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Tao Sun1,4 and Junnan Xu1,2,4*

1Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer
Hospital, Shenyang, China, 2Department of Pharmacology, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital, Shenyang, China, 3Department of Bioinformatics, Kanghui
Biotechnology Co., Ltd., Shenyang, China, 4Department of Breast Medicine, Cancer Hospital of Dalian
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Background: Substantial interstudy heterogeneity in cancer immunotherapy-

associated biomarkers has hindered their clinical applicability. To address this

challenge, we performed a comprehensive integration of publicly available global

metagenomic datasets. By leveraging metagenomic profiling and machine

learning approaches, this study aimed to elucidate gut microbial signatures

associated with immune response in lung cancer (LC) and to evaluate the

modulatory effects of antibiotic exposure.

Methods: A systematic literature search was conducted to identify relevant

datasets, resulting in the inclusion of 209 fecal metagenomic samples: 154

baseline samples (45 responders, 37 non-responders, and 72 healthy controls)

and 55 longitudinal samples collected during immunotherapy. We performed

taxonomic and functional characterization of gut microbiota (GM) differentiating

responders from non-responders, delineated microbiome dynamics during

treatment, and assessed the impact of antibiotics on key microbial taxa.

Among eight machine learning algorithms evaluated, the optimal model was

selected to construct a predictive framework for immunotherapy response.

Results: Microbial a-diversity was significantly elevated in responders compared

to non-responders, with antibiotic administration further amplifying this

difference—most notably at the species level. Integrative multi-omics analysis

identified two pivotal microbial biomarkers, s_Bacteroides caccae and

s_Prevotella copri, which were strongly associated with immunotherapy

efficacy. A random forest-based classifier achieved robust predictive

performance, with area under the curve (AUC) values of 0.82 and 0.79 at the

species and genus levels, respectively. Notably, P. copri was further enriched in

responders with poor progression-free survival (PFS <3 months), indicating a

potential deleterious role. Antibiotic exposure significantly influenced the

abundance and functional potential of these key taxa. KEGG-based functional

analysis revealed the enrichment of amino acid metabolism pathways in
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responders. Additionally, CARD database annotation demonstrated that the

majority of antibiotic resistance genes were associated with Bacteroidetes and

Proteobacteria, implicating these taxa in shaping microbial-mediated

therapeutic responses.

Conclusions: This study represents the first large-scale, cross-cohort integration

of metagenomic data to identify reproducible GM signatures predictive of

immune checkpoint inhibitor efficacy in LC. The findings not only underscore

the prognostic relevance of specific taxa but also establish a foundation for

developing microbiome-informed, personalized immunotherapeutic strategies.
KEYWORDS

metagenome, mach ine lea rn ing , immunotherapy , lung cancer , gu t
microbiota, antibiotics
1 Introduction

Over the past decade, immune checkpoint inhibitors (ICIs)

targeting PD-1/PD-L1 and CTLA-4 have revolutionized the

therapeutic landscape of lung cancer (LC). However, only

approximately 20% of patients with locally advanced or metastatic

disease derive sustained clinical benefit from immunotherapy

(Cascone et al., 2022; Diao et al., 2025; Huang et al., 2022).

Therefore, identifying reliable predictive biomarkers and

elucidating the mechanisms underlying responses to ICIs remain

key scientific challenges in the field of tumor immunotherapy.

Although PD-L1 expression is commonly employed as a

predictive biomarker in clinical practice, it has limited prognostic

value in squamous cell carcinoma and exhibits significant spatial

and temporal heterogeneity between primary and metastatic lesions

(Doroshow et al., 2021; Hirsch et al., 2022). Similarly, tumor

mutational burden (TMB) has been proposed as an alternative

marker; however, the lack of consensus on threshold definitions and

technical inconsistencies across sequencing platforms hinder its

routine clinical application (Sholl et al., ). Emerging strategies, such

as profiling the tumor immune microenvironment, analyzing

circulating tumor DNA (ctDNA), and applying high-dimensional

single-cell omics, hold promise, but their clinical utility is

constrained by high cost, insufficient standardization, and

technical complexity (Datar et al., 2019; Leng et al., 2021; Zhang

et al., 2020). Therefore, there remains a pressing need to develop

low-cost, non-invasive, and biologically stable biomarkers with a

robust predictive value for immunotherapy response.

Our previous work demonstrated that LC progression is

associated with significant alterations in the composition of the

host-associated microbiota, suggesting a potential role of the gut

microbiome in LC development and immune regulation (Han et al.,

2023). The influence of the GM on cancer immunotherapy has

garnered increasing attention in recent years. As early as 2007,

murine models first demonstrated that gut microbes can activate
02
antitumor immune responses, marking the inception of

microbiota–immunity research (Paulos et al., 2007). In 2015,

prospective studies further confirmed a direct association between

gut microbial composition and ICI efficacy (Vétizou et al., 2015). In

2018, fecal microbiota transplantation (FMT) from responders was

shown to enhance ICI sensitivity in recipient mice (Routy et al.,

2018). By 2021, human-to-human FMT was successfully translated

into clinical settings, offering a novel approach to overcome

resistance to PD-1 blockade (Davar et al., 2021).

Several single-center studies conducted in South Korea, China,

the United States, and France have investigated gut microbiome

alterations associated with ICI response (Fang et al., 2022; Routy

et al., 2018; Lee et al., 2021; Liu et al., 2022). However, the

heterogeneity of findings across cohorts raises concerns regarding

the reproducibility and translational applicability of candidate

microbial biomarkers. Among them, Akkermansia muciniphila

(AKK) has been repeatedly reported as a favorable taxon in

responders and was highlighted as a top-ranked biomarker in a

landmark study published in Science (Routy et al., 2018). Using

spatial metabolomics, Zhu et al. demonstrated that Akk can

translocate from the gut to the bloodstream, colonize lung tumor

tissue, and exert antitumor effects by modulating tumor-associated

microbiota and reprogramming tumor metabolism (Zhu et al.,

2023). However, contrasting findings by Lee et al. reported the

enrichment of Akk in non-responders, further underscoring

inconsistencies in the current literature (Lee et al., 2021).

To date, no large-scale, multi-cohort meta-analysis has

systematically evaluated GM signatures associated with ICI

response in LC. To address this gap, we conducted an integrative

analysis of publicly available metagenomic datasets from multiple

countries and regions. Using a standardized metagenomic pipeline

and machine learning-based modeling framework, we aimed to

identify reproducible microbial features strongly associated with

immunotherapy response and to discover stable and clinically

translatable microbial biomarkers. Our findings provide critical
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insights into the microbiota–immune axis and establish a foundation

for microbiome-informed personalized immunotherapy strategies

in LC.
2 Methods

2.1 Data acquisition and mining

The literature search strategy and the PRISMA flow diagram are

detailed in Section 1 of the Supplementary Materials. Five relevant

studies were identified, corresponding to the following NGS project

accession numbers: PRJNA866654, PRJEB26531, PRJNA494824,

PRJEB22863, and PRJNA48479 (Human Microbiome Project).

The inclusion and exclusion criteria for cohort selection are

provided in Section 1.3 of the Supplementary Materials. The

quality of this meta-analysis was evaluated using the ROBIS tool

and the Joanna Briggs Institute Critical Appraisal Checklist for

Case–Control Studies. The detailed assessment results are provided

in Section 2 of the Supplementary Materials.
2.2 Shotgun metagenomics sequencing
and bioinformatics analysis

2.2.1 Metagenomic data processing and gene
catalog construction

Raw sequencing data were subjected to quality control using

Fastp (v0.21.0) to remove low-quality bases, low-quality reads, and

residual sequencing adapters (Chen et al., 2018). Clumpify (v38.90)

was then applied to eliminate duplicate reads. To filter out host-

derived sequences, Bowtie2 (v2.4.2) was used with default parameters

to align reads against the human reference genome (GRCh38.p13),

thereby generating high-quality, host-depleted clean data (Li et al.,

2019). Subsequently, MEGAHIT was employed for the metagenomic

assembly of the clean reads, and contigs shorter than 500 bp were

removed using QUAST for quality assessment and filtration. Gene

prediction was performed on the assembled contigs using

MetaGeneMark. The resulting gene set was clustered and de-

redundified using CD-HIT with a sequence identity threshold of

95% and a coverage cutoff of 90%. The longest sequence from each

cluster was retained as a representative unigene. Gene abundance for

each sample was quantified using Salmon based on the alignment of

clean reads to the non-redundant unigene catalogue.
2.2.2 Taxonomic profiling and microbial
community analysis

Taxonomic annotation was performed using MetaPhlAn4 with

default parameters to generate microbial profiles at multiple

taxonomic levels. Alpha diversity metrics, including species

richness and Shannon index, were calculated using the VEGAN R

package (v2.5.3). Beta-diversity was assessed based on Bray–Curtis

dissimilarity and visualized via principal coordinate analysis

(PCoA). Differences in microbial composition between groups

were evaluated using the analysis of similarities (ANOSIM). To
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identify differentially abundant taxa, linear discriminant analysis

effect size (LEfSe) was conducted with an LDA score threshold of

>4.0. Co-occurrence and clustering analyses were performed using

the R packages COOCCUR and psych, applying a significance

threshold of p < 0.05 and a Pearson correlation coefficient ≥0.3.

The resulting networks were visualized in Cytoscape (v3.10.1). Due

to the high resolution of mNGS-based taxonomic profiling, which

yielded annotations for over 180,000 species and 3,000 genera, only

the top 50 most abundant species and genera were retained for co-

occurrence network construction to ensure interpretability and

visualization clarity.

2.2.3 Confounder analysis
To assess the influence of potential confounding variables on

individual microbial taxa within LC microbiome studies related to

immune response, we adopted a variance decomposition strategy

inspired by the approach of Jakob Wirbel et al. (Wirbel et al., 2019).

Specifically, we partitioned the total variance in microbial abundance

into components attributable to immune response status and to

individual confounding factors. This framework parallels a linear

modeling approach in which microbial abundance is modeled as a

function of both immune response classification and the confounding

variable. Given the non-normal distribution commonly observed in

microbiome data, variance calculations were conducted using rank-

transformed abundance values.

2.2.4 Functional and antibiotic resistance
profiling of unigenes

To functionally characterize unigenes, DIAMOND and

HUMAnN3 were employed to align protein sequences against the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database using

blastp with an E-value threshold of ≤1e-5. The alignment results

were filtered to retain only the top-scoring hit per query, defined as

a high-scoring pair (HSP) with a bit score >60. For HUMAnN3

outputs, the best-scoring HSP (>60 bits) was similarly selected for

downstream analysis. Functional pathway enrichment analysis was

performed using the Reporter Score algorithm, with enrichment

deemed statistically significant when the absolute score exceeded

the 95% confidence interval (i.e., |score| > 1.96). Additionally,

unigenes were annotated against the Comprehensive Antibiotic

Resistance Database (CARD) using the Resistance Gene Identifier

(RGI) tool (blastp, E-value ≤1e-30). The resulting Antibiotic

Resistance Ontology (ARO) abundance profiles were used to

assess differential abundance between experimental groups and to

infer the taxonomic origin of resistance genes.

2.2.5 Development and validation of a machine
learning-based predictive model

A total of eight machine learning algorithms, including random

forest (RF), neural network (NNet), and Treebag, were

systematically evaluated for model development. Based on the

AUC and overall predictive performance, the RF algorithm was

selected as the primary classifier in this study. Feature importance

was quantified using the Gini index, and features were ranked

accordingly to identify key predictive variables. Tenfold cross-
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validation was subsequently applied to the trained decision tree

model to optimize feature selection and determine the optimal

number of predictors.
3 Results

3.1 Confounding factors and batch effect
control

A total of five published studies related to LC immunotherapy

were selected from 645 articles, with the detailed characteristics of

the meta-cohort summarized in Table 1. A total of 209 fecal samples

were collected, including 154 baseline samples (responder = 45,

non-responder = 37, and healthy = 72) and 55 samples during

treatment. Supplementary Tables S1, S2 respectively provide an

overview of sample processing methods and diversity analysis

results for each study. Additionally, a risk of bias assessment was

conducted for the included studies, with findings presented in

Section 2 of the Supplementary Material. The principal risk

identified was insufficient identification and control of potential

confounding factors in the original studies.

Considering the technical and biological heterogeneity inherent

across studies, we evaluated the impact of confounding variables

including study origin, antibiotic exposure, age, sex, and cancer

subtype on gut microbiome composition. Immune response status

consistently explained the largest proportion of microbial

community variance, surpassing all other covariates, indicating

that confounding effects were relatively minor compared to the

biological signal of interest. Among clinical variables, antibiotic

exposure accounted for the second largest variance component after

immune status, exceeding the contributions of study origin, age,

and other factors (Figure 1). To mitigate the influence of antibiotic

exposure, the samples were stratified accordingly for downstream

analyses. Study origin was identified as the second most significant

confounder. To control for batch effects, study origin was

incorporated as a blocking factor, and a two-sided blocked
Frontiers in Cellular and Infection Microbiology 04
Wilcoxon rank-sum test was employed to identify differentially

abundant taxa. Only taxa exhibiting minimal variance attributable

to study origin were retained for further analysis.
3.2 Baseline GM taxonomic differences
between responder and non-responder

In the following analyses, the study population was stratified

into the total cohort, an antibiotic-exposed group (ATB), and a

non-antibiotic-exposed group (non-ATB) to evaluate differences in

gut microbiota between responders (R) and non-responders (NR)

across subgroups and to assess the impact of antibiotic exposure on

these differences.

In terms of species richness, the R group consistently exhibited a

higher a-diversity compared to the NR group, and this disparity

was further amplified in the presence of antibiotic exposure

(Figure 2A, Supplementary Figure S1). Principal coordinates

analysis (PCoA) and analysis of similarities (ANOSIM) indicated

no statistically significant differences in b-diversity between the R

and NR groups, although antibiotic exposure appeared to increase

the compositional divergence. Notably, inconsistent findings on b-
diversity reported across similar studies may stem from population

heterogeneity, sample processing variability, and differences in

sequencing platforms.

The results of the analysis of the top 10 taxa at different

taxonomic levels (Figure 2D, Supplementary Figures S2D, S3D)

revealed that Firmicutes and Bacteroidetes were the dominant phyla

in both groups. At the genus level, Bacteroides consistently ranked

as the most abundant genus across all subgroups, while the

remaining top genera showed minimal abundance differences

between the R and NR groups. However, antibiotic exposure

substantially influenced the enrichment patterns of several

dominant genera—for instance, Phocaeicola, Faecalibacterium,

and Roseburia were relatively enriched in the R group within the

non-ATB cohort but showed decreased abundance in the R group

under antibiotic exposure, suggesting that antibiotics may disrupt
TABLE 1 Clinical characteristics of the cohorts included in the meta-analysis.

Study First author Year
Data
type

Sample
numbers

Age (average
± s.d.a)

Type of
immunotherapy
given

Accession
number

Country

Study 1 Ben Liu (Liu et al., 2022) 2022 WGS 14 66.57 ± 12.95 Anti-PD-1 PRJNA866654 Iowa, USA

Study 2
Se-Hoon Lee
(Lee et al., 2021)

2021 WGS 2 61.00 ± 7.07 Anti-PD-1 PRJEB26531
Seoul,
Korea

Study 3
Yoshitaro Heshiki (Heshiki
et al., 2020)

2020 WGS 3 53.63 ± 6.72 Anti-PD-1 PRJNA494824
Arizona,
USA

Study 4
Bertrand Routy
(Routy et al., 2018)

2018 WGS 118 62.81 ± 9.61 Anti-PD-1 PRJEB22863
Paris,
France

Study 5 HMPa 2015 WGS 72 _ _ PRJNA48479 USA

Validation
study 1

Rachel C. Newsome
(Newsome et al., 2022)

2022
16s
rRNA

65 51 ± 49
Anti-PD-1/CTLA-4,
anti-PD-L1

PRJNA768678
Tampa,
FL, USA
fr
aThe Human Microbiome Project (HMP) is a large-scale DNA sequencing program led by the National Institutes of Health. From it, we extracted metagenomic shotgun sequencing data from
healthy subjects for downstream analysis (http://segatalab.cibio.unitn.it/tools/metaphlan2/).
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the natural enrichment of beneficial bacteria. A similar trend was

observed at the species level; however, certain taxa exhibited

enrichment patterns that were not affected by antibiotic exposure,

such as Bacteroides uniformis and B. caccae.

To further identify differential biomarkers between groups, we

employed LEfSe. The cladogram-based visualization showed that

most differences between the R and NR groups were concentrated at

the species level (Figure 2E, Supplementary Figures S2E, S3E). The

LEfSe analysis of the total cohort identified B. caccae and P. copri as

the top-ranked biomarkers for the R and NR groups, respectively

(Figure 2F). B. caccae was also selected as a key differential species in

the non-ATB population (Supplementary Figure S2F).
3.3 Intra-community bacterial interactions
in network relationships

In both the responder (R) and non-responder (NR)

populations, the intra-community positive correlations among
Frontiers in Cellular and Infection Microbiology 05
species were consistently stronger within the R microbiota

compared to the NR microbiota. However, the overall interaction

strength within the R microbiota did not differ significantly between

the R and NR populations (Figures 3A, B), whereas the NR

microbiota displayed significantly stronger intra-community

associations in the NR population than in the R population

(Figures 3C, D).

Notably, in the R population, s_Parabacteroides johnsonii_

CAG:246 exhibited strong negative correlations with other R-

associated taxa (Figure 3A), a pattern that was similarly observed

in the NR population (Figure 3B). As a species enriched in

responders, this bacterium appears to exert antagonistic effects on

other beneficial taxa, suggesting a potentially suppressive role in

immune modulation and highlighting its relevance as a candidate

negative regulator of therapeutic response.

Conversely, s_Ruminococcus_sp._CAG:563, although enriched

in the NR microbiota, showed strong positive associations with

multiple R-associated taxa (Figures 3A, B). This suggests a possible

synergistic role in enhancing the abundance or activity of beneficial
FIGURE 1

Variance explained by response status (response vs. non-response) is plotted against variance explained by the confounding factor effects for
individual microbial species. The significantly differential microbiota are colored in blue, and P-values were from the two-way ANOVA test. The
abundance of each taxa is plotted proportionally to the dot size. ANOVA, analysis of variance.
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FIGURE 2

Species composition and difference analysis of response group and non-response group based on total population. (A) a-diversity analysis with
richness as the index. (B) Baseline gut microbiota PCOA analysis results of the two groups. (C) Similarity analysis of baseline microbiota between the
two groups. (D) Stacking maps of top 10 abundance at the phylum, genus, and species levels between responders and non-responders.
(E) Phylogenetic branching map between the two groups based on the results of the difference analysis. (F) Results of LEfSe difference analysis.
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microbes associated with immune response and raises the

hypothesis that supplementation with this species might augment

treatment efficacy.

Within the NR microbiota, an intriguing pattern emerged:

s_Actinotignum_schaalii was strongly negatively correlated with

other NR-associated species while demonstrating robust positive

correlations with R-associated taxa (Figure 3C). Although not

enriched in the R population, this species may simultaneously

suppress non-beneficial taxa and promote beneficial ones,

potentially contributing to improved immune responsiveness via

a dual mechanism. The immunomodulatory roles—either tumor-

promoting or tumor-suppressive—of these taxa warrant further

investigation through functional studies.
3.4 Construction and validation of machine
learning model for immunotherapy effect

To optimize predictive performance, we evaluated eight widely

used machine learning algorithms for model training. Based on the

AUC and multiple performance metrics in the training cohort, RF

was identified as the optimal model (Figure 4A). Utilizing microbial
Frontiers in Cellular and Infection Microbiology 07
biomarkers previously identified via LEfSe analysis, we constructed

immunotherapy response prediction models at both the genus and

species levels. The genus-level model, built on four key marker

genera, achieved an AUC of 0.79 (Figure 4B). At the species level,

the model incorporating seven differential species, including B.

caccae, reached an AUC of 0.82 (Figure 4C). Given that all

whole-genome shotgun (WGS) sequencing data were included in

the training phase to maximize the sample size, we externally

validated the genus-level model using an independent 16S rRNA

sequencing dataset, resulting in an AUC of 0.61 (Figure 4B).
3.5 Uncovering key species affecting
immunotherapy prognosis and stabilizing
biomarkers

To investigate gut microbial species potentially associated with

prognosis, we performed LEfSe analysis on two extreme patient

cohorts: responders with PFS exceeding 6 months were classified as

the long-PFS group, while non-responders with PFS under 3

months were classified as the short-PFS group. The analysis

revealed that, without considering ATB exposure, P. copri was
FIGURE 3

Interaction of differential markers between responder and non-responder groups within different populations. (A) Intra-community and inter-
community interactions of the responder microbiota in the responder population. (B) Intra-community and inter-community interactions of
responders in non-responders. (C) Intra-community and inter-community interactions of non-responsive bacteria in responders. (D) Intra-
community and inter-community interactions of non-responsive bacteria in non-responsive population.
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consistently identified as the top biomarker in the short-PFS group

(Figure 5A). Conversely, s_Bifidobacterium longum was identified

as a key biomarker for the long-PFS group across both the total

cohort and the ATB-exposed subgroup (Figures 5A, C),

corroborating previous findings of its significant enrichment in

CAR-T cell therapy patients with prolonged PFS (Stein-Thoeringer

et al., 2023). Notably, antibiotic exposure increased the number of

differentially abundant species between groups (Figure 5C).

By integrating multi-dimensional analyses including abundance,

differential significance, and intra-community interactions, we identified

B. caccae as a robust biomarker consistently associated with the

responder group, whereas P. copri was characteristic of the non-
Frontiers in Cellular and Infection Microbiology 08
responder group (Figures 5D, E). Importantly, antibiotic exposure did

not significantly affect these classifications (Supplementary Figure S4).
3.6 Dynamic changes of gut microbiota
during immunotherapy

As shown in Figure 6A, gut microbial a-diversity rebounded

following the completion of the first stage of immunotherapy in all

patients, with a more pronounced recovery observed in those who

had received ATB. Interestingly, non-responders exhibited a

greater increase in microbial diversity compared to responders
FIGURE 4

Screening and construction of immune efficacy prediction models. (A) Comparison of prediction efficiency and performance of different machine
learning methods. (B) The RF model was established and validated based on the genus-level differential markers obtained by LEfSe analysis. (C) RF
modeling was performed at the species level based on the differential species obtained by LEfSe analysis.
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(Supplementary Figures S5A, B), further supporting the notion that

reductions in microbial diversity are closely associated with

diminished immunotherapeutic efficacy. The subsequent decline

in treatment response may also be linked to a secondary loss of

microbial diversity.

Furthermore, we examined the dynamic changes in the

abundance of two key microbial biomarkers across different

phases of immunotherapy. In patients without prior ATB

exposure, the abundance of the core responder species B. caccae

increased significantly in both the R and NR groups following

treatment, whereas the potentially detrimental taxon P. copri

markedly decreased (Figure 6B). These findings suggest that

restoration of beneficial microbes and suppression of harmful
Frontiers in Cellular and Infection Microbiology 09
taxa may contribute to modulating host immune status and

enhancing treatment responsiveness. However, due to the lack of

dynamic data on host immune parameters and inflammatory

markers in this study, it remains unclear whether these microbial

shifts represent a causal factor for immunotherapy efficacy or a

secondary outcome of treatment response.

Notably, in patients who had received prior ATB treatment, an

initial broad depletion of GM was observed. During subsequent

immunotherapy, a substantial rebound in the abundance of both

biomarkers was detected (Figure 6C). This non-selective recovery

may have led to the concurrent enrichment of both beneficial and

harmful taxa, potentially with distinct kinetics. Such microbial

imbalance could disrupt gut ecological homeostasis and impair
FIGURE 5

Key species affecting immunotherapy prognosis and stabilizing biomarkers. (A) To explore the difference of microbiota between the long PFS and
short PFS groups based on the total population. (B) In the absence of antibiotic interference, the difference of gut microbiota between the long and
short PFS groups. (C) Difference of microbiota between the two groups when they experienced antibiotic intervention. (D) Biomarkers that remained
stable in the response group under the results of various bioinformatics analyses. (E) Biomarkers that remained stable in the non-responder group
across various bioassays.
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the regulatory role of the microbiota in host immune modulation.

This dysbiosis may partially explain the reduced efficacy of

immunotherapy observed in the ATB-treated group.
3.7 Functional analysis of immune-related
microbiota

The results of the KEGG functional enrichment analysis revealed

that the GM were predominantly involved in metabolic pathways,

with carbohydrate metabolism and amino acid metabolism being the

most significantly enriched categories. Notably, this pattern remained

consistent regardless of ATB exposure (Figure 7A). These findings

further support the characterization of LC as a metabolism-associated
Frontiers in Cellular and Infection Microbiology 10
disease. The results of subsequent differential analyses also indicated

that the primary functional discrepancies between responders and

non-responders were concentrated at the metabolic level

(Supplementary Figures S6-S8), suggesting that modulating

microbial metabolic functions may influence host metabolite

profiles and ultimately affect immunotherapeutic outcomes.

In addition, we explored the association between the

microbiome and antibiotic resistance genes using the CARD.

Taxonomic assignment revealed that the majority of resistance

genes in both responders and non-responders were affiliated with

the phyla Bacteroidetes and Proteobacteria, and this distribution

was not affected by ATB exposure (Figure 7B, Supplementary

Figures S7B, S8B). Several resistance genes, including ErmF and

the rpoB gene from Bifidobacterium adolescentis, exhibited significant
FIGURE 6

Changes in bacterial diversity and marker abundance during immunotherapy. (A) To investigate the changes in alpha diversity of gut microbiota at
different time points after immunotherapy and the effect of antibiotics on this trend. (B) Changes of s_Bacteroides caccae in the response group at
different time points after immunotherapy. (C) Changes in the marker s_Prevotella copri in the non-response group at different time points after
immunotherapy.
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intergroup differences. Notably, the administration of ATB further

exacerbated the divergence in resistance gene profiles between patient

groups (Figure 7C, Supplementary Figures S7C, S8C).
4 Discussion

In this meta-analysis, we conducted the largest metagenomic

study to date focusing on the gut microbiome in the context of

immunotherapy for LC. Participants were recruited from five

independent cohorts across the globe, aiming to establish a

broader and more reproducible microbiome signature associated

with response to ICIs.
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Overall, the responders exhibited higher species richness.

Although this trend did not reach statistical significance—likely

due to inter-cohort heterogeneity—it aligns with previously

reported findings from both Chinese and US cohorts (Heshiki

et al., 2020; Lee et al., 2021). The observed decrease in a-diversity
among non-responders suggests a more profound dysbiosis in this

group. Similar patterns of reduced a-diversity have been reported in
various metabolic disorders and are closely associated with disease

states (Dang and Marsland, 2019; Hakozaki et al., 2020). However,

findings across studies remain inconsistent—for instance, in the

study by Lee et al., non-responders demonstrated greater microbial

diversity, whereas David et al. found no significant differences in a-
diversity between responders and non-responders (Lee et al., 2021;
FIGURE 7

Functional analysis of gut microbiota in patients receiving immunotherapy. (A) A level 2 functional pathway statistical map was drawn based on
KEGG annotation results. (B) Species attribution analysis of resistance genes between responders and non-responders when the effect of antibiotics
was not considered (C) results of differential resistance genes between the two groups of patients.
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Dora et al., 2023). Although reduced a-diversity has been proposed

as a characteristic feature in melanoma immunotherapy, its

relevance as a predictive biomarker for ICI efficacy in lung cancer

remains uncertain and warrants further validation using real-

world datasets.

At the taxonomic level, intergroup differences were primarily

observed at the species level, and the use of ATBs appeared to

influence the abundance of specific key taxa. Regarding the debated

enrichment status of the “signature” bacterium AKK, our study

demonstrated that AKK was relatively enriched in responders

across both genus and species levels in the overall population and

the ATB-exposed subgroup. In contrast, in participants who had

not received ATBs, AKK was enriched in non-responders. These

findings suggest that, in responders, ATBs may exert a stronger

suppressive effect on non-AKK taxa—particularly those associated

with non-response—thereby indirectly enhancing the relative

abundance of AKK. Consequently, a key question for future

clinical research is whether targeted antibiotic interventions can

modulate the abundance balance between responder- and non-

responder-associated microbiota to improve the efficacy of

immunotherapy. This represents an important direction for

mechanistic and translational investigation.

The R-specific strain B. caccae and the NR-specific strain P. copri

identified in our study have been previously reported in the context of

cancer immunotherapy. Both B. caccae and AKK exhibit ecological

variability and have been associated with favorable outcomes in

response to ICIs (Liu et al., 2023). Enrichment of B. caccae has also

been observed in responders with melanoma (Frankel et al., 2017). A

systematic review by Mariam et al., encompassing 18 studies across

five types of solid tumors, reached a similar conclusion—B. caccae

was enriched in patients with better prognoses. Whether B. caccae

produces known immunomodulatory metabolites remains unknown.

Future research should employ metabolomics, along with in vitro co-

culture systems or organoid models, to uncover potential immune-

regulatory mechanisms associated with this strain. In contrast, the

pathogenic potential of P. copri has been more extensively studied.

Xiang et al. demonstrated that GM transplantation from patients

harboring P. copri induced severe inflammation and immune

dysregulation in murine models (Qian et al., 2022). Furthermore,

P. copri has been implicated in the pathogenesis of carboplatin-

induced intestinal mucositis, and the abundance of the Prevotella

genus has been linked to tumor invasiveness in melanoma (Yu et al.,

2019; Vitali et al., 2022). Despite these pro-inflammatory and pro-

tumorigenic associations, some studies have reported a higher

abundance of P. copri in responders (Jin et al., 2019; Robinson

et al., 2023). Whether this strain contributes to limiting the long-

term benefits of ICI therapy remains an open question, requiring

further investigation through mechanistic and in vivo studies.

In recent years, numerous high-impact studies have

demonstrated the feasibility and clinical potential of microbiome-

based predictive models for therapeutic response—for instance,

Huang et al. developed a cross-cohort, pan-cancer immune

response prediction model achieving an AUC of up to 0.89

(Huang et al., 2023). A more recent study published in Nature

Medicine further confirmed that strain-level abundance differences
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derived from metagenomic approaches can be utilized to predict

immunotherapy response across multiple cancer types (Gunjur

et al., 2024). In the context of LC, existing models primarily focus

on distinguishing patients with long versus short PFS. Notably, Liu

et al. reported that models based on differential microbial taxa

yielded suboptimal performance, whereas those leveraging

microbial functional protein profiles achieved superior predictive

accuracy, with an AUC of 0.95 (Liu et al., 2022). In addition, Lisa

et al. introduced a threshold-based stratification using the

abundance of Akk, defining patients as positive or negative

subgroups, further highlighting the potential of this species in

predicting immunotherapy response (Derosa et al., 2022).

Although models constructed using WGS sequencing data

exhibit robust classification performance, our approach faced

limitations during external validation. To maximize data

utilization, all available WGS samples were included in the

training set. Consequently, an independent validation cohort at

the genus level was retrieved through systematic data mining,

relying on 16S rRNA sequencing data. Due to inherent differences

in taxonomic resolution and annotation depth between WGS and

16S platforms, the model’s AUC dropped to 0.61 in the 16S cohort,

suggesting limited cross-platform generalizability. Nonetheless, this

result remains informative, especially in the absence of large-scale

independent WGS cohorts. Moving forward, we will continue

monitoring the release of new WGS datasets and explore the

integration of multi-omics data, including metagenomics,

metabolomics, and transcriptomics, to enhance model robustness

and cross-platform adaptability. As global, multi-center

metagenomic datasets continue to grow, we anticipate further

validation and refinement of our findings and models in broader

population contexts.

KEGG-based functional profiling revealed a significant

enrichment of metabolism-related pathways across all three groups,

suggesting a common microbial contribution to metabolic

reprogramming associated with tumor progression and survival (Li

and Zhang, 2016). Notably, in immunotherapy responders, pathways

involved in amino acid biosynthesis (e.g., tryptophan and branched-

chain amino acids) and carbohydrate metabolism (e.g., glycolysis and

the pentose phosphate pathway) were markedly upregulated

(highlighted in orange bars), indicating a more active microbial role

in metabolite production and energy provision (Tufail et al., 2024).

Importantly, several microbial-derived metabolites—such as short-

chain fatty acids and tryptophan derivatives—are known

immunomodulatory agents that can enhance T cell activation or

suppress pro-inflammatory signaling, potentially promoting

improved therapeutic outcomes. In contrast, non-responders

exhibited a significant upregulation of cancer-associated pathways,

particularly those involved in PD-L1 expression and PD-1 checkpoint

signaling, suggesting that certain microbial taxa may facilitate immune

evasion mechanisms. These findings underscore the potential of

leveraging microbial functional signatures to identify key taxa whose

targeted modulation may reduce tumor immune escape and enhance

immunotherapy responsiveness.

Our findings are highly consistent with a recent metatranscriptomic

study conducted in a LC immunotherapy cohort, collectively
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highlighting the pivotal role of GM in modulating responses to immune

checkpoint blockade (Dora et al., 2024). Both studies reported

significantly higher gut microbial diversity in responders compared to

non-responders, suggesting a potential link between microbial ecological

complexity and enhanced therapeutic efficacy. Moreover, the consistent

enrichment of B. caccae and Akk in responders across studies reinforces

the stability and generalizability of B. caccae as a potential predictive

biomarker. Future efforts should prioritize integrative multi-omics

approaches—including metagenomics, metatranscriptomics, and

metabolomics—to elucidate the mechanistic underpinnings of

microbe-mediated immune modulation, ultimately advancing

personalized prediction and clinical application of immunotherapy.

In addition, we constructed microbial co-occurrence networks to

preliminarily investigate potential microbe–microbe interactions

associated with immune response, aiming to identify key taxa that

may exert antagonistic or synergistic effects in responders. Given the

large number of annotated species in the dataset, our analysis was

restricted to the top 50 most abundant taxa to enhance robustness.

However, it should be noted that correlation-based co-occurrence

network methods are inherently limited by the compositionality and

sparsity of microbiome data, which may introduce biases in inferring

microbial associations. Moreover, since the interactions identified

through co-occurrence analysis have not yet been validated by

independent analytical approaches, we did not incorporate these

results into the final biomarker prediction model to maintain

scientific rigor. Future studies may benefit from applying more

advanced microbial network inference tools, such as SPIEC-EASI,

CoNet, and FlashWeave, to improve the accuracy of interaction

inference and enhance biological interpretability.

With the growing body of evidence linking the gut microbiome to

cancer immunotherapy outcomes, microbiome profiling is emerging

as a promising avenue to advance personalized immunotherapy in

lung cancer, with considerable translational potential. First, specific

microbial biomarkers—such as B. caccae and Akk—may be assessed

through non-invasive fecal testing prior to ICI administration,

enabling more accurate patient stratification, enhancing treatment

response rates, and reducing unnecessary exposure for likely non-

responders (Chen et al., 2019; Han et al., 2023). Second, GM data can

informmore rational antibiotic stewardship, including optimization of

timing, drug selection, and withdrawal windows, in order to preserve

immunologically relevant commensal taxa. Finally, microbiome-

informed personalized interventions—such as targeted probiotic

supplementation, FMT, or microbial metabolite administration—

offer a novel adjunctive strategy to improve ICI efficacy (Lu et al.,

2022; Yadegar et al., 2024). However, these approaches must be

pursued with rigorous safety evaluation and mechanistic validation.

Collectively, these considerations establish a feasible framework for

integrating microbiome analysis into the clinical management of lung

cancer and advancing precision immuno-oncology.

In future studies, we will focus on the key gut microbial taxa

identified in this work to investigate their roles in modulating

antitumor immunity. Using in vitro co-culture systems, tumor

organoid models, and humanized mouse models, we will
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systematically explore three mechanistic dimensions: microbial

metabolite production, immunomodulatory capacity, and mucosal

adhesion or translocation properties. To elucidate functional links

between the microbiota and host immunity, we will integrate fecal

metabolomic and serum immune transcriptomic data to reconstruct

microbe–metabolite–immune signaling networks. This approach will

help identify key metabolic mediators driving systemic immune

responses and reveal potential causal axes underlying microbiota–

host interactions. Additionally, we will expand real-world LC cohorts,

particularly those with WGS data, to enable strain-level microbiome

profiling and robust external validation across diverse populations

stratified by ethnicity, age, and treatment background. Finally, we will

integrate microbiome features with clinical parameters, immune

phenotypes, and genomic alterations to build high-resolution,

multi-dimensional models for predicting immunotherapy response.
5 Conclusion

We established the first global cross-cohort gut microbiota

landscape associated with immunotherapy response and developed

a machine learning-based predictive model with potential

translational relevance. These findings offer new insights into the

design of microbiome-informed immunotherapeutic strategies and

the identification of novel adjuvants or therapeutic targets.
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