen to mitigate the damage to neuronal function and

synaptic plasticity in the hippocampus, thereby enhancing sepsis-

induced cognitive dysfunction (Yin et al., 2023a). As noted,

breakdown of neurotransmitters within the brain, specifically,

lack of cholinergic transmission, triggers release of heterogeneous

pro-inflammatory mediators and hyper-activation of microglia to

amplify neural responses toward end accumulation of

neuroinflammation along with cognit ive impairment.

Furthermore, the occurrence of aberrant alterations in the

community of gut microbiota is also expected to have a direct

influence on the brain through the vagus nerve and thus cause the

induction of an inflammatory response of a systemic nature. Gut

flora of healthy rats implanted into septic rats has been found to

enhance learning and memory in the host rats. However, the same

effect is disrupted when the vagus nerve is severed (Li et al., 2018).

Besides, mice models exposed to lipopolysaccharide and subjected

to subdiaphragmatic vagotomy (SDV) had elevated levels of TrkB/

brain-derived neurotrophic factor (BDNF) expression in the

hippocampus. This observation indicates that SDV effectively

countered the LPS-induced alterations in intestinal microbiota

and cognitive dysfunction (Basavaraju et al., 2023). It can be

observed that the vagus nerve may influence the development of

systemic inflammatory response by regulating gut flora and

improving cognitive function. Further studies on the mechanism

of vagus nerve activity in SAE have the potential to provide novel

therapeutic strategies for its treatment.
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Accordingly, stimulation in the intestinal tract can be

transmitted via spinal afferent nerve fibers to specific regions of

the brain, including the sensory cortex. During the septic state,

inflammatory mediators released from peripheral tissues bind to

corresponding receptors on spinal afferent nerve fibers,

subsequently activating immune cells such as microglia and

astrocytes within the brain. Consequently, neuronal dysfunction

occurs, inducing the clinical manifestations characteristic of SAE

(Chen et al., 2024). This pathway plays a significant role in

maintaining cerebral metabolic homeostasis. During sepsis,

systemic metabolic imbalances induce disrupted cerebrovascular

regulation, impaired glucose utilization, and neuronal

mitochondrial impairment (Xu et al., 2022). These lead neuronal

injury, thereby facilitating the progression of SAE (Figure 2a).
3.2 Neuroendocrine pathways

3.2.1 The hypothalamic-pituitary-adrenal axis
The hypothalamic-pituitary-adrenal (HPA) axis functions as a

primary regulatory network for physiological stress adaptation,

facilitating enhanced mobilization of energy reserves while

curtailing non-vital metabolic processes to preserve critical

physiological functions. Activation of this axis triggers elevated

production and release of key endocrine signaling molecules,

in c lud ing cor t i co t rop in - r e l e a s ing hormone (CRH) ,

adrenocorticotropic hormone (ACTH), and cortisol. During the

initial phases of sepsis, excessive activation of the HPA axis induces

dysregulation in CRH, ACTH, and cortisol levels. This imbalance

subsequently promotes neuroinflammatory processes, ultimately

culminating in brain damage (Spencer-Segal et al., 2020).

Specifically, CRH induces the synthesis of pro-inflammatory

mediators and interacts with specific microglial receptors, thereby

activating the TLR4/NF-kB signaling pathway. This activation
FIGURE 1

Different states of the microbe-gut-brain axis.
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facilitates microglial phenotypic polarization, which contributes to

the modulation of neuroinflammatory processes. ACTH interacts

with melanocortin receptors within the CNS, suppressing immune

cell activity and producing anti-inflammatory outcomes. Cortisol

suppresses the production of pro-inflammatory mediators, such as

cytokines and prostaglandin E2 (PGE2), while concurrently

a t t e nua t i ng th e r e c ru i tmen t and ac cumu l a t i on o f

polymorphonuclear leukocytes (PMNs). Furthermore, cortisol

promotes the polarization of macrophages toward the M2c

phenotype, facilitating a modulatory effect on inflammatory

pathways and contributing to the resolution of immune

overactivation (Sun et al., 2022; Yu et al., 2023). Experimental

data indicated that hydrocortisone administration in septic mice led

to decreased plasma ACTH concentrations and reduced expression

of CRH mRNA (Téblick et al., 2022). These neuroendocrine

changes correlated with enhanced behavioral outcomes,

suggesting a potential therapeutic effect on neurological function

during sepsis. Furthermore, glucocorticoids have been shown to

stimulate the HPA axis, resulting in heightened intestinal

permeability. Consequently, Th17 cells are induced to release

interleukin 17A (IL-17A), initiating a series of events that

provoke inflammatory reactions within both the gastrointestinal

tract and the central nervous system (Figure 2b) (Yang et al., 2023).

In summary, there is a strong correlation between the

hyperactivation of the HPA axis and the development of two

major pathologies: severe immunosuppression and imbalance in

the regulation of intestinal homeostasis. These pathologic changes,

in turn, lead to the development of SAE.
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3.2.2 Other neuroendocrine hormones
GLP-1 receptors are widely distributed throughout the central

nervous system. During the initial phase of sepsis, heightened GLP-

1 concentrations augment metabolic energy utilization as a

physiological adaptation to infection, primarily through

modulation of glucose homeostasis. However, as the condition

advances, persistent systemic inflammation coupled with

compromised intestinal barrier integrity disrupts GLP-1 secretory

patterns or induces impairments in receptor signaling (Perl et al.,

2018). These pathophysiological alterations exacerbate metabolic

dysregulation, further complicating the host’s adaptive capacity.

Research indicates that GLP-1 receptor activation has the capacity

to suppress excessive microglial activity and curtail the production

of pro-inflammatory mediators, mitigating neuroinflammation in

SAE. Conversely, a reduction in beneficial gut microbiota may

result in diminished GLP-1 production, potentially exacerbating

SAE pathogenesis through dysregulated inflammatory pathways

(Diz-Chaves et al., 2018; Li et al., 2018). This research looks at

the effect of GLP-1 receptor agonists on intestinal toxins and

systemic markers of inflammation. Findings are that these drugs

effectively reduce the levels of toxic substances while improving

cortical blood flow and inhibiting neuronal death (Reich and

Hölscher, 2022). The protective effects on the nerve cells are

correlated with reduced brain damage, as evidenced by better

metrics of neural tissue integrity.

Ghrelin and vasoactive intestinal peptide (VIP) are

neuropeptides with broad-ranging central nervous system

influences. Experimental research indicates that ghrelin inhibits
FIGURE 2

Four pathways through which the gut-brain axis transmits inflammatory signals.
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microg l i a l and as t rocy t i c ce l l a c t i va t ion , r egu la t e s

neuroinflammatory signaling pathways, and increases levels of

major neurotransmitters such as dopamine and acetylcholine.

These concerted actions cumulatively increase neuronal

excitability and promote synaptic plasticity, allowing adaptive

neural network reconfiguration. This peptide hormone also

stimulates intestinal epithelial cell proliferation and increases the

expression of tight junction-associated proteins. Experiments show

that gastrin maintains the intestinal barrier, reduces bacterial and

endotoxin passage across the mucosal surface, and regulates

neuroinflammatory phenomena by stimulating systemic anti-

inflammatory mechanisms (Ishioh et al., 2020; Sarlaki et al.,

2022). VIP, however, acts on CNS receptors, inhibiting microglial

activation and regulating neuroinflammatory phenomena and

cerebral blood flow patterns. Through this mechanism, VIP can

produce neuroprotection, preventing SAE development. VIP,

together with neuropeptide Y (NPY), suppresses inflammatory

mediator release and increases neuronal tolerance to stress factors

during the early phase of sepsis. As sepsis progresses, however, the

sustained increase in NPY leads to metabolic derangements and

neurological impairment (Figure 2b) (Li et al., 2019a; Bian et al.,

2024). These findings indicate that VIP and NPY exhibit distinct

functional roles during distinct phases of sepsis progression,

modulat ing pathophysiological processes in a stage-

dependent manner.
3.3 Immune pathway

3.3.1 Intestinal immunity
Immune signaling molecules generated by intestinal immune

cells exhibit bidirectional interactions with the gut microbiota.

These bioactive compounds can permeate the BBB, subsequently

stimulating CNS immune cells and triggering neuroinflammatory

cascades (Bostick et al., 2022). During sepsis, the activation of the

gut immune system instigates a series of physiological responses,

including the release of various cytokines. These cytokines fulfill a

dual role, acting to stimulate the release of inflammatory substances

from cerebrovascular endothelial cells while concomitantly

potentially compromising the integrity of the BBB (Pinitchun

et al., 2024). Th17 cell generation and activity in intestinal

settings play a bifunctional role: the cells induce local

inflammation but also create immune homeostasis. In the course

of sepsis development, Th17 cell populations relocate to the CNS,

where they secrete pro-inflammatory mediators interferon-g (IFN-
g) and IL-17A to induce microglial activation. The activated

microglia then increase the production of interleukin-1b (IL-1b)
and interleukin-23 (IL-23), which, in turn, augments IL-17A

expression (Figure 2c) (Moraes et al., 2021). The cycle facilitates

neuroinflammatory processes, worsening CNS pathology.

Furthermore, IL-23 drives Th17 cell differentiation toward a pro-

inflammatory phenotype that secretes GM-CSF+, IFN-g+, and
CXCR3+ subsets. This phenotypic alteration disrupts the

harmony of neuroimmune interactions and imparts a significant

dysregulation of inflammatory signaling pathways implicated in
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cerebral immune regulation (Gao et al., 2024b). The findings point

to the pivotal role of Th17 lymphocytes in inflammatory disorders

of the central nervous system, including SAE and cerebral ischemic

injury. However, additional studies are warranted to elucidate their

underlying molecular mechanisms and determine their therapeutic

potential, subject to further empirical validation.

3.3.2 Brain immunity
Microglia, the brain’s resident immune cells, exhibit two states

of polarized activation, known as M1 and M2, which have opposing

functional roles in neuroinflammation and neuroprotection. The

M1 phenotype initiates inflammatory pathways by releasing

mediators like high mobility group protein 1 (HMGB1) and

matrix metalloproteinase 12 (MMP12), which enhance pro

inflammatory signaling (He et al., 2023). Studies show that

microglia in animal models of SAE exhibit long term activation

associated with the HMGB1 dependent autoregulatory signaling

pathway. This persistent hyperactivity induces pathological

alterations in synaptic excitatory functional and structural

properties and reductions in neuronal activity in the

hippocampus. These dysfunctions progressively undermine

neuroplasticity, causing cognitive impairments (Yin et al., 2023b).

Conversely, the M2 phenotype is associated with anti-inflammatory

and repair processes. M2-type microglia secrete brain-derived

neurotrophic factor (BDNF), which acts via the regulation of

synaptic plasticity. This not only reduces neuronal cell death in

the hippocampus of septic mice, but also improves cognitive

processes such as memory consolidation and learning (Choi et al.,

2024). During the initial progression of sepsis, the CCL/CCR5

signaling axis facilitates the translocation of M1-polarized

microglia and upregulates the connexin Claudin-5, which

improves the stability of the BBB. However, persistent

inflammatory activity shifts microglial polarization toward a

phagocytic M2 phenotype, which destabilizes BBB integrity

through structural degradation and compromised barrier

permeability. This breakdown enables infiltration of harmful

peripheral agents, including inflammatory mediators and

n e u r o t o x i c c ompound s , i n t o t h e CNS , i n d u c i n g

neuroinflammatory cascades (Lin et al., 2023; Yang et al., 2024).

It has been demonstrated that the augmentation in the proportion

of M1-type microglia, in conjunction with the imbalance between

M1 and M2 polarization, results in an escalation of inflammatory

mediator release. This, in turn, precipitates neuronal damage and

neuroinflammation (Figure 2c).

Astrocytes, the most prevalent glial cells within the CNS, play a

pivotal role in ensuring the maintenance of the BBB, a process that

facilitates neuroprotection. As demonstrated by the research, the

secretion of pro-inflammatory cytokines such as IL-1a and TNF-a
by activated microglia in the context of brain injury results in the

loss of function of type A1 astrocytes, thereby altering their role in

normal astrocyte function. Emerging evidence suggests that non-

hepatic hyperammonemia enhances aquaporin-4 (AQP4)

expression in astrocytes via the gut-microbiota-brain axis

(MGBA), inducing astrocyte edema, decreasing cerebral blood

flow, and causing neuronal damage, leading to worsening of SAE
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(Zhao et al., 2024). Further studies indicates that AQP4 exacerbates

cognitive impairments linked to sepsis by suppressing astrocyte-

mediated autophagy and impairing anti-inflammatory functions.

This alteration is mainly regulated by molecular signaling pathways

involving peroxisome proliferation-activated receptor (PPAR) and

mammalian target of rapamycin (mTOR) systems (Zhu et al.,

2023). Recent findings indicate a link between sepsis and

intestinal microbial dysbiosis, coupled with decreased levels of

microbial-derived metabolites such as indole propionic acid

(IPA). And, IPA suppresses NLRP3 inflammasome activation in

microglial cells and attenuates LPS-induced IL-1b release through

mechanisms dependent on the aryl hydrocarbon receptor (AhR).

This intervention disrupts neuroinflammatory signaling cascades,

thereby mitigating inflammation-mediated damage in neural tissues

(Fang et al., 2022). This interplay suggests a plausible pathway

through which intestinal microbiota may mediate immune

regulation and influence neuroinflammatory processes via

modifications in neuronal activity.
3.4 Microbiological regulation

3.4.1 Short-chain fatty acids (SCFAs)
Short-chain fatty acids (SCFAs), synthesized through microbial

fermentation of dietary fibers in the gut, play a vital role in

preserving the structural and functional integrity of the gut

epithelial barrier while regulating immune system equilibrium.

Beyond their local gastrointestinal roles, these metabolites

influence neurotransmitter activity and traverse the blood-brain

barrier. Within the central nervous system, SCFAs upregulate tight

junction protein synthesis in brain regions like the frontal cortex and

hippocampus, reducing vascular permeability in neural tissues and

ameliorates cognitive impairments linked to inflammatory-driven

neurodegenerative or metabolic disorders (Zhang et al., 2023b).

However, sepsis-induced gut microbiota dysbiosis correlates with

diminished SCFAs levels, contributing to astrocyte proliferation

within the frontal cortex and hippocampal regions. Such elevations

in astrocytic activity are further implicated in the induction of

neurocognitive impairments (Zhang et al., 2023b). Emerging

evidence suggests that SCFAs modulate neuroinflammatory

pathways by stimulating NLRP6 inflammasomes within the colon.

These compounds enhance hippocampal neurogenesis, evidenced by

elevated doublecortin-positive (DCX+) neuronal populations, while

concurrently suppressing neuroinflammatory markers in

hippocampal tissues. Such mechanisms are further implicated in

attenuating systemic neuroinflammation associated with SAE

(Figure 2d) (Li et al., 2019b). Regarding the regulation of oxidative

stress, it has been shown that butyrate activates the Nrf2 signaling

pathway in response to oxidative stress by inhibiting histone

deacetylase (HDAC) (Jang et al., 2021). This is extremely critical

to attenuate inflammation and cellular damage in septic states. In

terms of disease regulation, SCFAs not only play an anti-

inflammatory role by inhibiting HDAC and activating some G-

protein-coupled receptors (GPCRs) on the cell surface, but also
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inhibit inflammation by inhibiting the overactivation of midbrain

nigrostriatal microglia through their metabolites, such as sodium

butyrate, which restores their function and induces phenotypic

transformation (Zhang et al., 2023a). Thus, SCFAs are associated

with sepsis intestinal flora disorders, which impact various

physiological functions. This association offers novel mechanistic

approaches to the treatment of sepsis.

3.4.2 Neurotransmitter precursors and
metabolites

Tryptophan is a precursor of 5-HT and kynurenine. Inflammatory

responses can activate indoleamine 2,3-dioxygenase (IDO), resulting

in a massive conversion of tryptophan to kynurenine. This may be

associated with an exacerbation of SAE-related neuroinflammation. In

the Alzheimer’s disease mouse model, IDO inhibitors reduced

kynurenine production, significantly attenuated microglia activation

and neuroinflammation in the brain, and ameliorated cognitive

dysfunction in mice (Lewerenz and Maher, 2015). Furthermore,

quinolinic acid, a metabolite of kynurenine, has been shown to

possess neurotoxic properties. In the context of SAE, quinolinic acid

levels have been observed to exhibit a marked increase, which

subsequently activates N-methyl-D-aspartate (NMDA) receptors.

This activation results in an accumulation of intra-neuronal

calcium, leading to neuronal damage and death (Lee et al., 2024).

Subsequent research demonstrated a pathological association between

depressive-like behaviors and cognitive impairments in patients with

SAE, correlating with reduced 5-HT concentrations. Experimental

interventions involving tryptophan supplementation or

pharmacological regulation of its metabolic pathways were

associated with amelioration of neuropsychiatric manifestations,

suggesting a mechanistic link between 5-HT homeostasis and

neurological outcomes in SAE (Zhang et al., 2024). However,

further research is needed to investigate the pathophysiologic

mechanisms of how tryptophan affects SAE and to find possible

points of intervention to mitigate the long-term effects of sepsis on

brain function.

In neurodegenerative diseases, excessive amounts of glutamine

overstimulate NMDA and a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors. Overstimulation of

receptors by these receptors initiates a series of detrimental

cellular mechanisms, including excessive intracellular calcium,

mitochondrial damage, and enhanced oxidative stress within the

neurons. These processes slowly compromise neuronal integrity,

both structural stability and functional competence, and culminate

in neuronal apoptosis (Figure 2d) (Huo et al., 2021). There is recent

evidence implicating that disruption of glutamine homeostasis can

contribute to the pathogenesis of sepsis. Manipulation of glutamine

metabolism—through pharmacologic regulation of glutamine

synthetase, enzymatic modulation, or administration of synthetic

analogs—can be neuroprotective, reducing neuroinflammatory

processes and preserving neurological function during systemic

inflammation (Revuelta et al., 2020). This represents an appealing

therapeutic alternative to manage sepsis-associated cognitive

impairments. Glutamate is also a precursor of g-aminobutyric
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acid (GABA) through enzymatic conversion by glutamic acid

decarboxylase (GAD). In SAE, a pronounced reduction in GAD

activity is observed, concurrent with a substantial upregulation of

GABA transaminase (GABA-T). This dysregulation disrupts GABA

homeostasis, causing diminished cerebral GABA concentrations.

Consequently, heightened neuronal excitability ensues,

p rec ip i t a t ing exc i to tox i c neurona l in ju ry . Notab ly ,

pharmacological activation of GABA receptors through agonist

administration demonstrates neuroprotective efficacy, attenuating

such damage (Gao et al., 2024a).
4 MGBA-based treatment of sepsis-
associated-encephalopathy

4.1 Probiotics

Probiotic interventions are now widely integrated into clinical

protocols, with Lactobacillus spp. and Bifidobacterium spp.

frequently utilized as therapeutic agents. These microorganisms exert

modulatory effects on host immunity and neurological function by

restoring equilibrium within the intestinal microbial ecosystem.

Notably, Bifidobacteria demonstrate pronounced efficacy in

optimizing the structural composition of enteric microbiota.

Experimental studies using SAE mouse models treated with

Bifidobacterium strains revealed a notable elevation in the

proportional representation of commensal bacteria within the

gastrointestinal tract. This shift triggered a marked attenuation of

intestinal inflammatory activity, thereby establishing bidirectional

communication between gut homeostasis and neuroinflammatory

pathways, which correlated with reduced neuroinflammatory

pathology (Dong et al., 2022). Furthermore, research indicates that

Bifidobacteria enhance ZO-1 protein synthesis within the intestinal

epithelium. These microorganisms also diminish gut barrier

permeability, thereby inhibiting the translocation of pathogenic

agents and endotoxins into systemic circulation (Kim et al., 2022).

Such mechanisms effectively mitigate the risk of initiating a systemic

inflammatory cascade. Research indicates that the presence of

Lactobacillus spp. in the gut microenvironment stimulates the

growth and functional engagement of immune cell subsets,

particularly regulatory T cells (Tregs), in conditions associated with

SAE. Moreover, these bacteria secrete essential immunomodulatory

molecules, including interleukin-10 (IL-10), which has a primary role

in the inhibition of excessive inflammatory responses via the regulation

of harmful cytokine signaling pathways (Chen et al., 2022). Lactobacilli

indirectly influence tryptophan metabolism via intestinal microbial

metabolite interactions, thereby modulating neurochemical levels such

as 5-HT. Regulation of this neurotransmitter has been linked to

improvement in spatial navigation, memory consolidation, and

cognition performance metrics (Gao et al., 2020).
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4.2 Fecal mushroom transplantation

Fecal microbiota transplantation (FMT) has been shown to be

an effective novel therapeutic approach to SAE. In preclinical

studies, SAE-carrying mice that received FMT from healthy

donors exhibited gut microbiota structures very similar to donor

patterns, with significant restoration of microbial diversity and

enrichment of beneficial bacteria such as Lactobacillus and

Bifidobacterium. In addition, FMT treatment was correlated with

diminished levels of systemic pro-inflammatory cytokines such as

TNF-a and IL-6. These immunological changes were paralleled by

enhanced motor function and exploratory behavior in treated

animals, suggesting alleviation of SAE-mediated neurological

dysfunction (Gai et al., 2021). The findings can be mechanistically

accounted for by FMT-induced upregulation of tight junction

proteins in recipient animals’ intestines. Improvement in such

barrier integrity limits the translocation of enteric bacteria and

endotoxins into systemic circulation and their dissemination into

peripheral tissues. Clinical investigations also demonstrate that

selective FMT administration in selected populations of SAE

patients is associated with measurable improvement of cognitive

function and executive control, as corroborated by standardized

neurobehavioral testing (Hazan, 2020). Nonetheless, additional

studies are required to determine the therapeutic applicability of

FMT in treating SAE. This is due to the fact that the variability

realized in donor microbial compositions and methodological

heterogeneity in treatment regimen approaches might undermine

the strength of therapeutic consistency. To surmount these

shortcomings, strictly controlled clinical trials are necessary for

determining the most effective paradigms of administration and

facilitating reproducible clinical findings.
4.3 Targeted therapies

In the clinic, glucocorticoid receptor (GR) antagonists have

emerged as a promising therapeutic approach in the treatment of a

variety of pathological disorders. SAE patients who received GR

antagonist therapy exhibit reduced neuroinflammatory markers, a

benefit in addition to the well-characterized cognitive improvement

of attentional capacity and memory retention, which is provided by

this pharmacologic treatment. Experimental research using murine

models also demonstrates that pharmacologic disruption of

glucocorticoid signaling pathways resulted in profound reduction

of anxiety-re lated phenotypes with normalizat ion of

monoaminerg ic neurotransmit ter sys tems, inc luding

norepinephrine and dopamine levels (Karen et al., 2021). Clinical

research reveals that adrenocorticotropin-releasing hormone

receptor antagonists can possibly increase patient survival and

reduce the occurrence of complications when properly used.
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5 Conclusion

Our comprehensive research on the mechanism of action of

MGBA in SAE has offered new insights into the pathologic

mechanisms and interventional strategies of SAE. These involve

multi-level signaling of neural, endocrine, immune, and metabolic

regulation, and the ecological balance between the host and

microorganisms. Recent studies have elucidated that gut dysbiosis

in SAE drives systemic inflammatory responses and penetrates the

blood-brain barrier by releasing pathogen-associated molecules and

metabolite disorders, ultimately leading to neuroinflammation and

brain function damage. However, the evolution of gut flora

structure and function during different periods of sepsis may have

differential regulatory effects on specific cells such as microglia and

astrocytes in the brain. This suggests that our intervention strategies

need to be tailored to the progression of the disease. For instance,

the initial phase is characterized by the suppression of systemic

inflammatory storms, while the subsequent phase is marked by the

emphasis on ecological restoration of the colony and neuro-

regeneration. Moreover, metabolites have the potential to

influence the long-term prognosis of brain function, underscoring

the significance of prompt intervention.

Current therapeutic strategies targeting MGBA show some

potential, but their clinical application still faces the dual challenges

of precision and safety. Therapies such as probiotics and FMT have

been shown to improve cognitive function in animal models.

However, the efficacy of these therapies has been variable in clinical

studies due to strain heterogeneity, individual tolerance differences,

and differences in the host intestinal microenvironment. For instance,

severe disruption of gut ecology in critically ill patients may limit the

colonization efficiency of FMT, while over-supplementation of

probiotics may raise the risk of flora imbalance. Consequently,

microbial therapy or specific modulation based on key nodes of

host-flora interactions may become a safer and more controllable

direction. Concurrently, the screening of biomarkers (e.g., flora

signature profiles, metabolite combinations, and inflammatory

factors) in conjunction with multi-omics technology can facilitate

the early diagnosis and subtyping classification of SAE, thereby

providing a foundation for individualized treatment regimens.

Consequently, research in the domain of the microbe-gut-brain

axis is precipitating a paradigm shift in the study of SAE toward a

theoretical framework referred to as “systems regulation theory.”

This shift is of significant importance, as it not only directs our

attention toward investigating the mechanisms of MGBA in sepsis-

associated encephalopathy but also provides a crucial reference

point for the research on other neuroimmune diseases. The

targeting of MGBA to enhance SAE is not only associated with

the treatment of sepsis-associated encephalopathy, but also provides
Frontiers in Cellular and Infection Microbiology 08
a valuable reference point for the study of the mechanisms

underlying other neuroimmune diseases.
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