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Majority of the erythrocyte
binding proteins of the Pvfam
“a” family of Plasmodium vivax
interact with Basigin to assist
parasite entry into the host cell
Manish Tripathi , Meghna Santoshi , Yagya D. Sharma*

and Sumit Rathore*

Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
Molecular mechanisms of red cell invasion by the Plasmodium vivax parasite

remain obscure since information on receptor–ligand interaction is scarce.

Several proteins of the P. vivax Pvfam “a” family are known to bind with host

erythrocytes. Some of them share their erythrocyte receptors with each other

and vice versa, but the identification of these receptors is awaited with the

exception of PvTRAg38. Here, we demonstrate by using solid-phase binding

assay and surface plasmon resonance that majority (7 out of 10) of these

erythrocyte binding proteins (PvTRAg, PvTRAg33.5, PvTRAg35.2, PvTRAg34,

PvTRAg36, PvTRAg38, and PvTRAg69.4) interact with the erythrocyte receptor

Basigin. These interactions seem to be important for the parasite’s survival since

each of these proteins interfered with the parasite’s growth in a heterologous

culture system. Furthermore, a higher parasite growth inhibition rate was

observed with the combination of these proteins, suggesting the significance

of multiple parasite ligand’s interaction with the same erythrocyte receptor

during the invasion process. These results will be helpful in understanding P.

vivax biology and developing the therapeutics for vivax malaria.
KEYWORDS

vivax malaria, erythrocyte receptor, red cell invasion, protein–protein interactions,
parasite growth inhibition
Introduction

Every year, a large proportion of the human population suffers from malaria caused by

Plasmodium vivax. This parasite, besides Plasmodium falciparum, is very common in

Southeast Asian and South American countries. However, the molecular mechanisms of

this parasite involved in host–parasite interaction are scarcely known. In this regard, the

Duffy antigen receptor for chemokines has been proposed to be involved in the red cell

invasion by P. vivax merozoites where this receptor interacts with the Duffy binding protein
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of the parasite (Miller et al., 1976; Chitnis and Miller, 1994; Kanjee

et al., 2021). However, recent literature gives an indication that there

are additional receptor–ligand interactions involved in the red cell

invasion process because Duffy-negative humans were also found to

be infected with this parasite (Menard et al., 2010; Popovici et al.,

2020). Some of these additional receptors and their ligands have been

identified, such as CD71-PvRBP2b (Gruszczyk et al., 2018), CD98hc

(Malleret et al., 2021), Basigin-PvTRAg38 (Rathore et al., 2017), Band

3-PvTRAg38 (Alam et al., 2015), Band 3-PvTRAg36 (Alam et al.,

2016a; Alam et al., 2016b), and Band 3-PvTRAg74 (Alam et al.,

2016a). Since several other parasite ligands also bind to host

erythrocytes, their interaction with the respective erythrocyte

receptors need to be explored to understand the parasite’s biology

and to develop therapeutics against the disease.

It is known that several parasite proteins of the Pvfam “a” family,

also known as PvTRAgs (P. vivax tryptophan-rich antigens), are

highly immunogenic with conserved sequences in parasite population

and bind to host erythrocytes (Jalah et al., 2005; Garg et al., 2007;

Alam et al., 2008; Garg et al., 2008). This erythrocyte binding activity

was inhibited by the respective PvTRAg antibodies, purified from the

patients’ sera, indicating their immunobiological significance during

P. vivax infection (Mittra et al., 2010; Zeeshan et al., 2013). The

respective erythrocyte receptors for these PvTRAgs are not yet

identified, with the exception of the above-mentioned few. Here,

we describe that the majority of erythrocyte binding PvTRAgs

recognize Basigin as their erythrocyte receptor, and blocking of this

receptor with these PvTRAgs inhibits the parasite growth.
Materials and methods

Ethics statement

For parasite culture, heparinized venous blood was collected

from healthy donors above 18 years of age (n = 10) visiting the

department, after a written consent. Blood was collected following

the institutional ethical guidelines. The Ethics Committee of All

India Institute of Medical Sciences, New Delhi, had approved the

study via approval number IECPG-532/26.10.2016.
Materials

RPMI 1640, hypoxanthine, penicillin–streptomycin, fetal calf

serum, glutamine, glutaraldehyde, HBS-EP buffer (degassed and

ready to use 0.01 M HEPES, pH 7.4, 0.15 M NaCl, 3 mM EDTA,

and 0.005% v/v Surfactant P20) (Cytiva 100 Results Wy,

Marlborough, MA 01752, USA, Cat No. BR100826), MAC

magnet separation column (Macs; Miltenyi Biotec), and E64 (Cat

No. E3132 Sigma). Recombinant histidine-tagged PvTRAgs, i.e.,

PvTRAg (Sarin and Sharma, 2006), PvTRAg33.5, PvTRAg35.2,

PvTRAg34, PvTRAg36, PvTRAg69.4, PvTRAg36.6, PvTRAg26.3,

PvTRAg74 (Zeeshan et al., 2015), and PvTRAg38 (Rathore et al.,

2017), bacterial (Desulfovibrio desulfuricans) thioredoxin (Rathore

et al., 2017), and human Basigin (Rathore et al., 2017) were available
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in the lab from previous studies. Bacterial thioredoxin has been

utilized as negative control in the interaction studies as has been

done earlier (Rathore et al., 2017).
Solid-phase binding assay

A 96-well microtiter plate was coated with 50 nM of histidine-

tagged individual PvTRAg or histidine-tagged bacterial thioredoxin

in carbonate buffer (pH 9.6) and incubated overnight at 4°C. The

coated enzyme-linked immunosorbent assay (ELISA) plate was

blocked with 5% bovine serum albumin (BSA) in phosphate-

buffered saline (PBS) for 2 h at 37°C. The different concentrations

of histidine-tagged recombinant Basigin [0–3.2 mM (Malleret et al.,

2021)] were added to these wells and plates were incubated for 2 h at

37°C. Plates were washed with PBST (PBS containing 0.05% Tween

20) and incubated with 1:2,000 dilution of the primary rabbit

polyclonal anti-Basigin antibody, followed by horseradish

peroxidase (HRP)-conjugated anti-rabbit IgG secondary antibody

(Pierce, Cat. No. 31460). Finally, plates were developed with o-

phenyldiamine substrate, and O.D. was measured at 490 nm.
Surface plasmon resonance

This assay was done on an Autolab Esprit Instrument (Eco

Chemie, Utrecht, The Netherlands) at 25°C, using HBS buffer (10

mM HEPES + 100 mM NaCl and 2 mM EDTA, pH 7.4). The

recombinant Basigin (1 mM) was immobilized on a CM5 sensor

chip using the amine-coupling method. Kinetic analysis was then

performed by flowing different concentrations of the analyte

(PvTRAg, PvTRAg36, PvTRAg33.5, PvTRAg35.2, PvTRAg69.4,

PvTRAg34, or PvTRAg38) on the immobilized Basigin as well as

reference flow cell, followed by regeneration with 50 mM NaOH at

the end of each cycle. The association kinetics was monitored for

400 s followed by dissociation for the next 100 s. Reference-

subtracted sensograms were analyzed using in-built software in

the Autolab Esprit Instrument. The binding constant, KD, was

calculated as kd/ka using data analysis software, and kinetic rate

constants were determined by fitting the corrected response data to

a simple 1:1 Hill-Langmuir binding isotherm model.
Plasmodium falciparum culture and growth
inhibition assay

Growth inhibition assay was performed as described by Boyle

et al (Boyle et al., 2010). Briefly, the P. falciparum 3D7 strain was

cultured in complete RPMI 1640 medium containing 0.5 g/L

Albumax I, 27.2 mg/L hypoxanthine, and 2 g/L sodium

bicarbonate, using O+ human erythrocytes obtained from healthy

donors (4% hematocrit) under mixed gas (5% O2, 5% CO2, and 90%

N2). Late-stage parasites (40–46 h after invasion) were isolated

(>95% purity) from infected red blood cells (RBCs) with a MAC

separation column (Macs; Miltenyi Biotec). Purified schizonts were
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washed using RPMI and incubated for 6 to 8 h with 10 mM E-64 to

get completely mature segmented schizonts. Schizonts were pelleted

at 2,000 rpm for 5 min and washed thrice in RPMI. The parasites

were resuspended in 5 mL of culture media at room temperature

and filtered through a 2-mm-pore-size disc 25-mm syringe filter.

Merozoites were collected by centrifugation, suspended by pipetting

gently, and introduced into wells containing RBCs with different

concentrations (0–20 µM) of PvTRAg, PvTRAg33.5, PvTRAg35.2,

PvTRAg34, PvTRAg36, and PvTRAg69.4, PvTRAg38, or

PvTRAg38.7 in a 96-well culture plate in triplicate. Uninfected

erythrocytes, infected erythrocytes alone, and infected erythrocytes

with PBS were taken as controls. Furthermore, parasites were

maintained for 3–6 h and stained with ethidium bromide. A total

of 100,000 events were acquired per sample, using Cell Quest

software on a FACS Caliber flow cytometer (Becton Dickenson

Biosciences, Palo Alto, CA, USA).
Statistical analysis

All the obtained data shown are being analyzed using one-way

analysis of variance (ANOVA). Mean ± SD values have been used to

plot the graph.
Results

Human Basigin interacts with majority of
erythrocyte binding PvTRAgs of Pvfam “a”
family

In order to find out which PvTRAg(s) recognize the erythrocyte

receptor Basigin, we carried out the solid-phase binding assay using

Basigin and all the 10 proteins of the Pvfam “a” family that had

earlier been reported to bind to host erythrocytes (Tyagi and

Sharma, 2012). The results showed that 7 out of these 10
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proteins, i.e., PvTRAg, PvTRAg33.5, PvTRAg35.2, PvTRAg34,

PvTRAg36, PvTRAg69.4, and PvTRAg38, showed interaction

with human Basigin in a concentration-dependent manner

(Figure 1). Indeed, PvTRAg38 was used here as a positive control

as it has already been reported to bind with Basigin (Rathore et al.,

2017). The remaining three PvTRAgs (namely, PvTRAg36.6,

PvTRAg26.3, and PvTRAg74) did not show interaction with

Basigin as they did not show a concentration-dependent increase

in O.D. values, which remained similar to that of the negative

control, bacterial thioredoxin. Binding of these PvTRAgs to Basigin

was further confirmed by the surface plasmon resonance (SPR) data

(Table 1). They showed that binding affinity (KD values) with

Basigin ranged between 1.25 × 10−6 M and 5.1 × 10−6 M.
All PvTRAgs showing interaction with
Basigin also interfere with the parasite
growth

Since P. vivax is difficult to culture, we have used here the

heterologous P. falciparum culture system to study parasite growth

inhibition, as described earlier (Alam et al., 2015; Rathore et al.,
FIGURE 1

Binding of Basigin to Pvfam “a” family proteins. Solid-phase binding assay. Increasing concentrations (0–3.2 µM) of different PvTRAgs were added to
the wells of an ELISA plate already coated with 50 nM histidine-tagged Basigin or histidine-tagged bacterial thioredoxin. The plate was developed
with anti-Basigin polyclonal antibody as described in the text. Mean ± SD value of absorbance from three experiments is plotted.
TABLE 1 Affinity of different PvTRAgs with Basigin based on surface
plasmon resonance assay.

Name of protein KD value

PvTRAg 1.5 ± 0.8 × 10−6

PvTRAg33.5 5.1 ± 1.1 × 10−6

PvTRAg36 1.3 ± 0.2 × 10−6

PvTRAg35.2 1.75 ± 0.7 × 10−6

PvTRAg69.4 1.95 ± 0.1 × 10−6

PvTRAg38 1.3 ± 0.2 × 10−6

PvTRAg 34 1.25 ± 0.4 × 10−6
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2017). This is because Basigin was not shed off during the

maturation of reticulocytes and continues to be present on

mature RBCs, which are used by the P. falciparum merozoites for

invasion. Results showed that all of the above-mentioned seven
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PvTRAgs, including PvTRAg38, were able to inhibit the parasite

growth (Figure 2A). Their potential of parasite growth inhibition

varied from 28% to 38% at 20 mM concentration. The negative

control PvTRAg38.7, which does not bind to erythrocytes, did not
FIGURE 2

Inhibition of P. falciparum growth by PvTRAgs. Purified merozoites were incubated with PvTRAg38, PvTRAg33.5, PvTRAg35.2, PvTRAg69.4, PvTRAg,
PvTRAg34, PvTRAg36, PvTRAg38PvTRAg38.7, and other controls. Parasitemia was determined by ethidium bromide staining and measured by flow
cytometry. (A) Representative dot plots showing parasitemia after treatment with different PvTRAgs at a concentration of 20 µM. (B) Bar diagram
shows the percentage of parasite growth inhibition at different concentrations of PvTRAgs. Data shown are the mean ± SD for two triplicate
experiments. (C) Bar diagram showing the parasite growth inhibition with different PvTRAgs combination (10 µM each). Data shown are the mean ±
SD for two triplicate experiments (p < 0.0001). *** = p <0.001, ****=p <0.0001.
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show any remarkable effect on the parasite growth. There was a

dose-dependent effect of each PvTRAg on the parasite growth

inhibition rate (Figure 2B). Furthermore, the addition of another

protein along with PvTRAg38 to the culture further reduced the

parasite growth as compared to a single protein, e.g., PvTRAg38 +

PvTRAg34 (~32%), PvTRAg38 + PvTRAg69.4 (~34%), PvTRAg38

+ PvTRAg (~40%), PvTRAg38 + PvTRAg35.2 (~43%), PvTRAg38

+ PvTRAg33.5 (~39%), and PvTRAg38 + PvTRAg36 (~52.5%)

(Figure 2C). The maximum rate of parasite growth inhibition was

observed with the combination of PvTRAg36 and PvTRAg38.
Discussion

Our earlier cross-competition studies have revealed that several

PvTRAgs compete with each other for erythrocyte binding, thereby

indicating that they were sharing their erythrocyte receptor(s)

(Zeeshan et al., 2015). This was indeed evident from another

report where the Band 3 receptor on the host erythrocyte has

been shown to recognize three different proteins of the Pvfam “a”

family, namely, PvTRAg38, PvTRAg36, and PvTRAg74 (Alam

et al., 2016b). Partial abolition of PvTRAg38 binding activity with

the chymotrypsin-treated erythrocytes was also an indication that

this parasite ligand recognized more than one erythrocyte receptor

(Tyagi and Sharma, 2012). Later studies identified Basigin as the

second erythrocyte receptor, besides Band 3, for this parasite ligand

(Alam et al., 2015). Since PvTRAg38 was cross-competing, partially

or fully, with several other PvTRAgs, we decided to investigate if

this second erythrocyte receptor was also being recognized by these

proteins. The solid-phase binding and SPR assay results of the

present study indeed showed that majority of the erythrocyte

binding PvTRAgs (7 out of 10) of the Pvfam “a” family (PvTRAg,

PvTRAg33.5, PvTRAg35.2, PvTRAg34, PvTRAg36, PvTRAg69.4,

and PvTRAg38) bind to this host erythrocyte receptor Basigin

(Figure 1). It is quite surprising that so many parasite proteins

are interacting with the same erythrocyte receptor, although it is not

unusual for the parasite to utilize multiple ligands to recognize the

same host receptor and vice versa (Paing and Tolia, 2014).

What could be the implication of this receptor–ligand

interaction phenomenon for the parasite’s biology? For this, we

planned to investigate if these additional six PvTRAgs, besides

PvTRAg38, that interact with Basigin are also able to interfere

with the parasite’s growth. Since P. vivax is difficult to maintain in

in vitro culture, we have used a heterologous P. falciparum culture

system. This was based on the fact that the Basigin receptor also

plays an important role in P. falciparum merozoite invasion of

RBCs albeit using a different parasite ligand (Williams et al., 2012).

In our earlier studies, we used it to study parasite growth inhibition

due to the blockade of the Basigin receptor with PvTRAg38

(Rathore et al., 2017). Indeed, all seven PvTRAgs, including

PvTRAg38, were able to inhibit parasite growth (Figure 2A).

These results indicate that all of the seven proteins recognizing

Basigin were involved in red cell invasion. Thus, interaction of these
Frontiers in Cellular and Infection Microbiology 05
seven proteins of the Pvfam “a” family plays an important role in

the parasite’s biology during the red cell invasion process.

Why did the parasite develop such a complex system of

receptor–ligand interaction where each receptor is recognized by

multiple parasite ligands and vice versa for the host cell invasion

process? To address this question, partly, we used different

combinations of proteins to observe their effect on parasite

growth. Results showed that the addition of any of the six

proteins to PvTRAg38 in the culture significantly reduced

parasite growth (Figure 2C). This suggests that the parasite may

be using multiple proteins to bind to the same erythrocyte

receptor for a stronger interaction between receptor and ligand

to ensure an effective parasite entry into the host cell for the

invasion process. Such an additive effect of combination of

PvTRAgs on parasite growth could possibly be occurring due to

their interaction with each other and then effectively blocking

the receptor.
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