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Object: NETs constitute a pivotal mechanism in the pathogenesis and

progression of TB. Despite their recognized importance, the genetic

underpinnings of NETs in TB remain inadequately elucidated. Accordingly, the

present study endeavors to delineate the molecular characteristics of NRGs in

TB, with the objective of reliably identifying associated molecular clusters

and biomarkers.

Methods: Gene expression profiles were analyzed from integrated datasets

retrieved from the GEO database. Differential analysis, WGCNA, and an

ensemble of 113 machine learning algorithms were employed to identify the

core NETs genes. Subsequently, TB patients were stratified into distinct subtypes

based on the expression profiles of these core genes, and the differences in

immune infiltration characteristics among the subtypes were systematically

compared. Finally, RT-qPCR was utilized to validate the differential expression

of the key NETs core genes.

Results: Analysis of the integrated GSE83456 and GSE54992 datasets yielded

630 DEGs. WGCNA subsequently identified a module comprising 1,252 genes,

fromwhich 26 key NETs genes were extracted via intersection with knownNRGs.

Among the ensemble of 113 machine learning methods, the “StepgIm[both]+RF”

algorithm demonstrated superior performance, ultimately identifying six core

NETs genes. Consensus clustering based on the expression profiles of these core

genes stratified patients into two distinct subtypes. Functional enrichment

analysis further underscored the predominance of immune-related pathways

in subtype B. Moreover, immune infiltration analysis revealed marked differences

in immune cell composition between the subtypes, thereby confirming a close

association between the core NETs genes and these immunological disparities.
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Conclusion: Core NETs genes are pivotal in the pathogenesis and progression of

tuberculosis, and they hold significant promise as novel biomarkers for the early

diagnosis and targeted treatment of TB.
KEYWORDS

tuberculosis, machine learning, neutrophil extracellular traps, molecular subtypes,
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Introduction

Tuberculosis (TB) is a highly contagious chronic disease caused

by Mycobacterium tuberculosis (MTB) and remains one of the

foremost infectious diseases responsible for a substantial number

of deaths globally. At present, tuberculosis is the second leading

cause of infectious disease-related mortality, surpassed only by

COVID-19, and is responsible for approximately 1.3 million

deaths each year (Bagcchi, 2023; Ding et al., 2024b). Although the

Bacillus Calmette-Guérin (BCG) vaccine—derived from an

attenuated strain of bovine Mycobacterium—effectively diminishes

the risk of severe TB manifestations, including meningitis and

disseminated tuberculosis in children, its protective efficacy

against adult TB remains limited (Singh et al., 2022).

Regarding treatment, isoniazid—a first-line anti-TB medication

—is widely employed for its potent bactericidal properties.

Nonetheless, its clinical application is frequently complicated by

hepatotoxicity, as studies have indicated that between 5% and 33%

of patients experience drug-induced liver damage during treatment

(Ding et al., 2024a; Jiang et al., 2024). Such hepatotoxicity not only

markedly diminishes the efficacy and cure rates of TB treatment but

also substantially escalates the mortality risk among patients.

Therefore, an in-depth exploration of the pathogenesis and

progression of TB is imperative to develop safer and more

efficacious alternative therapeutic strategies, rendering it an

urgent priority in contemporary research.

The pathogenesis of TB is exceedingly complex, encompassing a

diverse array of immune cells—including macrophages, lymphocytes,

and neutrophils—and characterized by perturbations in both innate

and adaptive immune responses (Kanabalan et al., 2021; Cavalcante-

Silva et al., 2023). Neutrophils, the most prevalent innate immune

cells in the human body, have traditionally been regarded as the

primary line of defense against pathogenic invasion (Li et al., 2023).

Nevertheless, the advent and meticulous investigation of neutrophil

extracellular traps (NETs) have revolutionized our understanding of

neutrophil functionality and their multifaceted role in immune

defense mechanisms. NETs are intricate, web-like structures

composed of chromatin and antimicrobial proteins secreted by

neutrophils (Shen and Lin, 2024), initially presumed to serve
02
predominantly in pathogen sequestration and neutralization.

Recent investigations, however, have elucidated that NETs play a

critical role in both the initiation and progression of TB. Dang et al.

(Dang et al., 2018) demonstrated that MTB induces NET release via

its extracellular sphingomyelinase Rv0888 and concurrently activates

myeloperoxidase (MPO), thereby exacerbating pulmonary lesions

through caspase-3-mediated apoptotic pathways. Moreover, NETs

induced by MTB further stimulate macrophages to secrete pro-

inflammatory cytokines, including IL-6 and TNF-a, thereby

recruiting additional neutrophils to the infection locus—a process

that intensifies inflammation and exacerbates pulmonary damage

(Braian et al., 2013). Beyond inflicting tissue damage, excessive NET

release may impair the antimicrobial capacity of neutrophils and

foster a nutrient-rich necrotic microenvironment that promotesMTB

proliferation, thereby accelerating the pathological progression of TB

(Francis et al., 2014). Notably, NET-associated biomarkers exhibit

significant potential for diagnostic and staging applications in TB.

Meier et al. (Meier et al., 2022) observed that circulating NET levels in

patients who eventually progressed to TB were markedly elevated as

early as six months prior to clinical diagnosis. Similarly, Melo et al.

(de Melo et al., 2018) reported a pronounced increase in the levels of

citrullinated histone H3—a well-recognized NET-related biomarker

—in the peripheral blood of TB patients. Consequently, a

comprehensive elucidation of the mechanistic underpinnings of

NETs in TB, coupled with an exploration of the dynamic

fluctuations of NET levels in patient blood, not only facilitates the

early prediction of TB progression but also furnishes critical evidence

for the development of innovative therapeutic targets. Nevertheless,

systematic investigations into neutrophil-related genes (NRGs) in TB

remain scant and warrant further scholarly exploration.

In recent years, the advent and widespread application of gene

chip technology have rendered bioinformatics indispensable in the

assessment of disease onset, progression, and the identification of

diagnostic and prognostic biomarkers. However, conventional

differential gene expression analysis methods may inadvertently

overlook pivotal biological information, and the reliability of single-

chip data is frequently compromised by inter-sample variability and

divergent experimental conditions. Therefore, the present study

employs a multi-chip, integrative bioinformatics analysis approach
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to systematically investigate the transcriptional alterations of NRGs

in the blood of TB patients, incorporating advanced machine

learning algorithms to identify core genes. Furthermore, TB

patients are stratified based on the expression profiles of these

core genes, thereby elucidating the potential biological

characteristics of distinct subtypes. Moreover, through

experimental validation of the expression levels of these core

genes in clinical samples, this study aims to furnish more reliable

and comprehensive scientific evidence to support the early

diagnosis and precision treatment of TB. The analytical workflow

employed in this study is illustrated in Figure 1.
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Materials and methods

Study population

This investigation leveraged six Gene Expression Omnibus

(GEO) datasets (GSE54992, GSE83456, GSE19444, GSE34608,

GSE6252, GSE119143), encompassing patients with tuberculosis

(TB) and healthy controls, alongside whole blood samples from five

TB patients and five healthy volunteers for RT-qPCR validation.

Clinical characteristics of TB patients, which guided patient

stratification and analysis, included sputum smear status, chest
FIGURE 1

Experimental flowchart.
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radiography findings (e.g., presence of cavitary lesions), and

biomarkers such as C-reactive protein (CRP) concentrations and

erythrocyte sedimentation rate (ESR). These attributes were chosen

due to their well-documented significance in TB diagnosis and

progression, as well as their established utility in clinical settings for

evaluating disease severity and therapeutic response.
Data acquisition

Six datasets (GSE54992, GSE83456, GSE19444, GSE34608,

GSE62525, and GSE119143), encompassing gene expression

profiles from patients with tuberculosis (TB) and healthy controls,

were retrieved from the Gene Expression Omnibus (GEO) repository.

Gene expression matrices were constructed using platform-specific

annotation files (e.g., GPL570 for GSE54992 and GSE83456). To

ensure data integrity, preprocessing steps were executed in R (version

4.4.1). Low-quality probes were excluded based on signal intensity

thresholds (below the 2.5th percentile). Data were normalized using

the robust multi-array average (RMA) method from the affy package

to minimize variance across samples. Batch effects were ameliorated

using the ComBat function from the sva package (version 3.40.0),

integrating GSE54992 and GSE83456 into a cohesive training dataset,

while the remaining four datasets (GSE19444, GSE34608, GSE62525,

GSE119143) served as validation cohorts (Table 1). To identify genes

associated with neutrophil extracellular traps (NETs; hereafter

NRGs), we systematically interrogated multiple repositories,

including GeneCards (Rebhan et al., 1997), OMIM (Mckusick,

2007), NCBI Gene (Edgar et al., 2002), and pertinent literature

(Sheng and Cui, 2024), yielding a curated catalog of 403 NRGs.

These NRGs were refined for relevance to TB pathology based on

functional annotations and prior research.
Differential gene expression selection

Differential expression analysis between patients with

tuberculosis (TB) and healthy controls was conducted using the

“limma” package in R. Genes were deemed differentially expressed

if they satisfied the criteria of |log2 fold change| > 0.585

(corresponding to a fold change of approximately 1.5 on a linear

scale, as 2^0.585 ≈ 1.5) and an adjusted p-value (FDR) < 0.05. The
Frontiers in Cellular and Infection Microbiology 04
log2 fold change threshold of 0.585 was selected based on the

following rationale: (1) a fold change of 1.5 is widely acknowledged

in gene expression studies as a biologically significant threshold,

balancing sensitivity and specificity for identifying differentially

expressed genes (DEGs) pertinent to tuberculosis pathology

(Maertzdorf et al., 2012); (2) this threshold, coupled with an FDR

< 0.05, ensures statistical rigor while capturing genes exhibiting

moderate yet consistent expression changes; and (3) exploratory

analyses of our dataset corroborated that a |log2 fold change| >

0.585 effectively delineated genes with robust differential expression

patterns across replicates, aligning with the study’s biological

hypotheses. Volcano plots and heatmaps were generated using the

“ggplot2” and “pheatmap” packages to visualize the DEGs.
Weighted gene co-expression network
analysis

A weighted gene co-expression network was constructed with

the “WGCNA” package to identify functional modules in TB

samples. Genes with an average expression > 0.5 were selected,

and outlier samples were removed using hierarchical clustering

(“Hclust”). An optimal soft threshold (b, 1–20) was determined to

convert the adjacency matrix into a Topological Overlap Matrix

(TOM). Modules containing at least 60 genes were delineated via

hierarchical clustering and subsequently consolidated. Key modules

correlated with clinical features were identified, and intersecting

genes between these modules and NRGs yielded critical

NETs genes.
Enrichment analysis of key NETs genes

GO and KEGG enrichment analyses were performed on the

identified DEGs to elucidate the functional roles of key NETs genes.

The GO analysis examined biological processes, molecular

functions, and cellular components, while the KEGG analysis

provided an overview of metabolic and cellular pathways,

systemic functions, and disease associations (Kanehisa et al.,

2023). Both analyses were executed using “clusterProfiler” and

“enrichplot” in R, with significance thresholds of p < 0.05 and

q < 0.05.
TABLE 1 Microarray information of gene expression dataset.

Type Dataset Source
Sample

Platform Group
Control TB

GEO

GSE83456 PBMC 61 45 GPL10558
Training section

GSE54992 PBMC 6 9 GPL570

GSE62552 PBMC 7 7 GPL16951

Validation section
GSE19444 PBMC 12 21 GPL6947

GSE34608 PBMC 18 8 GPL6480

GSE119143 PBMC 5 7 GPL17586
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Selection of key NETs genes

To select key NETs genes, we employed a combination of 12

machine learning algorithms, including Elastic Net (Enet), Ridge,

Stepglm, LASSO, SVM, LDA, plsRglm, RF, GBM, XGBoost, and

Naïve Bayes. Consequently, 113 combined models were

constructed, and cross-validation techniques were applied to

mitigate overfitting risk: one set of algorithms was used for

variable selection, while another set built classification prediction

models. Furthermore, the number of validation sets was

appropriately augmented to ensure the robustness of the model.

Model performance was evaluated across various cohorts by

calculating the Area Under the Curve (AUC) of the ROC curve,

and the results were visualized through heatmaps. The most

optimal model from the 113 algorithms was selected for further

assessment of the diagnostic sensitivity and specificity of TB.
Expression and diagnostic value of key
NETs genes

Based on the results from the most accurate algorithm, volcano

plots were generated using the “ggplot2” package in R to display the

expression distribution of key NETs genes. Gene functional

enrichment analysis was performed using the online tool

GeneMANIA (https://genemania.org/) (Warde-Farley et al.,

2010), and interactions with scores exceeding 0.4 were regarded

as significantly relevant. Subsequently, box plots were employed to

display the expression differences of key NETs genes between TB

patients and healthy controls, and ROC curves were constructed

using the “pROC” package to evaluate the diagnostic efficacy of

these key NETs genes. Further validation was carried out using

independent datasets to confirm the reliability of the findings.
TB diagnostic model construction and
validation

Using key NETs genes, a nomogram model was constructed

through the “rms” package in R. The “total score” reflects the

contribution of each predictor variable, with each variable being

assigned a corresponding score based on its importance. The

model’s accuracy and clinical applicability were rigorously

validated through calibration curves, decision curve analysis

(DCA), and clinical impact curves.
Gene set variation analysis

To evaluate the functional differences associated with the

upregulation and downregulation of key NETs genes, Gene Set

Variation Analysis (GSVA) (Hänzelmann et al., 2013) was

performed. GSVA calculates gene set activity scores to identify

gene sets associated with distinct biological processes, functions, or

pathways. Using KEGG and GO gene sets, the “GSVA” package in
Frontiers in Cellular and Infection Microbiology 05
R was employed to analyze the enriched pathways associated with

the upregulation and downregulation of key NETs genes, revealing

their potential biological relevance.
Immune infiltration analysis

Differences in immune cell infiltration between patients with

tuberculosis (TB) and healthy controls were quantified using the

CIBERSORT algorithm, a sophisticated deconvolution method that

estimates the proportions of 22 immune cell types (e.g., neutrophils,

monocytes, T cells) from bulk gene expression data using the LM22

signature matrix. This approach is pivotal for TB research, as it

illuminates immune cell dynamics, particularly neutrophil

responses associated with neutrophil extracellular traps (NETs).

CIBERSORT analysis was performed on the integrated GEO

dataset (GSE54992 and GSE83456, n=150, comprising 80 TB

patients and 70 controls) using the CIBERSORT R package

(v1.0.0). Data were preprocessed with robust multi-array average

(RMA) normalization and ComBat batch correction (sva package,

v3.40.0), with genes exhibiting average log2 expression < 0.5 filtered

to enhance analytical precision. The analysis employed 100

permutations, and differences in immune cell fractions were

evaluated using the Wilcoxon rank-sum test (p < 0.05). Results,

visualized through bar and violin plots (ggplot2, v3.3.5), revealed

significantly elevated neutrophil and monocyte proportions in TB

patients (p < 0.01), consistent with the upregulation of NETs-

related genes (AIM2, TNFSF10, C5, IL15, CD274, CYBB).

Validation was conducted using routine blood data from 89

healthy individuals and 150 TB patients, quantifying monocytes,

neutrophils, lymphocytes, and eosinophils via automated

hematology analyzers (e.g., Sysmex XN-1000). Cell counts,

compared using the Mann-Whitney U test (p < 0.05),

corroborated elevated neutrophil and monocyte levels in TB

patients, aligning seamlessly with CIBERSORT findings.
Molecular subtype identification of TB
based on key NETs genes

Unsupervised hierarchical clustering was conducted on 54

samples from patients with tuberculosis (TB) within the

integrated training dataset (GSE54992 and GSE83456) using

expression profiles of six pivotal neutrophil extracellular trap

(NET)-associated genes (AIM2, TNFSF10, C5, IL15, CD274,

CYBB). The ConsensusClusterPlus package (Wilkerson and

Hayes, 2010) (version 1.58.0) in R was employed with the

following parameters: maxK = 6, reps = 50, pItem = 0.8, pFeature

= 1, clusterAlg = “pam” (partitioning around medoids), and

distance = “euclidean.” The optimal cluster number (k=2) was

determined through the Calinski criterion and inter-cluster

correlation analysis, delineating two distinct TB molecular

subtypes. Subtype distribution was visualized using t-distributed

stochastic neighbor embedding (t-SNE) via the Rtsne package

(version 0.16). Differential expression of m6A key regulatory
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genes across subtypes was evaluated using the Kruskal-Wallis test,

with post-hoc pairwise comparisons adjusted for multiple testing via

the Benjamini-Hochberg method. Results were depicted as

heatmaps using the pheatmap package.
Real-time fluorescence quantitative PCR
validation of key NETs genes

Whole blood samples were collected from five TB patients and

five healthy volunteers, with informed consent obtained. TB

patients were selected based on confirmed diagnosis via clinical

features (e.g., sputum smear positivity and/or chest X-ray

abnormalities), as detailed in the “Study Population” subsection.

Primers were designed using the Primer 3 Plus tool and validated

through the NCBI database, with primer sequences listed in Table 2.

Total RNA was extracted from peripheral blood, followed by cDNA

synthesis via reverse transcription. RT-qPCR was conducted

according to the kit’s instructions, and relative gene expression

was calculated using the 2^-DDCt method to ensure accuracy and

reproducibility of the results.
Statistical analysis

In this study, the relationship between continuous variables in

two groups was analyzed using the non-parametric Wilcoxon rank-

sum test, with P < 0.05 considered statistically significant. All

statistical analyses were conducted using R software (version

4.4.1) and Prism 10 (GraphPad Software, USA).
Results

Identification of differentially expressed
genes

To mitigate batch effects between the GSE54992 and GSE83456

datasets, the Combat method was employed for data normalization;

the outcomes prior to and following normalization are illustrated in
Frontiers in Cellular and Infection Microbiology 06
Figures 2A–D. Following data integration, a training dataset was

assembled comprising 54 TB patient samples and 67 healthy control

samples. Applying the selection criteria (|log2 fold change| > 0.585,

p < 0.05), a total of 630 DEGs were discerned, including 417

upregulated and 213 downregulated genes (Figure 2E). For visual

representation, a heatmap depicting the top 50 most significantly

altered genes was generated (Figure 2F).
Construction of TB co-expression network
and identification of key NETs genes

To precisely pinpoint central genes intimately linked to TB

phenotypes, the WGCNA algorithm was employed to construct a

comprehensive gene co-expression network. In this analysis, a soft

threshold of b = 2 was selected to attain a scale-free topology for the

network (refer to Figure 3A). Hierarchical clustering was

subsequently performed to generate a dendrogram delineating

gene modules, which identified seven modules exhibiting

analogous gene expression patterns (Figure 3B). Ultimately, the

blue module emerged as the module most strongly correlated with

TB phenotypes, encompassing 1,252 genes, with a correlation

coefficient of 0.67 between the module and the clinical phenotype,

and a significant p-value of 3 × 10-6. The significance of the module

genes attained an extraordinary p-value of 1.1 × 10-¹64

(Figures 3C–D). Moreover, a scatter plot corroborated the robust

correlation among genes within the blue module, revealing a

correlation coefficient of 0.93 and a p-value of 1 × 10-²00

(Figure 3E). Furthermore, by intersecting the DEGs, NRGs, and

the pivotal genes derived from the blue module, a total of 26 key

NETs genes were identified (Figure 3F).
Functional enrichment analysis of key NETs
genes

To elucidate the functional roles and relevance of these key

NETs genes in TB, GO and KEGG pathway enrichment analyses

were performed on the 26 key genes. GO analysis revealed that

these genes predominantly participate in immune-related
TABLE 2 Primers sequence.

Gene Primer (5′-3′)

b-actin F:TGGCAAAACGTCTTCAGGAGG R:AGCTTGACTTAGTGGCTTTGG

AIM2 F:TGCGTGCTGATCGTGATCTTC R:GCTCGTTGGTAAAGTACACGTA

TNFSF10 F:CGGCTCCGACAAGATACTTC R:TAGGCACGCAGCAAACTC

C5 F:ACAGTCATAGAGTCTACAGGTGG R:CCAACTGGTCAAGCGAATCTT

IL15 F:TTGGGAACCATAGATTTGTGCAG R:GGGTGAACATCACTTTCCGTAT

CD274 F:GGACAAGCAGTGACCATCAAG R:CCCAGAATTACCAAGTGAGTCCT

CYBB F:TGCCAGTCTGTCGAAATCTGC R:ACTCGGGCATTCACACACC
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biological processes, including the positive regulation of cytokine

production, modulation of innate immune responses, and

orchestration of inflammatory responses (Figure 4A). KEGG

pathway analysis demonstrated significant enrichment of these

genes in critical pathways, notably neutrophil extracellular trap

formation, Toll-like receptor signaling, and TNF signaling

pathways (Figure 4B). Collectively, these findings imply that the

key NETs genes are intricately linked to TB-associated immune

responses and may exert substantial influence on the disease’s

pathological progression.
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Selection of key NETs genes

In order to identify the most diagnostically potent NETs core

genes, 12 machine learning algorithms were employed to develop

113 combined models, utilizing a 10-fold cross-validation

framework. Subsequent model evaluation in the training set and

three external validation sets indicated that the “Stepglm[both]

+RF” algorithm demonstrated the highest predictive performance

(Figure 5A). Ultimately, employing this algorithm, six key NETs

genes were identified, namely AIM2, TNFSF10, C5, IL15, CD274,
FIGURE 2

Differentially expressed genes between TB and healthy control samples. (A, B) Boxplots illustrating gene expression distributions across two
independent datasets before and after batch effect correction, demonstrating reduced batch-associated variability post-correction. (C, D) Principal
component analysis (PCA) scatterplots showing clear separation of samples by dataset prior to correction and marked integration ost-correction.
(E) Volcano plot of differentially expressed genes (DEGs), with red and orange dots representing significantly upregulated and downregulated genes,
respectively, and green dots indicating non-significant genes. (F) Heatmap of DEGs depicting expression patterns across samples and highlighting
differences between experimental groups.
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and CYBB. The AUC values derived from Receiver Operating

Characteristic (ROC) analyses for these core genes across four

datasets were 0.997, 0.914, 0.921, and 1.00, respectively

(Figures 5B–E). Furthermore, diagnostic sensitivity and
Frontiers in Cellular and Infection Microbiology 08
specificity, as determined by confusion matrix analyses, ranged

from 96% to 100% and 80% to 100%, respectively, across the

datasets (Figures 5F–I), underscoring the model’s minimal risk of

overfitting and exceptional diagnostic performance.
FIGURE 3

Weighted gene co-expression network analysis and identification of key NETs genes. (A) Soft-thresholding power analysis illustrating the selection of
the optimal power parameter based on scale-free topology model fit index for network construction. (B) Gene dendrogram and module assignment,
with distinct colors indicating different co-expression modules identified from hierarchical clustering. (C) Heatmap showing the relationship between
modules and TB features. (D) Bar plot showing gene significance across modules, highlighting the blue module as most significantly associated
with the trait. (E) Scatter plot depicting the high correlation between module membership and gene significance within the blue module (cor=0.93,
p < 1e-200). (F) Venn diagram illustrating the overlap among differentially expressed genes (DEGs), tuberculosis-related genes (NETs), and WGCNA-
identified module genes.
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Expression and diagnostic value
assessment of key NETs genes

A volcano plot was constructed to visually illustrate the

expression profiles of six pivotal neutrophil extracellular trap

(NET)-associated genes, revealing significant upregulation of all

core genes in patients with tuberculosis (TB) (Figure 6A). In

bacterial pneumonia, validation of key gene expression showed

that only AIM2 and TNFSF10 exhibited statistically significant

upregulation, while the other genes did not reach statistical

significance (Supplementary Figure 1; Supplementary Material 1).

Subsequent analysis revealed that these genes are predominantly

enriched in critical biological processes, such as phagocytosis and

inflammasome complex formation (Figure 6B). Compared to

healthy controls, the expression of these six genes was
Frontiers in Cellular and Infection Microbiology 09
substantially elevated in TB samples (Figure 6C), a finding

substantiated in the GSE34608 validation cohort (Figure 6E).

Receiver operating characteristic (ROC) curve analysis disclosed

area under the curve (AUC) values for AIM2, TNFSF10, C5, IL15,

CD274, and CYBB of 0.973, 0.956, 0.923, 0.921, 0.839, and 0.896,

respectively, with all AUC values in the validation cohort surpassing

0.9, underscoring these genes’ potential as robust diagnostic

biomarkers for TB (Figures 6D, F).
Clinical prediction model construction

Using the six key NETs genes, a nomogram model was

developed to predict the risk of TB occurrence (Figure 7A). The

model’s performance was rigorously validated using calibration
FIGURE 4

Functional enrichment analysis of key NETs genes. (A) GO enrichment analysis circle plot of key NETs genes. (B) KEGG enrichment analysis circle
plot of key NETs genes.
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FIGURE 5

Selection of key NETs genes. (A) Evaluation of 113 machine learning algorithm combinations using 10-fold cross-validation. (B–E) ROC curves with
corresponding AUC values for the selected optimal model in the training set (B) and three independent validation datasets (C–E), demonstrating
robust sensitivity and specificity. (F–I) Confusion matrices for the training set and three validation cohorts, showing classification accuracy and
misclassification between control and tuberculosis groups.
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curves, decision curve analysis (DCA), and clinical impact curves.

The calibration curve demonstrated a high degree of consistency

between the model’s predictions and actual observations, with a C-

index of 0.986 (Figure 7B). Decision curve analysis (DCA) indicated
Frontiers in Cellular and Infection Microbiology 11
that the nomogram model provided a high net benefit, making it

appropriate for clinical application (Figure 7C). The clinical impact

curve further corroborated the strong predictive performance of the

model (Figure 7D).
FIGURE 6

Differential expression analysis of key genes and evaluation of their diagnostic performance. (A) Volcano plot illustrating differential expression of key
genes between tuberculosis (TB) and control groups. (B) Protein-protein interaction (PPI) network of key genes (C, E) Boxplots of key gene expression
levels in training (C) and validation (E) cohorts, showing significantly elevated expression in TB versus control groups (***p < 0.001). (D, F) Receiver
operating characteristic (ROC) curves and area under the curve (AUC) values for key genes in training (D) and validation (F) datasets, demonstrating
high diagnostic accuracy for tuberculosis.
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Enrichment analysis of key NETs genes

KEGG pathway enrichment analysis was conducted using

GSVA on the six key NETs genes. The findings demonstrated

that these genes were primarily involved in key immune-related

pathways, including the RIG-I-like receptor signaling pathway,

Toll-like receptor signaling pathway, and NOD-like receptor

signaling pathway (Figures 8A–F). Notably, all six key genes

exhibited significant enrichment in the RIG-I-like receptor and

Toll-like receptor signaling pathways, suggesting that these genes

may impact TB onset and progression by modulating critical

immune pathways.
Immune infiltration correlation analysis

CIBERSORT analysis of immune infiltration characteristics in

TB patients and healthy controls revealed a significant increase in

monocytes, macrophages, eosinophils, and neutrophils in TB

patients compared to healthy controls, while CD4+ and CD8+ T
Frontiers in Cellular and Infection Microbiology 12
cells were significantly reduced (Figure 9A). Further analysis

demonstrated that the expression levels of key NETs genes were

significantly correlated with the infiltration of various immune cells

(Figure 9B), indicating that NETs core genes may contribute to TB

pathogenesis by modulating the immune microenvironment. The

validation analysis of blood routine data similarly showed a

significant increase in monocytes and neutrophils in TB patients,

with a concomitant decrease in lymphocytes (Figures 9C–F),

consistent with the immune infiltration analysis findings.
Identification of NETs-related subtypes
in TB

Using the expression data of the six key NETs genes, consensus

clustering algorithms were applied to classify 54 TB samples. The

optimal number of clusters was determined to be k = 2, with the

CDF curve exhibiting minimal fluctuation within the range of a

consistency index between 0.4 and 0.6 (Figures 10A, B). Between

k = 2 and k = 9, the area under the CDF curve demonstrated
FIGURE 7

Clinical prediction model construction based on key NETs genes. (A) Nomogram integrating expression levels of AIM2, TNFSF10, C5, IL15, CD274,
and CYBB for quantitative individualized risk prediction of tuberculosis. (B) Calibration curve shows agreement between predicted and observed
probabilities, with a concordance index (C-index) of 0.986, indicating excellent predictive accuracy and discrimination. (C) Decision curve analysis
(DCA) assessing net benefit across different threshold probabilities. (D) Plot of the number of patients classified as high risk and number of events at
different risk thresholds, demonstrating effective risk stratification by the model.
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differences between two consecutive CDF curves (k and k-1)

(Figure 10C). When k = 2, the consistency score for the subtypes

reached its highest value (Figure 10D). Principal component

analysis (PCA) results revealed that the 54 TB patients could be

distinctly classified into Cluster A (n = 21) and Cluster B (n = 33)

(Figure 10E). Expression differences of the six key NETs genes

between Cluster A and Cluster B were evaluated to investigate the

molecular characteristics of the clusters. Distinct expression profiles

of the NETs core genes were observed between Cluster A and

Cluster B (Figure 10F). In Cluster B, AIM2, TNFSF10, C5, IL15,

CD274, and CYBB exhibited significant upregulation (Figure 10G).

To explore the pathway activity and associated biological

functions within each cluster, GSVA was applied. The results

demonstrated that ribosome function, purine metabolism, and

arachidonic acid metabolism were significantly enriched in

Cluster A, whereas Cluster B showed notable enrichment in RIG-

I-like receptor signaling pathways, Toll-like receptor signaling

pathways, and NOD-like receptor signaling pathways

(Figures 10H). These enrichment results imply that Cluster B is

more strongly associated with the NETs core genes and the

pathological processes of TB. Moreover, immune cell infiltration

analysis revealed significant differences in the immune

microenvironment between Cluster A and Cluster B (Figure 10I).

The abundance of M0 macrophages, eosinophils, and neutrophils

was significantly higher in Cluster B, whereas CD8+ T cell

abundance was significantly lower, indicating that TB patients in

Cluster B are more prone to increased immune cell infiltration.
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Validation of NETs core gene expression in
clinical samples

To further validate the expression of the six NETs core genes,

RT-qPCR was conducted on clinical samples from five TB patients

and five healthy controls. The results demonstrated that these genes

were significantly upregulated in TB patients, consistent with the

bioinformatics analysis findings (Figures 11A–F).
Discussion

The pathogenesis of tuberculosis (TB) is marked by a distinctive

feature: Mycobacterium tuberculosis (MTB), the etiological agent,

can survive for prolonged periods in diverse intracellular

environments, thereby maintaining a persistent infection. Early

infection with this pathogen frequently does not manifest with

overt clinical symptoms, instead revealing subtle alterations at the

molecular genetic level. Despite its latent nature, this infection

continues to pose a substantial threat to host health, especially

when the immune system encounters external stress or regulatory

imbalances, which may prompt the infection to rapidly progress

into active disease (Boom et al., 2021; Chandra et al., 2022). Existing

literature suggests that the function of neutrophil extracellular traps

(NETs) is intricately linked to the onset and progression of TB

(Cavalcante-Silva et al., 2023). However, the precise molecular

genetic mechanisms by which NETs influence the pathogenesis
FIGURE 8

Gene set variation analysis (GSVA) of pathways associated with key genes. (A–F) Bar plots depicting KEGG pathway enrichment results related to the
key genes AIM2 (A), TNFSF10 (B), C5 (C), IL15 (D), CD274 (E), and CYBB (F).
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and progression of TB remain to be fully elucidated. Therefore, this

study seeks to investigate the role of NETs-related regulatory genes

(NRGs) in TB, offering new theoretical insights for molecular

pathological research on TB and laying the foundation for future

diagnostic and therapeutic strategies.

In this study, we integrated the GSE54992 and GSE83456

datasets from the GEO database to perform a comprehensive

analysis of gene expression levels in healthy controls and TB

patients. A total of 630 differentially expressed genes (DEGs) were

identified, of which 417 were significantly upregulated and 213

significantly downregulated. To further refine our identification of

key genes associated with TB clinical phenotypes, we utilized

Weighted Gene Co-expression Network Analysis (WGCNA) to

construct a co-expression network for TB samples. The results

revealed that the blue module, among the seven identified gene

modules, exhibited a significant correlation with TB. This module

comprised 1,252 genes. In subsequent analyses, by intersecting the

DEGs, blue module genes, and NETs-related genes, we identified 26

pivotal NRGs. To gain a deeper understanding of these genes’

functions, we annotated the NRGs using functional enrichment
Frontiers in Cellular and Infection Microbiology 14
analyses (GO and KEGG), uncovering their potential biological

roles in TB.

GO analysis revealed that these key genes were predominantly

involved in processes related to innate immune regulation, defense

responses, and viral infections, implying that these genes may play a

critical role in the host immune response to Mycobacterium

tuberculosis. Concurrently, KEGG analysis further demonstrated

that these key genes were significantly enriched in crucial immune

pathways, such as neutrophil extracellular trap formation, Toll-like

receptor signaling pathways, and TNF signaling pathways. Previous

studies have shown that chronic viral infections can exacerbate

Mycobacterium tuberculosis co-infections (Xu et al., 2021),

suggesting that the host’s immune response to TB may resemble

responses to viral infections. Yan et al. further substantiated this

idea, positing that the human immune response to MTB aligns

more closely with a viral infection pattern than with a typical

bacterial infection (Wang et al., 2024). Furthermore, Toll-like

receptors, as essential components of innate immunity, play a

pivotal role in the host’s defense against MTB (Saraav et al.,

2014). The findings of this study not only reinforce these existing
frontiersin
FIGURE 9

Immune infiltration correlation analysis. (A) Comparison of relative abundances of 22 immune cell subtypes between tuberculosis (TB) and control
groups based on immune infiltration analysis, with significant alterations observed in multiple immune cell fractions in the TB group (*p<0.05,
**p<0.01, ***p<0.001). (B) Correlation network between key gene expression and immune cell infiltration levels. (C–F) Comparison of absolute
counts of lymphocytes (C), monocytes (D), eosinophils (E), and neutrophils (F) in peripheral blood showing significant increases in TB patients
(**p<0.01, ***p<0.001).
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FIGURE 10

Subgroup classification of tuberculosis samples based on key gene expression patterns and associated functional characterization. (A) Consensus
clustering matrix at k=2 showing optimal sample clustering stability. (B) Cumulative distribution function (CDF) curves for various k values, aiding
determination of optimal cluster number. (C) Relative change in area under CDF curve indicates marked decrease at k=2, suggesting two distinct
clusters. (D) Bar plot of cluster consensus scores at different k values. (E) Principal component analysis (PCA) scatter plot showing clear separation
between two subgroups. (F) Heatmap depicting expression profiles of key genes across two clusters, with red and blue representing high and low
expression levels, respectively. (G) Boxplots showing significant differential expression of key genes between clusters (**p<0.01, ***p<0.001).
(H) KEGG pathway enrichment based on gene set variation analysis (GSVA) between clusters, highlighting upregulated (red) and downregulated
(blue) pathways. (I) Immune cell infiltration differences across subgroups, illustrating variations in abundance of diverse immune cell subsets.
*P<0.05.
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conclusions but also further elucidate that the identified NRGs play

a central role in the immune response following Mycobacterium

tuberculosis infection, underpinned by the high accuracy of the

gene selection method employed.

In the subsequent screening process, we conducted a

comprehensive analysis of the 26 NETs-related genes (NRGs)

using 113 machine learning algorithms and ultimately identified

six core NRGs through the “StepgIm[both]+RF” combination

algorithm, including AIM2, TNFSF10, C5, IL15, CD274, and

CYBB. These core genes were further validated in the GSE34608

dataset, exhibiting expression levels consistent with those observed

in the training set. These six genes were significantly upregulated in

TB patients and exhibited excellent diagnostic performance in the

validation set, with ROC curve AUCs exceeding 0.90, underscoring

their substantial potential in TB diagnosis.While our model

demonstrated exceptionally high AUC values across multiple

retrospective cohorts, we acknowledge that such performance is

uncommon and must be interpreted with caution. The definitive

validation of its diagnostic and prognostic utility requires evaluation
Frontiers in Cellular and Infection Microbiology 16
in a large-scale, independent, and prospectively collected clinical

cohort before it can be considered for clinical translation.

AIM2, a cytoplasmic sensor protein, plays a pivotal role in

inflammatory responses by detecting double-stranded DNA

(dsDNA) from damaged cells, inducing cytokine expression that

drives the development of inflammatory diseases (Hornung et al.,

2009). MTB infection activates the AIM2 inflammasome, increasing

the pathogen burden and exacerbating the infection (Qu et al.,

2020). Tumor necrosis factor-related apoptosis-inducing ligand

(TNFSF10) induces apoptosis through death receptors TRAILR1/

DR4 and TRAILR2/DR5 (Cardoso Alves et al. , 2021).

Predominantly expressed on immune cells, TNFSF10 is utilized

by cytotoxic T cells and NK cells to eliminate target cells. MTB cell

wall components in neutrophils release soluble TNFSF10, which

regulates intracellular pathogen infection (Kuribayashi et al., 2008).

Type 2 cytokines in TB patients also aid anti-infection processes via

TNFSF10-dependent mechanisms (Caccamo et al., 2015). Elevated

serum TNFSF10 levels in TB patients further support these findings

(La Manna et al., 2018).
FIGURE 11

Validation of key gene expression in tuberculosis (TB) patients versus controls. (A–F) Quantitative real-time PCR analysis demonstrating significantly
elevated expression levels of key genes C5 (A), IL-15 (B), CD274 (C), TNFSF10 (D), AIM2 (E), and CYBB (F) in peripheral blood samples from TB
patients compared to healthy controls. Data are presented as mean ± standard error of the mean (SEM). Statistical significance is denoted as *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Complement component C5 is crucial for immune defense.

MTB-infected macrophages secrete C5, which cleaves into C5a

peptides, modulating IL-12 secretion and activating T cells to

produce IFN-g, enhancing macrophage bactericidal activity

(Carter and Murphy, 1999). While MTB proliferates in

unactivated macrophages, IFN-g-activated macrophages generate

nitric oxide to eradicate pathogens (Adams et al., 1993). In MTB-

infected mouse models, C5-deficient mice are more susceptible to

severe TB infections (Mashruwala et al., 2011).

IL15, produced primarily by myeloid cells, bridges innate and

adaptive immunity. It regulates T cell activity, activates NK cells, and

enhances dendritic cells and macrophages (Patidar et al., 2016).

Upregulated IL15 in dendritic cells induces IFN-g, inhibiting MTB

growth in macrophages via the IFN-g-NO axis (Kwon et al., 2019).

CD274 (PD-L1), an immune checkpoint molecule, may be upregulated

in MTB infection, contributing to immune evasion by expanding

regulatory T cells (Shi et al., 2022). CD274 is also a potential target for

TB diagnosis and treatment (Long et al., 2021; Yang et al., 2023).

CYBB encodes gp91-phox, a component of the phagocyte

oxidase complex that generates superoxide and reactive oxygen

species (ROS) with bactericidal effects (Frazão et al., 2015).

However, excessive ROS production can damage host tissues,

exacerbating TB symptoms (Ma et al., 2023). Upregulation of

CYBB may reflect its involvement in inflammation-related tissue

damage. Experimental validation confirmed that the expression of

these six genes was significantly higher in TB patients compared to

healthy controls, consistent with GEO dataset results.

A nomogram model based on the six NETs core genes was

constructed to demonstrate their diagnostic capability. Calibration

curves confirmed the model’s robust predictive ability in validation

datasets, underscoring the clinical potential of these genes. Thus,

AIM2, TNFSF10, C5, IL15, CD274, and CYBB emerge as promising

targets for TB diagnosis and treatment. Their pivotal roles in host

immune responses offer novel insights into TB pathogenesis and

inform the development of precise diagnostic tools and

targeted therapies.

GSVA enrichment analysis revealed that the six NETs core

genes are significantly enriched in the RIG-I-like and Toll-like

receptor signaling pathways. These pathways are initiated by

pattern recognition receptors that detect exogenous nucleic acids

(Zhou et al., 2017) and subsequently activate cascades inducing pro-

inflammatory cytokines, chemokines, and type I interferons that

mediate adaptive immune responses. Moreover, these receptors

regulate autophagy, bridging innate and adaptive immunity

(Deretic, 2012). Thus, NETs core genes may significantly

influence TB pathogenesis and progression by modulating these

pathways, offering new insights into TB pathology.

TB progression is intricately linked to the host immune

response elicited by Mycobacterium tuberculosis (Mtb) infection

(Liu et al., 2017). Effective TB treatment requires precise immune

regulation. Using the CIBERSORT algorithm, we evaluated

immune cell infiltration in TB patients versus healthy controls

and correlated these patterns with NETs core gene expression. TB

patients exhibited reduced CD4+ T cells and elevated monocytes,

neutrophils, and eosinophils compared to healthy controls. These
Frontiers in Cellular and Infection Microbiology 17
findings were corroborated by blood routine data from 89 controls

and 150 TB patients. Overall, the immune alterations—elevated

monocytes, neutrophils, and eosinophils with reduced lymphocytes

—underscore their association with TB pathogenesis.

Monocytes, key innate immune cells, differentiate into

macrophages upon tissue migration. MTB infects macrophages

and proliferates within them, driving TB progression (Sun et al.,

2022). Neutrophils, potential markers of TB severity, have garnered

increasing attention and are emerging as targets for host-directed

therapies in TB (Nwongbouwoh Muefong et al., 2022). Effective T

cell-mediated adaptive responses are essential for controlling MTB

infection, and their dysfunction may exacerbate TB (Wufuer et al.,

2023). Analysis of immune cell infiltration and NETs core gene

expression revealed significant correlations with immune-related

pathways, suggesting that these genes modulate immune responses

in TB.

This study elucidates the potential immune regulatory roles of

NETs core genes via the RIG-I-like receptor and Toll-like receptor

signaling pathways, as well as their significant association with

immune cell infiltration. This not only furnishes a novel perspective

on the pathological mechanisms of tuberculosis (TB) but also

underpins the development of immune regulation-based

diagnostic and targeted therapeutic strategies.

Utilizing the expression profiles of six NETs core genes, this

study employed non-negative matrix factorization (NMF)

clustering analysis to stratify TB patients into two distinct groups,

designated A and B. In Group B, these core genes exhibited

markedly higher expression levels that were positively correlated

with the extent of neutrophil infiltration. Moreover, in Group B,

these genes were significantly enriched in immune-related pathways

—including the RIG-I-like and Toll-like receptor signaling

pathways—a distinction absent in Group A. This observation

implies that Group B patients may exhibit a more pronounced

inflammatory response and a heightened propensity for NETs

formation, potentially portending a more adverse clinical

prognosis. Given tuberculosis’ well-documented clinical

heterogeneity and variable therapeutic responses, these findings

underscore the necessity for precise patient stratification and

optimized treatment management. Hence, the results not only

yield critical biological insights into the diverse clinical

phenotypes of TB but also establish a foundation for future

personalized and targeted intervention strategies.

Notwithstanding its significant findings, this study is subject to

several limitations. First, the small sample size in the RT-qPCR

validation restricts the statistical power; future studies with larger,

more diverse cohorts are warranted to confirm generalizability.

Second, our NETs-related gene set, derived from current literature

and databases, is inherently a snapshot of a rapidly evolving field.

Consequently, it is subject to the evolving understanding of NETs

biology and potential selection bias inherent in knowledge-based

compilations. Future work should involve refining this set as new

mechanistic discoveries emerge and integrating data-driven

approaches to identify novel candidate genes. Third, a significant

limitation is the reliance on public GEO datasets, which

predominantly feature populations from specific geographic and
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ethnic backgrounds. Therefore, the universal applicability of our

proposed biomarkers, particularly in high-burden regions like sub-

Saharan Africa and South Asia, has not been established and

requires dedicated validation in these populations. Fourth, as this

study is predicated upon bioinformatics and expression data, it

lacks direct functional validation through cellular or animal models.

Consequently, the mechanistic insights presented remain

preliminary, and further investigations incorporating in vitro and

in vivo experiments are warranted to definitively establish the causal

roles of the identified genes in TB pathogenesis.
Conclusion

Building on these findings, this study represents the first

comprehensive exploration of the molecular attributes of

neutrophil extracellular trap (NET)-associated genes (NRGs) in

patients with tuberculosis (TB), identifying six prospective

biomarkers—AIM2, TNFSF10, C5, IL15, CD274, and CYBB.

Clustering analysis based on these pivotal genes effectively

delineated TB patients into two subgroups with distinct molecular

signatures. These results indicate that these NET-associated core

genes exert a critical regulatory influence on the initiation and

progression of TB, presenting promising biological targets for early

diagnosis and establishing a robust theoretical framework for

personalized therapeutic strategies.

To further elucidate the clinical applicability of these six genes,

they can be incorporated into a clinical real-time fluorescence

quantitative PCR (RT-qPCR) assay, involving RNA extraction from

peripheral blood, cDNA synthesis, and amplification using gene-

specific primers (Table 2). Expression levels, quantified via the 2^-

DDCt method and normalized to a housekeeping gene (e.g.,

GAPDH), can be integrated into a composite gene expression score

through logistic regression or machine learning models. A diagnostic

threshold, established via receiver operating characteristic (ROC)

curve analysis, can distinguish TB patients from healthy controls

with optimized sensitivity and specificity. This methodology aligns

with established TB biomarker research (Anderson et al., 2014).

Future investigations should validate these biomarkers in larger, more

diverse cohorts to refine diagnostic thresholds and explore their

integration into point-of-care diagnostic platforms, thereby

advancing precision medicine in TB management.
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