
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Qiang Zhang,
Huazhong Agricultural University, China

REVIEWED BY

Cong Yin,
South-Central University for Nationalities,
China
Hairui Fan,
Yangzhou University, China

*CORRESPONDENCE

Ao Zhou

zhouao2008@aliyun.com

RECEIVED 07 March 2025
ACCEPTED 29 April 2025

PUBLISHED 25 June 2025

CITATION

Zheng H, Wang B, Dong X, Wu J, Shi L,
Zhang J, Chen H and Zhou A (2025) SIRT7
deletion inhibits Glaesserella parasuis-
mediated inflammatory responses in porcine
alveolar macrophages.
Front. Cell. Infect. Microbiol. 15:1589199.
doi: 10.3389/fcimb.2025.1589199

COPYRIGHT

© 2025 Zheng, Wang, Dong, Wu, Shi, Zhang,
Chen and Zhou. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 June 2025

DOI 10.3389/fcimb.2025.1589199
SIRT7 deletion inhibits
Glaesserella parasuis-mediated
inflammatory responses in
porcine alveolar macrophages
Hao Zheng1,2, Baoxin Wang1,2, Xia Dong1,2, Junjing Wu3,
Liangyu Shi1,2, Jing Zhang1,2, Hongbo Chen1,2 and Ao Zhou1,2*
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Glaesserella parasuis (GPS) infection causes severe inflammatory disorder,

resulting in lung injury. SIRT7 is an NAD+-dependent deacetylase known to

regulate inflammatory responses, but its role in GPS infection remains unclear.

Here we found that GPS infection increased SIRT7 expression and induced

inflammatory responses. Deficiency of SIRT7 by CRISPR/Cas9 technology

significantly inhibited GPS-induced cytopathic effects and inflammatory

responses. In addition, RNA-seq analysis showed that differentially expressed

genes(DEGs) induced by SIRT7 deficiency were enriched in biological processes

such as cell proliferation, actin cytoskeleton formation, lipid synthesis, protein

kinase activation regulation, and GTPase activity regulation. Functional

enrichment analysis further indicated the involvement of these DEGs in tight

junction pathway, PI3K-Akt signaling pathway, actin cytoskeleton regulation,

cGMP-PKG signaling pathway, Hippo signaling pathway, and TNF signaling

pathway. Finally, we identified some hub genes (GNAI3, GNAI1, JAK1, NDUFS8,

CYC1) related to oxidative phosphorylation. In summary, our results demonstrate

that SIRT7 is pivotal for GPS-induced inflammatory responses, which represents

a promising target resistant to GPS infection.
KEYWORDS

SIRT7, Glaesserella parasuis, inflammatory responses, CRISPR/Cas9, disease-
resistant breeding
Introduction

The sirtuin family is a class of evolutionarily conserved NAD+ (nicotinamide adenine

dinucleotide)-dependent deacetylases, with multifunctional roles (Wu et al., 2022). Sirtuins

regulate diverse biological processes, such as metabolic regulation, epigenetic

modifications, cellular aging, and inflammatory responses (Ji et al., 2022). Among the

seven mammalian sirtuins (SIRT1-SIRT7), SIRT1 is predominantly unclear but minor
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distribution can also localize to the cytosol under certain conditions

(Tanno et al., 2007). It is involved in various biological processes,

including oxidative stress (Vancura et al., 2018), lipid metabolism

(Qiang et al., 2011), apoptosis (Chen et al., 2021), cellular aging

(You and Liang, 2023), and inflammation (Yang et al., 2022). SIRT2

is the only predominantly cytoplasmic sirtuin, with minor presence

in the nucleus and mitochondria. It plays a crucial physiological role

in mammals, being pivotal in aging (Zhang et al., 2023),

differentiation (Fang et al., 2019), inflammation (Sola-Sevilla

et al., 2023), cancer (Chen et al., 2020), and neurodegenerative

diseases (Lu et al., 2023). SIRT3, SIRT4, and SIRT5 localize to

mitochondria and are collectively termed mitochondrial sirtuins,

key regulators of cellular metabolism (Ji et al., 2022). SIRT6 and

SIRT7 are nuclear-localized sirtuins, with SIRT6 enriched in

chromatin and SIRT7 residing primarily in the nucleolus (Wu

et al., 2022). SIRT6 plays a critical role in regulating cellular

energy sensing and homeostasis, linking to cellular aging,

metabolism, inflammation, and cardiovascular diseases (Chang

et al., 2020; Guo et al., 2022). SIRT7, a recently identified member

of the sirtuin family, is involved in maintaining genomic integrity,

physiological homeostasis, and anti-aging. SIRT7 deficiency

disrupts metabolic homeostasis, accelerates aging, and predisposes

to inflammatory disorders, cancer, and cardiovascular diseases

(Raza et al., 2024).

The SIRT7 gene is located on chromosome 12 in the porcine

genome and exhibits ubiquitous expression across multiple tissues,

including the heart, kidneys, liver, lungs, subcutaneous fat, spleen,

and muscles. Its expression is most abundant in the lungs, spleen,

and adipose tissue. Studies have revealed that SIRT7 plays a crucial

role in pathogen-host interactions. In HBV-infected cell models,

SIRT7 overexpression significantly suppresses HBV RNAs

expression, whereas silencing SIRT7 enhances HBV transcription

and replication (Yu, 2019). In oral cancer, SIRT7 modulates tumor

cell activity by polarizing macrophage phenotypes-suppressing M2

macrophages while activating M1 macrophages, thereby exerting

antitumor effects (Gu et al., 2023). Furthermore, the study reveals

that SIRT7 plays a protective role in Mycobacterium tuberculosis

(Mtb) infection. SIRT7 functions in combating Mtb infection by

regulating macrophage nitric oxide (NO) production and apoptosis

pathway (Liu, 2020). Recent studies indicate that SIRT7 has an anti-

inflammatory role. In lipopolysaccharide (LPS)-stimulated bovine

mammary epithelial cells, SIRT7 downregulation exacerbates NF-

kB p65 and nuclear translocation, augmenting inflammatory

cytokine secretion (Chen et al., 2019). Conversely, SIRT7

silencing attenuates LPS-induced inflammation in lung

endothelial cells and reduces renal ischemia-reperfusion injury by

suppressing pro-inflammatory cytokines (Wyman et al., 2020;

Sánchez-Navarro et al., 2022). Murine colitis models further

demonstrate elevated SIRT7 levels in inflamed colonic mucosa,

where its knockdown ameliorates inflammation (Kim et al., 2022).

Notably, the regulatory function of SIRT7 during Glaesserella

parasuis (GPS) infection remains unexplored, warranting

further investigation.

GPS, a Gram-negative bacterium exhibiting pleomorphic

characteristics (including elongated rods, filaments, and
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coccobacilli), is a common pathogen in swine upper respiratory

tracts and the causative agent of Glässer’s disease (Zhang, 2024). It

features a capsule, pili, and outer membrane proteins. Based on agar

gel diffusion typing, GPS isolates are classified into 15 serotypes,

with approximately 20% remaining untypable. Among these,

serotypes 1, 5, 10, 12, 13, and 14 demonstrate high pathogenicity,

capable of inducing systemic inflammation in piglets.

Epidemiological data indicate serotypes 4 and 5 predominate in

China, followed by 13, 14, and 12 (Cai et al., 2005). The virulence

factors of GPS are numerous, and its pathogenic mechanisms are

complex. The specific virulence factors and detailed mechanisms of

pathogenicity remain not fully understood (Ye et al., 2021).

RNA sequencing (RNA-seq) is a high-throughput sequencing

technique used to sequence and analyze the transcriptome,

including both mRNA and noncoding RNAs, from specific cells

or tissues. This approach provides unprecedented insights into

transcriptional regulation, offering distinct advantages including

high sensitivity, broad dynamic range, and strand-specific

information. RNA-seq has become indispensable for elucidating

molecular mechanisms underlying disease resistance and

reproductive traits (Xiu et al., 2023). In this study, to investigate

SIRT7’s regulatory role during GPS infection, we first constructed

SIRT7 deficiency 3D4/21 cell lines using CRISPR/Cas9 gene editing

technology. RNA-seq analysis comparing wild-type (WT) and

SIRT7-knockout (KO) cells enabled systematic identification of

differential ly expressed genes (DEGs) and associated

signaling pathway.
Materials and methods

Cell culture and SIRT7-knockout 3D4/21
cell lines construction

The Cas9-3D4/21 WT cells and SIRT7-KO cell lines were

cultured in RPMI 1640 medium (Gibco, USA) containing 10%

fetal bovine serum (FBS; Gibco) at 37°C, 5% CO2 atmosphere. Cells

were passaged every 2–3 days at 90% confluence using 0.25%

trypsin-EDTA (Gibco).

SIRT7-KO cell lines were generated by using CRISPR/Cas9 gene

editing technology. Targeting sites exon 2 and exon 3 of the porcine

SIRT7 gene (ENSSSCG00000034695) were identified using the

Ensembl (https://www.ensembl.org/index.html). Two high-score

sgRNAs were selected (Table 1), and the BbsI restriction

endonuclease sticky ends sequences of the pb-U6-puro-BFP

vector were added to both ends. PCR primers were designed at

both ends of the sgRNA-targeted exons to amplify the DNA

sequence of this region. The sgRNA primers (forward and

reverse) were then annealed. The vector pb-U6-puro-BFP was

digested with the BbsI (NEB, USA). The digested products were

recovered using the TIANquick Midi Purification Kit (TianGen,

China). The annealed sgRNA duplexes were ligated into BbsI-

digested vectors using T4 DNA Ligase (Transgen Biotech, China).

The ligation mixture was transformed into competent DH5a cells

(TianGen, China) and screened on ampicillin-resistant plates.
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Single colonies were picked and cultured in LB liquid medium.

After expanding the culture, plasmid DNA was extracted using the

EndoFree Mini Plasmid Kit II (TianGen, China) and sequenced.

The pb-U6-SIRT7-sgRNA-puro-BFP plasmid was transfected into

the WT cell lines. After 48 h post-transfection, cells were selected

with 1.5 mg/mL puromycin (Beyotime, China) for 7 days until

complete death of untransfected controls. When all WT cells died,

the surviving cells in the treatment group were further cultured.

Surviving single-cell colonies were picked and seeded into 96-well

plates for culture. Single-cell colonies were expanded for genotyping

by PCR (GoTaq polymerase, Promega) and sequencing. The PCR

primers used are listed in Table 1.
Bacteria culture

GPS serotype 5 strain (SH0165) was provided by the Laboratory

of Genetic Breeding Reproduction and Precision Farming, School of

Animal Science and Nutrition Engineering, Wuhan Polytechnic

University. Frozen stock cultures were rapidly thawed at 37°C and

inoculated into Tryptic Soy Broth (TSB; BD, USA) supplemented

with 10% FBS and 0.01% NAD (Beyotime), and cultured at 37°C

with 180 rpm shaking for 10–12 h. The medium was then checked

for turbidity. Subsequently, the culture was streaked onto TSA (BD)

plates and incubated at 37°C for 36 h.
Genomic identification of the SIRT7

Genomic DNA was isolated from SIRT7-KO cell lines using the

Universal Genomic DNA Kit (CWBIO, China) and amplified by
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PCR and sequenced. The PCR products were analyzed by agarose

gel electrophoresis. Based on the size of the electrophoresis bands,

gene deletions or insertions were assessed. PCR products were

subjected to gel extraction (TIANGEN, China) and sent to

Sangon Biotech for sequencing. The sequencing results were

compared with WT cell sequences to further verify if fragment

deletions occurred between the designed sgRNA target sites.
Quantitative real-time PCR

Cells were collected at different time points post-infection, and

total RNA was extracted using RNAsimple Total RNA Kit

(TIANGEN) according to the manufacturer’s instructions.

Following RNA quality assessment, RNA samples were reverse-

transcribed into cDNA using HiScript II Q RT SuperMix (Vazyme,

China). The relative mRNA levels were quantified by qRT-PCR and

calculated via the 2-DDCT method with normalization to the internal

control gene GAPDH. The amplification protocol consisted of 95°C

for 30 s, 40 cycles of 95°C for 15 s and 60°C for 1 min. Primer

sequences are listed in Table 1.
Western blotting

Proteins were extracted from GPS-infected cells at different

time points, and the protein concentrations were determined using

BCA Protein Quantification Kit (Vazyme, China). Protein samples

were separated by SDS-PAGE electrophoresis and transferred to

PVDF membranes. The membranes were blocked with 5% non-fat

milk and subsequently incubated with the primary antibodies

[GAPDH (Proteintech, USA) and SIRT7 (FineTest, China)]

overnight at 4°C followed by incubation with the secondary

antibody at room temperature for 1 h. After three washes with

TBST buffer, protein signals were detected using SuperPico ECL

Chemiluminescence Kit (Vazyme) with a chemiluminescence

imaging system.
RNA-seq analysis, DEGs identification and
functional enrichment analysis

RNA-Seq technology was performed to identify the DEGs in

SIRT7-KO cells. Total RNA was extracted using the TRIzol method

for RNA-seq (Zhenyue Biotechnology, China) with the MGI

DNBseq-T7 platform (BGI, Hong Kong) with 150 bp paired-end

reads. Raw reads from RNA-seq libraries were filtered to obtain

clean reads, which were then aligned to Sus scrofa reference genome

(Sscrofa11.1) using HISAT2 with default parameters. DEGs were

identified using DESeq2 (v1.38.3) with the thresholds of P < 0.05

and |log2 Foldchange| > 1. Functional enrichment analysis was

conducted through Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analyses using the

clusterProfiler R package. Protein-protein interaction (PPI)

networks were constructed using the STRING database, and hub
TABLE 1 Primer sequences.

Gene
name

Primer sequence (5,-3,)
Primer
purpose

SIRT7-sgRNA1
F:CACCGAGGTGCTTGGCGTTGCGGA Vector

constructionR:AAACTCCGCAACGCCAAGCACCTC

SIRT7-sgRNA2
F:CACCGGTTAGGGCCCCGGTAGTCT Vector

constructionR:AAACAGACTACCGGGGCCCTAACC

SIRT7
F:GAGAGCGAGGACCTGGTG

PCR
R:GTGGAAGGGAAGCGGAGG

GAPDH
F:TCGGAGTGAACGGATTTG

qRT-PCR
R:CCTGGAAGATGGTGATGG

IL-6
F:CCAGGAACCCAGCTATGAAC

qRT-PCR
R:CTGCACAGCCTCGACATT

IL-8
F:TCTTGGCAGTTTTCCTGCTTT

qRT-PCR
R:AATTTGGGGTGGAAAGGTGT

TNF-a
F:GCTCTTCTGCCTACTGCACTTC

qRT-PCR
R:GTCCCTCGGCTTTGACATT
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genes were identified via the cytoHubba plugin (v0.1) in

Cytoscape software.
Results

SIRT7 expression was upregulated in GPS-
infected porcine alveolar macrophages

To analyze the role of SIRT7 in GPS infection, we first detected

the expression of SIRT7 in 3D4/21 cells (WT cells) with GPS

infection at MOI of 10. QRT-PCR analysis revealed significant

upregulation of pro-inflammatory cytokines (IL-6, IL-8 and TNF-a)
in GPS-infected cells compared to uninfected controls,

demonstrating that the inflammatory model of GPS-infected cells

has been successfully established (Figure 1A). Western blot analysis

found that the protein expression of SIRT7 was significantly

upregulated during GPS infection (Figures 1B, C), indicating that

SIRT7 may participate in GPS-induced inflammatory response.
Construction of SIRT7-KO cell line

SIRT7-KO cell line was established by CRISPR/Cas9 system

(Figure 2A). After picking the single cell colonies, DNA was

extracted and amplified by PCR. Based on the electrophoresis and

sequencing results, we found that clone 2 amplified a 1408 bp band

and had a mutation with a 925-bp deletion near the protospacer
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adjacent motif (PAM) sequence, while the WT sample had a 2333

bp band (Figures 2B, C). Western blot analysis showed that SIRT7

protein expression was significantly reduced in KO cell line

compared with WT cells (Figure 2D).
SIRT7 deficiency reduced GPS-induced cell
damage and inflammatory responses

To analyze the function of SIRT7 in GPS infection, WT and

SIRT7-KO cells were infected with GPS at MOI=10. The results

indicated that SIRT7 deficiency significantly ameliorated GPS-

induced cytopathic effects compared to the WT cells (Figure 3A).

In addition, pro-inflammatory cytokine mRNA expression (IL-6,

IL-8, TNF-a) were significantly downregulated in SIRT7-KO cells

compared to the WT cells after GPS treatment (Figure 3B). These

results indicated that the SIRT7 might plays a pivotal role in

mediating inflammatory responses triggered by GPS infection.
DEGs identification and function
enrichment analysis in SIRT7-KO cells

To elucidate the molecular mechanisms by which SIRT7

regulates GPS infection, RNA-Seq was used to detect the mRNA

expression profiles of SIRT7-KO cells and WT cells with or without

GPS infection. 1,588 upregulated and 897 downregulated DEGs

were identified in SIRT7-KO cells compared to their expressions
FIGURE 1

SIRT7 is involved in GPS-induced inflammatory response. (A) Relative expression levels of inflammatory factor genes after GPS infection in WT cells.
(B) Expression levels of SIRT7 protein after GPS infection in WT cells. (C) Quantitative analysis of SIRT7/GAPDH gray values. Statistical significance
versus control: *P < 0.05, **P < 0.01, ***P < 0.001.
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without GPS infection using the selection criteria: |log2Foldchange|

≥ 1 and P < 0.05 (Figure 4A, and Supplementary Table S1), While

543 genes were significantly upregulated, and 504 genes were

significantly downregulated in SIRT7-KO cells compared to their

expressions in WT cells infected with GPS (Figure 4B, and

Supplementary Table S2). Furthermore, functional enrichment

analysis showed that protein processing associated terms were

significantly enriched with or without GPS infection, but some of

those DEGs without infection were mainly associated with

regulation of GTPase activity, regulation of cytoskeleton

organization, while the biological process of some of those DEGs

with infection was enriched in angiogenesis, ossification and Wnt

signaling pathway (Figures 4C, D). In addition, we observed

enriched immune response related terms such as cGMP-PKG
Frontiers in Cellular and Infection Microbiology 05
signaling pathway, TNF signaling pathway and IL-17 signaling

pathway, as well as human papillomavirus infection in SIRT7-KO

cells with or without GPS infection. Notably, PI3K-Akt signaling

and tight junction pathway showed specific enrichment in SIRT7-

KO cells without infection compared to WT cells (Figures 4E, F).
Identification of key gene clusters
regulated by SIRT7 deficiency in response
to GPS infection

To systematically characterize SIRT7-regulated key gene

clusters during GPS infection, we identified overlapping DEGs

between SIRT7-KO and WT cells under both basal and infected
FIGURE 2

Construction of SIRT7-KO cell line. (A) SIRT7 gene structure and gRNA targeting sites. (B) PCR analysis (M: DL100 DNA Marker; Control: WT cells; 1,
2, 13, 15, 19, 21: Monoclonal cell lines). (C) The sequencing results of SIRT7-KO. (D) SIRT7 protein expression assessment in the KO cell line (internal
control: GAPDH) included three biological replicates: KO-1, KO-1, KO-3. Data represent mean ± standard deviation (n = 3). Statistical significance
versus control: ***P < 0.001.
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conditions (Figures 5A, B; Supplementary Table S3). We then

performed k-means clustering on the upregulated and

downregulated DEGs, respectively.

We found that the upregulated common DEGs were divided

into three clusters based on their expression patterns, which were

mainly associated with extracellular matrix organization, cGMP-

PKG signaling pathway, inflammation and immune response

(Figure 5C), while three clusters were also identified in the

downregulated common DEGs and were enriched in functions

associated with oxidative phosphorylation, ribosome biogenesis,

glutathione metabolism (Figure 5D). In addition, we used the

cytohubba plugin in Cytoscape software to identify the

upregulated hub genes (ITGB1, ITGAV, ITGA6, THBS1, FN1,

TGFB3, CCR1, FBN1, COL3A1, HSPA5) and the downregulated

hub genes (NDUFS7, NDUFB7, BYSL, IMP4, EMG1, GRWD1,

NOC4L, FBL, ATP5F1D, CYC1), which might coregulate GPS

infection with SIRT7.
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Discussion

GPS is a non-motile, encapsulated, facultatively anaerobic Gram-

negative bacterium that lacks spore-forming capacity and hemolytic

activity (Brockmeier et al., 2014). GPS is the etiological agent of

Glässer’s disease, characterized by multiple fibrinous pleuritis,

arthritis, and meningitis (Sun, 2024). As a commensal-turned-

pathogen, GPS colonizes the porcine upper respiratory tract and

becomes invasive under immunosuppressive conditions, such as viral

co-infections (e.g., PRRSV) or stress-induced immunocompromise.

With the intensification of pig farming and widespread antibiotic

misuse, the prevalence of GPS has been rising in China, resulting in

significant economic losses to the pig industry (Dai et al., 2024).

Research indicates that GPS infection induced cellular inflammation

and damage (Zeng et al., 2022). In this study, we observed significant

upregulation of IL-6, IL-8, and TNF-a mRNA levels, confirming the

successful establishment of a GPS infection model in 3D4/21 cells.
FIGURE 3

(A) SIRT7 deficiency inhibits GPS-induced cellular damage. (B) SIRT7 deficiency inhibits the inflammatory responses induced by GPS infection. (a: IL-
6 expression levels; b: IL-8 expression levels; c: TNF-a expression levels). Data represent mean ± standard deviation (n = 3). Statistical significance
versus control: *P < 0.05, **P < 0.01, ***P < 0.001.
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As a nuclear-localized member of the NAD+-dependent sirtuin

deacetylase family, SIRT7 has emerged as a key epigenetic regulator

in host-pathogen interactions. SIRT7 decreases IRF3/IRF7

phosphorylation to block the interaction between tbk1 and IRF3/

IRF7, resulting in the suppression of antiviral responses, disruption

of SIRT7 increases the survival rate of carp during virus infection
Frontiers in Cellular and Infection Microbiology 07
(Liao et al., 2021). Newcastle disease virus infection induced SIRT7

expression, which in turn enhances cellular proteins deacetylation

causing high virus repl icat ion (Shokeen and Kumar,

2024).However, the regulatory mechanism of the SIRT7 gene in

GPS infection has not yet been reported. Our results showed that

GPS infection upregulates SIRT7 expression in macrophages
FIGURE 4

SIRT7 deficiency affects the transcriptome regulation. (A) Volcano plots of DEGs in SIRT7-KO cells without GPS infection. (B) Volcano plots of DEGs
in SIRT7-KO cells with GPS infection. (C, D) GO enrichment analysis. (E, F) KEGG function enrichment analysis.
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sugges t s i t s po ten t i a l invo lvement in an t ibac t e r i a l

defense mechanisms.

This study established a model by creating SIRT7-KO cell lines

with CRISPR/Cas9 technology. It was found that SIRT7-KO cells

showed less cell damage infection, and significantly reduced

expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-a)
upon GPS infection, suggesting that SIRT7 deficiency can

suppress the occurrence of inflammation induced by GPS

infection. Previous studies reported that SIRT7 played a key role

in regulating the inflammatory responses, and silencing SIRT7 can

inhibit LPS-induced pro-inflammatory responses and NF-kB
signaling (Miyasato et al., 2018; Wyman et al., 2020; Mizumoto

et al., 2022; Mizutani et al., 2022; Sánchez-Navarro et al., 2022).

RNA-seq results revealed that the DEGs induced by SIRT7

deficiency were mainly enriched in biological processes such as

cell proliferation, actin cytoskeleton organization, lipid synthesis,

regulation of protein kinase activity, and GTPase activity. KEGG

pathway analysis identified enrichment in pathways related to viral

infection, cancer, tight junctions, PI3K-Akt signaling, actin

cytoskeleton regulation, cGMP-PKG signaling, Hippo signaling,

and TNF signaling, suggesting that SIRT7 may regulate GPS

infection via these signaling pathways. The Hippo signaling

pathway plays a crucial role in regulating many biological

processes, such as cell proliferation, differentiation, and stem cell

self-renewal (Kwon et al., 2013). Dysregulation of the Hippo

signaling pathway can lead to various diseases (Fu et al., 2022).

The Hippo signaling pathway regulates lung inflammation, with
Frontiers in Cellular and Infection Microbiology 08
increased activity of type II alveolar epithelial cells associated with

elevated nuclear expression of Hippo signaling mediators Yap and

Taz. The absence of Yap/Taz in mice affects the repair and

regeneration of alveolar epithelial cells in bacterial pneumonia,

while downregulation of YAP1 alleviates LPS-induced lung injury

by promoting M2 macrophage polarization (Lacanna et al., 2019;

Liang et al., 2023). Additionally, the SIRT7 gene activates the

Hippo/YAP signaling pathway by directly binding to MST1 and

deacetylating it, leading to MST1 ubiquitination and degradation

(Gu et al., 2024).

The PI3K/Akt axis plays a crucial role in recruiting and

activating innate immune cells, such as macrophages, while

exhibiting dual regulatory effects on inflammatory factors

production (Hawkins and Stephens, 2015). Studies indicate that

under chronic overnutrition conditions, elecated pro-inflammatory

factors activate mTORC1, which subsequently suppresses the PI3K/

Akt signaling pathway through Ser/Thr residue phosphorylation

(Saxton and Sabatini, 2017). Notably, extensive research shows that

the sirtuin family can enhance autophagy by inhibiting the PI3K/

Akt signaling pathway (Yang et al., 2019; Mishra et al., 2022; Zhang

et al., 2022; Zhou et al., 2023). We hypothesize that SIRT7 may

enhance autophagy by inhibiting the PI3K/Akt pathway, thereby

exacerbating inflammatory responses.

The tight junction signaling pathway maintains tissue

homeostasis and integrity by regulating paracellular permeability

and cell polarity. Tight junction proteins play a crucial role in

regulating cell proliferation, migration, and differentiation (Nehme
FIGURE 5

Identification of key gene clusters regulated by SIRT7 deficiency. (A) The overlapping upregulated DEGs in SIRT7 deficiency between control and
GPS infection. (B) The overlapping upregulated DEGs in SIRT7 deficiency between control and GPS infection. (C, D) The k-means clustering of the
overlapping DEGs in SIRT7 deficiency.
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et al., 2023). Research indicates that overexpression of SIRT6 can

restore the expression of tight junction proteins and alleviate cell

apoptosis and inflammatory responses (Liu et al., 2023). SIRT1-

activated by quercetin upregulates tight junction proteins to

mitigate LPS-induced alveolar damage (Deng et al., 2023).

Additionally, curcumin activates the AMPK/SIRT3/SOD2/mtROS

axis, significantly downregulating inflammatory factors expression

levels and increasing tight junction proteins expression (Xiao et al.,

2023). We propose that SIRT7 deficiency activates tight-junction

signaling, thereby attenuating GPS-induced inflammation. The k-

means clustering analysis further revealed the expression pattern

shift of key gene clusters regulating GPS infection is due to SIRT7

deficiency. All of the upregulated hub genes (ITGB1, ITGAV, ITGA6,

THBS1, FN1, TGFB3, CCR1, FBN1, COL3A1, HSPA5) regulate

inflammation. Overexpression of ITGB1 can reduce LPS-induced

inflammation and oxidative stress (Qi et al., 2024). Knockdown of

THBS1 inhibits autophagy and promotes NLRP3 inflammasome

formation (Chiu et al., 2024). HSPA5 can be deacetylated by

inhibition of SIRT1/2 to trigger the pro-survival autophagy,

suggesting that SIRT7 may also interact with HSPA5 to regulate

GPS-induced inflammation response (Mu et al., 2019). Moreover,

BYSL, EMG1, GRWD1, FBL and NOC4L were identified as the

downregulated hub genes associated with ribosome biogenesis, a

process known to suppress immune response (Gratenstein et al.,

2005; Adachi et al., 2007; Schilling et al., 2012; Bianco and Mohr,

2019; El Hassouni et al., 2019; Zhu et al., 2019). This suggests that

SIRT7 may interact with these hub genes to regulate inflammation

response or ribosome biogenesis for affecting GPS infection.
Conclusion

In our study, SIRT7 deficiency significantly suppressed

cytopathy and inflammation induced by GPS infection.

Combining with RNA-seq, we found that SIRT7 deficiency alters

the expression pattern of gene related to tight junctions, ribosome

biogenesis, cGMP-PKG signaling pathway, TNF signaling pathway

and IL-17 signaling pathway, regulating GPS-induced

inflammatory response. Our results provide possible implications

of SIRT7 inhibition as a therapeutic strategy against GPS infection.
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