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As a post-translational modification (PTM) mechanism analogous to

ubiquitination, ubiquitin-like (UBL) modification plays a crucial regulatory role

in virus-host interactions. With the increasing discovery of UBL modification

types, their roles in diverse biological process, including HIV infection, have

gained growing attention. Rather than merely serving as anti-HIV defenses or

being exploited by the virus, UBLs often exert dual roles by modulating both host

restriction factors and viral proteins, thereby impacting key steps of HIV life cycle,

immune evasion, and intracellular signaling. This article summarizes recent

advances on the contribution of UBLs in regulating HIV replication and host

defense, highlighting their indispensable roles in arms races between HIV and

host, aiming to provide a theoretical framework for developing novel therapeutic

strategies against HIV-1 targeting virus-host interactions.
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1 Introduction

Acquired immunodeficiency syndrome (AIDS) is an immune deficiency disorder

caused by human immunodeficiency virus (HIV) infection (Saunders et al., 2024;

Haynes et al., 2016; Chen et al., 2022; Guo et al., 2021b). HIV impairs immune defense

by infecting CD4+ T cells, leading to severe immune dysfunction. According to UNAIDS

estimates, approximately 39 million people worldwide were living with HIV by the end of

2022. Despite the widespread use of antiretroviral therapy (ART), HIV remains a major

global public health challenge, particularly in resource-limited regions (Board et al., 2022;

Matsui and Miura, 2023; Sheykhhasan et al., 2021; Ouyang et al., 2024). In the evolutionary

arms race between HIV and host, the host employs various defense strategies. Restriction

factors function by directly blocking specific steps of the viral life cycle, whereas immune

recognition mechanisms detect viral signatures and trigger both initiate innate and adaptive

immune responses. In return, HIV-1 employs strategies such as high mutation rates,

hijacking PTM systems to antagonize host factors and evade restriction. This persistent
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conflict drives HIV’s adaptive evolution while compelling the host

to refine defense strategies to suppress viral persistence. Both HIV-1

and host continuously optimize their strategy to achieve

evolutionary advantages (Oswald et al., 2023).

Ubiquitin is a 76-amino-acid small protein ubiquitously

expressed in all eukaryotic cells, with nearly all cellular proteins

being subject to ubiquitination (Swatek and Komander, 2016). As a

prevalent PTM, ubiquitination relies on a cascade of enzymatic

catalysis mediated by E1 ubiquitin-activating enzymes (Schulman

and Harper, 2009), E2 ubiquitin-conjugating enzymes (Ye and

Rape, 2009), and E3 ubiquitin ligases (Deshaies and Joazeiro,

2009; Smit and Sixma, 2014; Rotin and Kumar, 2009).

Mechanistically, the E1 enzyme catalyzes ATP-dependent Ub

activation, forming a Ub-AMP intermediate that is subsequently

transferred to E2 via a thioester bond. Then E2 cooperates with E3

ligases, which specifically recognize and bind substrate proteins,

enabling Ub transfer from E2 to lysine residues on target substrates.

Canonical ubiquitination regulates fundamental biological

processes including protein degradation, signal transduction, cell

cycle control, and immune responses (Reichard et al., 2016; Smith

et al., 2017; Dang et al., 2021; Liu et al., 2024). Notably, this

modification machinery serves not only as a core cellular

regulatory mechanism but also as a critical battlefield in virus-
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host arms races. During co-evolution with hosts, multiple viruses

have developed strategies to hijack the host ubiquitination system,

thereby remodeling the cellular microenvironment and achieving

immune evasion. A classic example is HIV-1 Vif protein, which

recruits host ubiquitination components to mediate degradation of

the antiviral restriction factor APOBEC3G, effectively escape from

host restriction (Albin and Harris, 2010; Wolf and Goff, 2008).

Recent studies have revealed a series of UBLs including small

ubiquitin-like modifiers (SUMOs), interferon-stimulated gene 15

(ISG15), developmentally down-regulated 8 (NEDD8), autophagy-

related protein 8 (ATG8), and human leukocyte antigen (HLA)-F

adjacent transcript 10 (FAT10) that share structural homology with

Ub. Both Ub and UBLs utilize exposed C-terminal glycine residues

for substrate conjugation. Sequence alignment (Figure 1)

categorizes UBLs into two classes: Type I UBLs, which are

precursor forms requiring proteolytic activation to expose the

reactive glycine (e.g., SUMOs, ISG15, NEDD8, and ATG8/LC3-

GABARAP family), and Type II UBLs, which are constitutively

active forms with intrinsically exposed glycine (e.g., FAT10). With

the exception of FAT10ylation (which lacks identified E3 ligases),

all UBLs employ the conserved E1-E2-E3 enzymatic cascade.

Crucially, each UBL system orchestrates specialized regulatory

functions through unique enzymatic networks: SUMOylation
FIGURE 1

Multiple sequence alignment of Ub and UBLs. A multiple sequence alignment of Ub and various UBLs was performed using ClustalW. The residue
numbering is based on Ub’s first methionine (M1). UBLs are classified into two types: Type I UBLs (e.g., SUMO-1, ISG15, NEDD8, LC3A, LC3B, LC3C,
GABARAP), which require the removal of C-terminal propeptides prior to functional activation, and Type II UBLs (e.g., FAT10), which do not require
such processing. Conserved residues are shown in red font and enclosed in blue boxes. Functionally important C-terminal glycine residues are also
indicated. C-terminal propeptides regions in Type I UBLs are enclosed in red boxes to highlight their required removal before activation. Gaps
introduced for optimal alignment are represented by dots. Ub residues are numbered every 10 amino acids along the alignment to assist in
identifying conserved and functionally relevant regions. Secondary structure elements of Ub (b-strands, a-helix, and the h-helix) are annotated
above the alignment, based on the crystal structure of ubiquitin.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1593445
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fcimb.2025.1593445
dynamically modulates protein interaction and subcellular

trafficking (Han et al., 2018); ISG15ylation exhibits dual roles as

covalent modifiers or free molecules to antagonize ubiquitination

during antiviral responses (Okumura et al., 2008; Lenschow et al.,

2007); NEDDylation regulates substrate stability, conformational

dynamics, and functional activation (Zhao et al., 2014);

ATG8ylation engages its N-terminal a-helical domain to mediate

selective autophagic degradation of membrane-associated targets

(Zhang et al., 2023; Deretic et al., 2024); while FAT10ylation

coordinates immune homeostasis through inducing proteasomal

degradation of substrate (Schmidtke et al., 2009; Bialas et al., 2015).

Compared to classical PTMs such as phosphorylation,

acetylation, and methylation (Bilbrough et al., 2022; Ferrante

et al., 2020), UBLs can form mono- or polymeric chains through

diverse linkage types, generating highly complex signaling codes

that enable more precise regulation of cellular responses. During

HIV infection, UBL modifications play dual roles by regulating both

viral protein functions and host immune responses, exhibiting

greater specificity and immune evasion capabilities in the

interactions between the virus and the host. This review

summarizes current research advancements on UBLs, with

particular focus on their functions during HIV infection. Our

synthesis aims to provide a theoretical basis for developing

potential targeted therapeutics and offers predictive insights into

future research directions.
2 SUMOylation

2.1 Introduction of SUMOylation

The SUMO molecule has a molecular weight of approximately

11 kDa and contains a characteristic bbbabab fold with a C-

terminal diglycine motif (Wang and Dasso, 2009). Its three-

dimensional structure resembles Ub, yet distinct surface charge

distribution and amino acid sequences confer divergent functional

properties. SUMO requires specific cleavage of the C-terminal

propeptides by ubiquitin-like specific protease 1 (ULP1) or

sentrin-specific protease 1 (SENP) (Nayak and Müller, 2014).

SUMOylation covalently conjugates SUMO molecules to lysine

residues on substrates through an enzymatic cascade involving E1

(SAE1/SAE2), E2 (Ubc9), and E3 ligases (PIAS family, RanBP2,

etc.). Notably, the SUMOylation not only mediates covalent

modification of SUMO molecule to the lysine residues of

substrates via isopeptide bonds, but also facilitates non-covalent

interactions with effector proteins through SUMO-interacting

motifs (SIMs) (Minty et al., 2000). SIMs, primarily composed of

four hydrophobic amino acid residues, recognize and bind

SUMOylated proteins to regulate the function and stability of

substrates (Lascorz et al., 2022).

Distinct from ubiquitination, the E2 enzyme Ubc9 in

SUMOylation can directly engage in substrate recognition

through non-covalent interaction with SUMO molecules (Jaber

et al., 2009) and may bypass E3 ligases under specific conditions

(Talamillo et al., 2020; Koidl et al., 2016). Mammals encode five
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SUMO paralogs (SUMO1-5) that exhibit antagonistic roles in

certain biological processes (Levitskaya et al., 1995; Leight and

Sugden, 2000; Falk et al., 1995; Dergai et al., 2013; Zeng et al.,

2020). For instance, SUMO-1 enhances transcriptional activity by

promoting the interaction between specificity protein-1 (Sp1) and

histone acetyltransferase p300, whereas SUMO-2 disrupts this

complex and destabilizes Sp1 to exert negative regulation (Gong

et al., 2014). This paralog-dependent bidirectional regulatory

paradigm not only expands the versatility of SUMOylation in

gene expression control but also establishes a highly plastic host-

virus interface through dynamic modulation of protein stability and

interaction networks during viral infection.
2.2 SUMOylation enhances host antiviral
capacity and maintains cellular
homeostasis

During HIV-1 infection, SUMOylation of host restriction

factors (TRIM5a, SAMHD1) enhances host antiviral capacity by

increasing their protein stability and recruiting effector proteins via

SIMs. Simultaneously, SUMO modifications contribute to

maintaining cellular homeostasis through dynamic regulation of

stress response pathways.

Host restriction factors serve as the primary defense against

HIV-1 by targeting critical steps in the viral life cycle. Recent studies

demonstrate that SUMOylation and SIMs orchestrate dual

mechanisms to significantly enhance the antiviral potency of

multiple host factors. For instance, the host factor TRIM5a
inhibits cross-species transmission by recognizing the HIV-1

capsid protein (CA) and mediating ubiquitination-dependent

degradation (Ganser-Pornillos and Pornillos, 2019; Brandariz-

Nuñez et al., 2013). Mechanistically, SUMOylation of TRIM5a
reduces autoubiquitination-mediated degradation while

modulating its E3 ligase activity, thereby promoting TRIM5a-
driven activation of NF-kB and AP-1 to trigger innate immune

responses (Nepveu-Traversy and Berthoux, 2014). In addition,

SUMOylation mediates nuclear translocation of TRIM5a in

dendritic cells (DCs), facilitating its enrichment in nucleoli and

Cajal bodies to amplify antiviral efficacy (Portilho et al., 2016).

Another restriction factor, SAMHD1, suppresses HIV-1 replication

by depleting dNTP pools (Laguette et al., 2011; Hrecka et al., 2011),

with its activity regulated by PTMs. Phosphorylation at T592

residue of SAMHD1 markedly diminishes its antiviral capacity,

whereas SUMOylation at K595 and T592 dephosphorylation

restores SAMHD1 activity (Martinat et al., 2021).

Beyond covalent modification, the antiviral potency of numerous

host factors critically depends on SIM-mediated interactions with

SUMOylated proteins. TRIM5a harbors three SIM domains (SIM1-3)

(Dutrieux et al., 2015b). It has been demonstrated that SUMO1

overexpression significantly enhances anti-HIV activity of TRIM5a,
whereas knockdown of SUMO1 or E2 Ubc9 abolishes this function.

Intriguingly, the TRIM5a K10R substitution, deficient in being

SUMOylated, does not compromise its antiviral potency (Dutrieux

et al., 2015b), suggesting its activity primarily relies on SIM-dependent
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protein interaction networks rather than direct covalent modification.

A parallel mechanism operates in SAMHD1, which possesses three

SIM domains (SIM1-3). Structural analysis reveals that SIM2 integrity

is indispensable for SAMHD1’s anti-HIV-1 activity, likely through

recruiting host or viral cofactors to assemble functional antiviral

complexes (Martinat et al., 2021). Besides, the death domain-

associated protein (Daxx), a novel antiretroviral factor, inhibits

HIV-1 reverse transcription predominantly via its C-terminal SIM

domain despite being susceptible to SUMOylation (Dutrieux et al.,

2015a). Daxx employs SIM-dependent binding to cyclophilin A

(CypA) and CA proteins, thereby orchestrating nuclear recruitment

of TNPO3, TRIM5a, TRIM34, and other potential cofactors. This

recruitment enhances complex stability to block HIV-1 uncoating and

reverse transcription (Maillet et al., 2020).

PLK1 (Polo-like kinase 1), a core serine/threonine protein

kinase governing cell cycle regulation, plays essential roles in

maintaining CD4+ T cell homeostasis (Zhou et al., 2020). HIV-1

infection induces SUMOylation of PLK1, which enhances its

protein stability by antagonizing Ub-proteasome mediated

degradation. The SUMO-modified PLK1 exhibits specific nuclear

accumulation, and this aberrant nuclear localization activates

downstream survival signaling pathways to block programmed

cell death in infected cells. This pro-survival mechanism creates a

critical microenvironment for establishing HIV-1 latency, thereby

contributing to viral reservoir formation (Zhou et al., 2020).
2.3 SUMOylation-mediated host
antagonism of HIV-1

The transcriptional regulation of HIV-1 primarily relies on its

long terminal repeat (LTR). HIV-1 Tat protein binds to the

transactivation response (TAR) RNA element within the LTR and

recruits the host cyclin-dependent kinase 9 (CDK9)-cyclin T1

(CycT1) complex (positive transcription elongation factor b, p-

TEFb) to activate RNA polymerase II (RNAPII)-mediated

transcriptional elongation (Ali et al., 2016). The LTR region

harbors binding sites for multiple transcription factors and co-

regulators, forming a dynamic regulatory network to achieve high-

efficiency viral transcription (El Kharroubi et al., 1998). Mounting

evidence indicates that SUMOylation modulates HIV-1

transcription through multilayered regulatory mechanisms.

At the transcription factor level, STAT5 (Signal Transducer and

Activator of Transcription 5), a key regulator of the JAK-STAT

signaling pathway, is critically involved in HIV-1 reactivation

(Dempsey, 2023). Upon stimulation by cytokines such as IL-2,

STAT5 undergoes JAK-mediated tyrosine phosphorylation, leading

to dimerization and nuclear translocation (Dempsey, 2023). The

phosphorylated STAT5 binds to the HIV-1 LTR to promote viral

reactivation (Crotti et al., 2007; Selliah et al., 2006). SUMOylation

suppresses STAT5 transcriptional activity (Van Nguyen et al., 2012),

while latency-reversing agents (LRAs) like benzotriazoles inhibit

STAT5 SUMOylation, thereby enhancing its phosphorylation and
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nuclear accumulation to significantly boost viral promoter activity

(Sorensen et al., 2020; Bosque et al., 2017). Within the NF-kB
pathway, IkBa inhibits NF-kB nuclear translocation by binding to

NF-kB dimers (Arenzana-Seisdedos et al., 1995). Competitive

regulation occurs at IkBa K21, where SUMOylation stabilizes the

protein by blocking ubiquitination-mediated degradation, thereby

suppressing NF-kB-dependent HIV-1 gene expression (Desterro

et al., 1998). Additionally, CTIP2, a chromatin-modifying complex

recruitment factor at the HIV-1 LTR (Zhang et al., 2012), undergoes

phosphorylation-activated SUMOylation at K679/K877, triggering

proteasomal degradation and relieving transcriptional suppression

(Imbert and Langford, 2021). It is worthy noted that the SUMO E3

ligase TRIM28 is recruited to the LTR during HIV-1 latency.

TRIM28-mediated SUMOylation of CDK9 at K44/K56/K68

residues inhibits its kinase activity, disrupts CDK9-Cyclin

T1 complex assembly, and inactivates p-TEFb to suppress

transcriptional elongation (Ma et al., 2019).

At the epigenetic regulation level, Suv39h1 (a histone

methyltransferase) interacts with the SUMOylation E2 enzyme

Ubc9 to catalyze SUMOylation of heterochromatin protein 1a
(HP1a). This modification enhances HP1a stability at

heterochromatic regions, thereby maintaining LTR silencing

(Maison et al., 2016). Additionally, the SUMO E3 ligase CBX4

recruits EZH2 to the HIV-1 LTR and catalyzes its SUMOylation,

which reinforces EZH2-mediated deposition of repressive

H3K27me3 histone marks to promote viral latency (Wu et al.,

2022). Notably, the SMC5/6 complex directly modifies unintegrated

HIV-1 DNA through its SUMO E3 ligase subunit NSMCE2,

inducing epigenetic silencing (Irwan et al., 2022). It has been

demonstrated that either TAK-981 (a SUMOylation inhibitor) or

NSMCE2 loss-of-function mutations abolish this silencing effect,

thereby promoting viral replication (Irwan et al., 2022). In addition,

promyelocytic leukemia (PML) nuclear bodies (NBs) exhibit hyper-

SUMOylation, a hallmark of aberrantly elevated SUMO

modification levels. These SUMO-enriched PML NBs enhance

structural stability and facilitate interactions with transcriptional

repressors to cooperatively sustain viral latency (Turelli et al., 2001;

Dutrieux et al., 2015a; Kahle et al., 2015; Shytaj et al., 2020).
2.4 SUMOylation-driven viral evasion of
host defenses

In the arms race between HIV-1 and host, SUMOylation serves

as a defensive strategy deployed by the host to counteract viral

infection, while HIV-1 also retaliates through modulation of

modification sites.

The HIV-1 Gag p6 protein, a key budding factor (Göttlinger

et al., 1991), exhibits competitive interplay between SUMO-1 and

Ubiquitination at K27. Monoubiquitination at K27 enhances p6

interaction with TSG101 to promote viral budding efficiency (Gurer

et al., 2005). Conversely, Ubc9-mediated K27 SUMOylation

markedly reduces HIV-1 infectivity, though the K27R mutation
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1593445
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yuan et al. 10.3389/fcimb.2025.1593445
does not compromise viral replication capacity (Gurer et al., 2005).

These findings underscore a complex balance between

ubiquitination and SUMOylation in regulating p6 functionality.

During viral integration, SUMOylation of HIV-1 integrase (IN)

at lysine residues K46/K136/K244 is critical for early replication

stages, that SUMOylation-deficient mutants exhibit post-reverse

transcription defects despite retaining catalytic activity and LEDGF/

p75 cofactor interactions (Shinohara et al., 2002; Turlure et al., 2006;

Zamborlini et al., 2011). Intriguingly, IN SUMOylation occurs not

during synthesis but in subsequent infection cycles, particularly

during reverse transcription and nuclear import of the

preintegration complex (PIC) (Zheng and Yao, 2013). This

temporal pattern suggests SUMOylation may facilitate PIC nuclear

entry by modulating IN’s affinity for nuclear transport factors.

Notably, IN harbors two functional SIM domains: SIM2

(200IVDI204) and SIM3 (257IKVV260) (Cherepanov et al., 2004;

Shun et al., 2007), which mediate SUMO-2/3 binding. Mutations in

these domains severely impair viral infectivity, reverse transcription,

and integration efficiency (Zheng et al., 2019). Furthermore, Ubc9

overexpression suppresses genomic integration by enhancing IN

SUMOylation, with SUMO-1/2 upregulation potentiating this

inhibitory effect (Li et al., 2012). Paradoxically, SUMOylation at

K364 of LEDGF/p75, while dispensable for IN binding, critically

regulates reverse transcription and integration kinetics, indicating

that LEDGF/p75 SUMOylation is essential for efficient HIV-1

replication (Bueno et al., 2010).

Emerging evidence suggests functional modulation of HIV-1

Rev by SUMOylation. Specifically, Rev-mediated viral replication is

suppressed upon its interaction with the SUMO-1 hexapeptide

repeat (SHPR) domain (Roisin et al., 2004). The viral accessory

protein Vpu subverts antiviral defenses by targeting the RanBP2/

RanGAP1-SUMO1/Ubc9 E3 ligase complex. This manipulation

alters SUMOylation states of PML NBs and DNA repair factors,

facilitating immune evasion through nuclear clearance of antiviral

signaling complexes and residual viral DNA (Volcic et al., 2020).

Collectively, these findings reveal the dual roles of

SUMOylation in HIV-1 infection. On one hand, SUMOylation

enhances host antiviral defenses by stabilizing restriction factors

(e.g., TRIM5a, SAMHD1) and organizing SIM-mediated protein

interaction networks. On the other hand, HIV-1 subverts the

SUMOylation machinery to promote its own replication and

persistence (e.g., CTIP2, PLK1). These opposing roles highlight

SUMOylation as a dynamic regulatory node in the virus-host

interplay, offering both opportunities and challenges for

therapeutic intervention (Figure 2).
3 ISGylation

3.1 Introduction of ISGylation

ISG15, a protein encoded by the interferon-stimulated gene

ISG15, exerts multifaceted regulatory roles in antiviral immunity.

The precursor of ISG15, Pro-ISG15 (~17 kDa), undergoes

proteolytic processing to generate mature ISG15 (~15 kDa)
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(Potter et al., 1999). Although ISG15 exhibits low sequence

conservation across species (e.g., 66% homology between human

and murine orthologs) (Dzimianski et al., 2019), its C-terminal

diglycine motif, the catalytic domain mediating ISGylation, remains

highly conserved. The ISGylation cascade requires sequential action

of E1 (UBE1L), E2 (UBE2L6), and E3 ligases (HERC5, TRIM25) to

conjugate ISG15 to specific lysine residues on target proteins.

Notably, ISG15 operates through three functional modalities: 1)

intracellular free form, 2) covalent conjugates with substrates, and

3) secreted soluble form (Lenschow, 2010). Distinct from K48-

linked ubiquitination that triggers proteasomal degradation,

ISGylation exerts antiviral effects via non-degradative

mechanisms. These include modulating viral protein subcellular

localization (e.g., restricting virion assembly) and stabilizing host

antiviral proteins to amplify innate immune responses (Woods

et al., 2014). It is reported that ISGylation-mediated cellular

outcomes depend on both infection stage and substrate specificity

(Mathieu et al., 2021; Liu et al., 2003). For instance, late-stage

infection may undergo ISGylation-mediated functional inhibition

or degradation of host proteins, attenuating cellular immunity

(Minakawa et al., 2008).
3.2 ISGylation inhibits HIV-1 replication

ISG15 functions as a host factor against HIV-1, exerting

multidimensional antiviral effects through ISGylation. As a key

antiviral factor, p53 inhibits HIV replication and induces apoptosis

of infected cells, thereby limiting HIV-1 propagations (Xia and

Jiang, 2024). Osei Kuffour et al. found that ISGylation suppresses

HIV-1 replication via dual regulation of p53: stabilizing p53 by

counteracting ubiquitination-mediated degradation while

promoting misfolded p53 degradation (Osei Kuffour et al., 2019).

Overexpression of ISG15 or its E1 enzyme UBE1L significantly

inhibits both early integration and late budding stages of HIV-1

(Shirazi and Pitha, 1992; Pincetic et al., 2010; Okumura et al., 2006).

Mechanistically, ISG15 disrupts Ub-dependent interaction between

HIV-1 Gag and Tsg101 via ISGylation of cellular targets, thereby

blocking virion release (Gómez et al., 2020; Pincetic et al., 2010).

The E3 ligase HERC5 employs two distinct antiviral mechanisms:

ISGylation-mediated modification of Gag to impair viral assembly

at the plasma membrane and RCC1-like domain-dependent

suppression of Rev/RRE-mediated RNA nuclear export (Dastur

et al., 2006). Notably, HERC5’s antiviral activity is also regulated by

its own ISGylation, suggesting an autoregulatory loop (Woods et al.,

2014). In addition, while early studies indicated ISG15 deficiency

inhibits HIV-1 infection (Bosque and Planelles, 2009), subsequent

mechanistic analyses revealed that this is due to free cellular ISG15

aids the stabilization of the ubiquitin-specific peptidase 18 (USP18),

a negative regulator of type I interferon (IFN-I) signaling. USP18

binds to the IFN-I receptor subunit IFNAR2 and completes with

JAK1 (Speer et al., 2016), thereby attenuating JAK-STAT pathway

activation. Consequently, ISG15 deficiency leads to USP18

destabilization, resulting in sustained IFN-I signaling and

enhanced expression of interferon-stimulated genes (ISGs) (Zhang
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et al., 2015), which can exert antiviral effects. This explains the

paradoxical observation that loss of ISG15, while eliminating its

direct antiviral functions via ISGylation, can indirectly inhibit HIV-

1 replication by amplifying the IFN-I response and promoting an

antiviral state. These findings highlight the conflicting role of ISG15

in host-virus interactions (Figure 3).

These findings not only unravel the multifaceted regulatory

networks of ISGylation throughout the HIV-1 life cycle but also

highlight the therapeutic potential of targeting HERC5’s

autoregulatory ISGylation for precise modulation of antiviral activity.
3.3 Immune evasion mechanism of HIV-1
via Vpu-mediated regulation of ISGylation

HIV-1 employs its viral accessory protein Vpu to establish an

immune evasion that selectively targets core components of the host

ISGylation system, thereby sustaining infection advantage. Okumura

et al. reported that Vpu suppresses ISGylation through diverse

regulatory strategy: (1) degrading the ISG15-conjugating enzyme

UBE2L2 via a Ub-proteasome-independent pathway, (2) impairing
Frontiers in Cellular and Infection Microbiology 06
the functional activity of UBE2L6, and (3) modulating subcellular

distribution of the transmembrane protein PLP2. The non-canonical

degradation of UBE2L2 directly disrupts ISG15-substrate binding

capacity, resulting in downregulation of intracellular ISGylation (Jain

et al., 2018; Okumura et al., 2006). This unique immune evasion

strategy effectively compromises ISGylation-dependent antiviral

responses, thereby promoting viral replication and accelerating

infection-associated disease progression.
4 NEDDylation

4.1 Introduction of NEDDylation

NEDDylation is a reversible PTM mediated by the UBL

molecule NEDD8 through an enzymatic cascade involving E1

(NAE, NEDD8-activating enzyme), E2 (UBE2M/UBE2F), and E3

ligases (Rbx1/Rbx2). This process regulates substrate function

through covalent conjugation to lysine residues (Kamitani et al.,

1997; Xirodimas et al., 2004; Xirodimas, 2008). The most well-

characterized targets of NEDDylation are Cullin family proteins. All
FIGURE 2

SUMOylation in the HIV life cycle. The figure illustrates the dual roles of SUMOylation in the HIV-1 life cycle, encompassing both HIV-promoting
(shown in red text and arrows) and anti-HIV (shown in blue text and inhibitory symbols) effects. Yellow circles denote SUMOylated substrates that
interact non-covalently with SIM. During the Binding Stage, SUMOylated TRIM5a recognizes the CA, preventing cross-species transmission. In the
Reverse Transcription Stage, SUMOylated SAMHD1 inhibits replication by depleting the intracellular dNTP pool. At the Integration Stage, SUMOylated
IN impairs integration, SUMOylated PLK1 supports latency maintenance, and SUMOylated EZH2 promotes epigenetic silencing. At the Transcription
Stage, SUMOylated STAT5, IkBa, HP1a, and CDK9 suppress HIV-1 transcription, whereas SUMOylated CTIP2 enhances it. During Budding Stage,
SUMOylated p6 reduces viral infectivity. In the nucleus, hyper-SUMOylated PML NBs facilitate the establishment and maintenance of viral latency.
Additionally, SUMOylated substrates interact non-covalently with SIMs on TRIM5a, SAMHD1, and Daxx, contributing to inhibition of HIV-1 replication.
This figure is generated using BioRender (http://biorender.com/).
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Cullin-associated ubiquitin ligases require NEDDylation for

functional activation (Embade et al., 2012; Enchev et al., 2015).

NEDDylation induces conformational changes in Cullins to expose

substrate-binding sites, thereby activating Cullin-RING E3

ubiquitin ligase complexes (CRLs) and enhancing their

ubiquitination efficiency. It has been reported that substrate

specificity exists within this system: UBE2M exclusively mediates

NEDDylat ion of Cul l in1-4, whi le UBE2F specifical ly

modifies Cullin5.
4.2 HIV exploits NEDDylation to degrade
antiviral factors and enhance infection

Emerging studies reveal that HIV exploits NEDDylation-

mediated ubiquitination pathways to potentiate its infectious

capacity (Nekorchuk et al., 2013). Specifically, HIV hijacks host

CRL complex to degrade antiviral restriction factors. In HIV-2

infection, the viral accessory protein Vpx, via its evolutionarily

conserved HHCC motif and zinc-binding domain (Guo et al., 2019;
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Wang et al., 2017), interacts with the CRL4 complex (comprising

DDB1, RBX1, Cullin4A, and DCAF1) to induce NEDDylation of the

Cullin4 subunit. This covalent NEDD8 modification activates CRL4’s

E3 ubiquitin ligase activity, driving K48-linked ubiquitination and

subsequent proteasomal degradation of SAMHD1 (Hrecka et al.,

2011; Laguette et al., 2011; Hofmann et al., 2013).

The host restriction factor APOBEC3G exerts antiviral effects

by deaminating cytosine (C) to uracil (U) in viral single-stranded

DNA during reverse transcription, impairing viral genome integrity

and progeny infectivity (Iwatani et al., 2007; Bishop et al., 2006).

Counteractively, HIV-1 Vif recruits UBE2F to mediate Cullin5

NEDDylation, activating the CRL5Vif-CBFb complex. This

machinery catalyzes K48 ubiquitination of APOBEC3G, marking

it for proteasomal destruction (Yu et al., 2003; Liu et al., 2005;

Stanley et al., 2012).

Furthermore, HIV-1 Vpr targets uracil-N-glycosylase (UNG2),

which exhibits dual regulatory roles in HIV-1 replication: on one

hand, it enhances the fidelity of reverse transcription (Chen et al.,

2004); on the other hand, its nuclear-localized isoform participates

in cDNA degradation and maintains host genomic stability by
FIGURE 3

ISG15-Mediated stabilization of USP18 and negative regulation of IFN-I signaling. This figure illustrates the the interplay between ISG15 and USP18 in
regulating the IFN-I signaling. Left panel: In the presence of free ISG15, USP18 is stabilized by competing with ubiquitin, thereby enhancing its
association with IFNAR2 and preventing JAK1 binding. This inhibits activation of the JAK-STAT pathway and downregulating ISG expression. Right
panel: In the absence of ISG15, USP18 becomes unstable, leading to sustained IFN-I signaling. Upon IFN-I binding to its receptor complex, JAK1 and
TYK2 are activated, resulting in the formation of the ISGF3 complex (STAT1, STAT2, and IRF9). ISGF3 translocates into the nucleus and binds to ISREs
in the promoters of ISGs. This figure is generated using BioRender (http://biorender.com/).
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repairing uracil mismatches (Akbari et al., 2004). Notably, the HIV-

1 viral protein Vpr targets UNG2 to promote NEDD8 modification

of the CRL4 complex, thereby inducing CRL4-mediated

ubiquitination and degradation of UNG2 (Nekorchuk et al.,

2013). This mechanism not only compromises host DNA repair

capacity but also enhances HIV-1 replication, thereby promoting

viral dissemination.

In summary, host CRL complexes collaborate with viral

proteins to orchestrate ubiquitination-dependent elimination of

antiviral factors. Given that CRL activity strictly depends on

NEDD8 modification of conserved lysine residues within the C-

terminal domains of Cullin proteins, this PTM regulatory strategy

becomes indispensable for HIV infection. These findings not only

elucidate novel viral strategies to subvert immune surveillance but

also provide a mechanistic foundation for developing

NEDDylation-targeted antiviral therapies.
4.3 NEDDylation inhibitors block HIV
infection

Given that HIV and other viruses exploit NEDDylation to

enhance infectivity (Abounouh et al., 2022; Lee et al., 2022; Zhang

et al., 2021; Nekorchuk et al., 2013), inhibition of this modification

has emerged as a promising therapeutic strategy. The NEDD8-

activating enzyme (NAE) inhibitor MLN4924, a broad-spectrum

antiviral candidate, specifically blocks NEDD8 conjugation to

CRLs, effectively perturbing ubiquitination cascades (Xie et al.,

2021; Xu et al., 2018). Recent studies demonstrate that MLN4924

suppresses Cullin-mediated degradation pathways, thereby

counteracting HIV accessory protein functions, including Vif-

driven APOBEC3G elimination, Vpr-mediated UNG2 depletion,

and Vpx-dependent SAMHD1 degradation (Stanley et al., 2012;

Nekorchuk et al., 2013; Wei et al., 2014).

The antiparasitic agent suramin has garnered significant

attention for its potential to disrupt pathogen proliferation

(Steverding and Troeberg, 2023). Recent investigations identify

suramin as a novel HIV inhibitor that synergizes with MLN4924

to enhance therapeutic efficacy (Zhang et al., 2020). Mechanistically,

suramin interferes with biosynthesis of inositol hexakisphosphate

(IP6), a critical cofactor for viral capsid assembly. Suramin and its

analog NF449 suppress IP6 production by targeting IP5 kinase

(IP5K), inhibiting ATP-binding activity and IP5 phosphorylation.

Depleted IP6 levels impair COP9 signalosome (a CRL-

deneddylation enzyme complex) recruitment to CRLs, thereby

disrupting the dynamic equilibrium required for CRL activity

cycling (Dick et al., 2018; Mallery et al., 2019; Zhang et al., 2020).

This regulatory mechanism, simultaneously inhibiting CRL

activation via NEDDylation blockade and preventing CRL

inactivation through deneddylation impairment, positions the

combinatorial regimen as a promising approach for achieving

comprehensive suppression of HIV replication.

Although NEDDylation inhibitors hold promise as antiviral

agents, their clinical translation is impeded by substantial

challenges. MLN4924 is currently in phase II clinical trials for
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various hematological malignancies and solid tumors (Zhou et al.,

2018). In addition to its antitumor activity, studies have

demonstrated that MLN4924 exhibits significant antiviral effects

against a broad spectrum of viruses, including Human

Cytomegalovirus (HCMV), Herpes simplex virus (HSV)-1, HSV-

2, adenovirus 5 (AdV5), influenza virus PR8 and HIV (Le-Trilling

et al., 2016). However, there remains a paucity of clinical studies to

substantiate its anti-virus applications. Suramin, initially developed

for parasitic infections, has also demonstrated anti-HIV properties

and can synergize with MLN4924 to enhance therapeutic efficacy.

However, suramin’s low therapeutic index and frequent off-target

effects, attributable to its interaction with multiple cellular targets,

pose substantial limitations for clinical use (Guo et al., 2021a).

Moreover, given that NEDDylation is essential for maintaining

normal cellular homeostasis, systemic inhibition may lead to

concerns regarding toxicity and specificity. To address these

challenges, future strategies should focus on enhancing selectivity,

such as by targeting virus-specific NEDDylation events or

employing cell-type-specific delivery systems, thereby minimizing

host toxicity while maximize therapeutic efficacy.
5 ATG8ylation

5.1 Introduction of ATG8ylation

ATG8ylation, a PTM closely associated with autophagy, involves

the synthesis of its core molecule ATG8 as an inactive precursor

containing a C-terminal non-functional amino acid extension. This

modification is initiated by E1 enzyme ATG7-mediated proteolytic

processing of the ATG8 precursor, which cleaves the C-terminal

extension to expose a glycine residue, generating the reactive mature

ATG8. Subsequently, through the coordinated action of E2 (ATG3)

and E3 (ATG12), mature ATG8 covalently conjugates to substrate

proteins or membranes. Notably, the ATG8 family comprises

multiple homologs, with LC3 and GABARAPL2 being the

predominant forms in humans (Kumar et al., 2020b).
5.2 Host maintains homeostasis through
the autophagy pathway

The tripartite motif (TRIM) protein family serves as critical host

antiviral factors by modulating autophagy pathways. Research

demonstrates that TRIM5 overexpression significantly activates

cellular autophagy processes (Mandell et al., 2014). Furthermore,

TRIM5 functions as a selective autophagy receptor through direct

interaction with core autophagy proteins of the ATG8 family,

particularly GABARAP subtypes, enabling specific recognition of

retroviral particles. Notably, this recognition mechanism operates

independently of the canonical ubiquitination system. All TRIM

family members directly interact with at least one GABARAP

subtype, establishing a universal interaction paradigm. This unique

molecular strategy allows TRIM5 to direct autophagosomes toward

HIV-1 viral particles for degradation, thereby effectively protecting
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host cells from viral infection (Mandell et al., 2014). These findings

emphasize the critical role of GABARAP, rather than LC3, in

mediating selective autophagic immune responses against HIV-1.
5.3 HIV-1 enhances infection through
ATG8ylation

ATG8ylation exerts multidimensional regulatory effects

throughout the HIV-1 infection cycle. During viral entry, this

modification enhances infectivity primarily by facilitating

membrane fusion between the virus and host. Specifically, upon

HIV-1 exposure to CD4+ T lymphocytes, the ATG8 family member

LC3B rapidly accumulates at the plasma membrane, even before

direct virion contact, suggesting a priming role for membrane

remodeling. This recruitment is dependent on Env-CD4 binding

and requires key ATG8ylation enzymes such as ATG7 and BECN1,

but notably bypasses canonical autophagy initiation factors like

ATG13. Such findings demonstrate that LC3B lipidation (i.e.,

ATG8ylation) serves as a distinct, autophagy-independent

mechanism facilitating the membrane curvature or fluidity changes

required for viral fusion. Thus, LC3-mediated membrane dynamics

serve as a critical molecular switch for HIV-1 entry, although further

studies are needed to delineate its coordination with cytoskeletal

remodeling and lipid signaling pathways (Pradel et al., 2024).

Furthermore, during HIV-1 infection, mammalian ATG8

homologs (mAtg8s), particularly GABARAP, orchestrate a finely

tuned regulatory network involving lysosomal biogenesis and

immune restriction. Mechanistically, GABARAP directly binds

TFEB and facilitates its nuclear translocation independent of

canonical LIR-LDS interactions. This process is modulated by

IRGM, which promotes TFEB dephosphorylation both by inhibiting

mTOR and activating the phosphatase PPP3CB. Knockout studies

further demonstrate that GABARAPs, but not LC3s, are indispensable

for starvation- or stress-induced TFEB activation and downstream

lysosomal gene expression. In the context of HIV-1, GABARAP also

interacts with TRIM5, a cytosolic restriction factor that recognizes the

viral capsid and recruits the autophagic machinery to degrade it. These

dual functions, enhancing lysosomal capacity via TFEB andmediating

innate immune recognition via TRIM5, highlight GABARAP as a key

node bridging autophagy, immune defense, and viral modulation

(Kumar et al., 2020a).

Notably, HIV-1 Nef protein hijacks the IRGM-TFEB pathway

to suppress lysosomal degradation of viral components, establishing

a unique “virus-protective autophagic inhibition”mechanism (Kyei

et al., 2009). This strategy prevents HIV components from

lysosomal destruction, effectively shielding the virus from

autophagic clearance during host cell defense. Saribas et al.

reported that Nef induces aberrant accumulation of ATG8/LC3

and p62 (SQSTM1), mimicking the action of the autophagy

inhibitor Bafilomycin A1 (BAFA1). By blocking autophagosome-

lysosome fusion, Nef enables HIV-1 to evade autophagic

elimination in human astrocytes (Saribas et al., 2015).
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During viral release, HIV-1 Vpu exploits its L63VEM66 motif to

specifically bind the ATG8 family member LC3C. In concert with

ATG6 (Beclin1) and LC3C, this interaction enhances Vpu’s ability

to counteract BST2-mediated restriction (Madjo et al., 2016). These

findings collectively demonstrate that the ATG8ylation system not

only modulates viral entry but also facilitates virion maturation and

release by remodeling host membrane dynamics.

Collectively, these findings demonstrate that the ATG8ylation

system involves distinct functions of LC3 and GABARAP

subfamilies, with LC3 primarily mediating membrane fusion

events facilitating viral entry and release, while GABARAP mainly

governs selective autophagic immune responses and lysosomal

regulation, highlighting the dual roles within the ATG8 family in

HIV-1 regulation.
6 FAT10ylation

6.1 Introduction of FAT10ylation

FAT10, a multifunctional UBL modifier, serves dual roles in

cellular immune surveillance and dynamic protein homeostasis by

mediating targeted degradation of substrates (Raasi et al., 1999;

Mah et al., 2019). The FAT10ylation process involves covalent

conjugation of FAT10 to substrates or membranes through a

cascade comprising the E1 (UBA6), E2 (USE1), and putative E3

ligases. Unlike canonical ubiquitin and other UBLs, however,

FAT10 appears to function with minimal or undefined

involvement of dedicated E3 ligases. To date, no FAT10-specific

E3 ligase has been conclusively identified, suggesting a potentially

non-canonical or more substrate-intrinsic mechanism of substrate

selection and modification (Chiu et al., 2007; Aichem et al., 2010,

2014). This apparent absence represents a major gap in our

understanding of the FAT10ylation machinery and raises

questions about how substrate specificity and regulation are

achieved in different cellular contexts. Another unique feature of

FAT10 is its C-terminal diglycine motif, which, although

functionally analogous to that of ubiquitin, is inherently exposed

in its primary sequence and does not require proteolytic processing

to achieve conjugation competence. This contrasts with ubiquitin

and several other UBLs that are synthesized as precursors requiring

cleavage to expose the C-terminal Gly-Gly motif. Despite increasing

interest in FAT10 biology, many aspects of its substrate landscape

remain obscure. In particular, the identities and functional

consequences of FAT10-specific substrates in the context of HIV-

1 infection remain largely uncharacterized. Given the virus’s

dependence on host proteostasis and immune modulation,

elucidating how FAT10-mediated degradation affects viral

replication or host antiviral responses could uncover novel

therapeutic opportunities. Further studies are urgently required to

define substrate repertoires, ascertain the existence of virus-encoded

regulators of FAT10ylation, and characterize how HIV-1 might

hijack or evade this PTM system.
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6.2 HIV-1 induces FAT10 overexpression to
promote apoptosis

FAT10ylation exerts multidimensional biological effects within

the HIV-1 infection. In HIV-associated nephropathy (HIVAN)

models, studies have delineated that FAT10ylation is involved in

disease progression through pro-apoptotic pathways: HIV-1-infected

renal tubular epithelial cells (RTECs) exhibit significant FAT10

upregulation, which activates intrinsic apoptotic cascades to drive

RTEC apoptosis (Ross et al., 2006). RNA interference-mediated

silencing of endogenous FAT10 expression effectively abrogates

HIV-1-induced RTEC apoptosis, confirming FAT10’s central

regulatory role in this pathological cascade (Ross et al., 2006).

HIV-1 Vpr has been identified as a critical inducer of FAT10

expression in RTECs, promoting apoptosis by elevating FAT10

levels in these cells (Snyder et al., 2009). Snyder et al. found that

FAT10 directly interacts with Vpr and serves as a key mediator of

Vpr-driven RTEC apoptosis. However, the precise mechanism by

which FAT10 facilitates Vpr-induced apoptosis remains

unresolved. Furthermore, it remains unclear whether FAT10-

mediated apoptosis is pathogenic to the host or represents an

adaptive antiviral response to limit viral spread through covalent

modification of target proteins (Snyder et al., 2009).

Similar to ubiquitination, FAT10ylation can trigger substrate

degradation (Yi et al., 2020). Emerging evidence suggests

FAT10ylation may inhibit HIV-1 by degrading viral proteins

essential for infection (Kubo et al., 2022). Nevertheless, the

mechanistic basis of FAT10ylation’s antiretroviral activity requires

further investigation.
7 Therapeutic targeting of UBL
pathways: opportunities and
challenges

The maintenance of intracellular protein homeostasis is

essential for organismal health, and its disruption has been

implicated in numerous pathological conditions (Dowell et al.,

2007). The ubiquitin–proteasome system (UPS) plays a central

role in regulating protein degradation, where the 26S proteasome

recognizes and hydrolyzes polyubiquitinated proteins to control

various cellular processes (Coll-Martıńez and Crosas, 2019). Many

viruses, including HIV, exploit the UPS pathway to regulate the

stability of their own proteins or to induce the degradation of host

restriction factors, therefore enhancing viral replication (Barry and

Früh, 2006; Gustin et al., 2011). Thus, inhibition of the UPS

pathway is an effective strategy to suppress viral replication.

Compounds targeting the ubiquitin-conjugation system (e.g.,

PYR-41) and the proteasome (e.g., MG-132, Bortezomib) have

been shown to interfere with viral replication (Kaspari et al.,

2008; Luo et al., 2003; Satheshkumar et al., 2009; Schubert et al.,

2000). However, the toxicity of these agents can lead to severe side

effects in the host: upon proteasome inhibition, the half-life of more
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than 80% of cellular proteins is significantly increased (Meierhofer

et al., 2008; Yen et al., 2008). So far, no clinical studies have reported

the use of PYR-41, MG132, or Bortezomib in HIV therapy,

highlighting the need for further investigation into their potential

antiviral effects.

As outlined in Section 2.3, the anticancer drug TAK-981 is a

specific inhibitor of the SUMOylation E1 enzyme (Langston et al.,

2021). The SUMOylation of the SMC5/6 complex triggers

epigenetic silencing of unintegrated HIV-1 DNA. TAK-981

disrupts the structural stability of PML NBs, functioning as the

“shock” component in the “shock and kill” strategy, and

demonstrating potential therapeutic value in HIV treatment

(Irwan et al., 2022). Although TAK-981 has entered Phase I

clinical trials for the treatment of solid tumors and lymphomas

(Lightcap et al., 2021), there are no clinical reports available

concerning its application in HIV treatment.

What’s more, as mentioned in Section 4.3, MLN4924 is a

selective inhibitor of NAE, which prevents the activation of CRLs

and consequently blocks the NEDDylation process (Xie et al., 2021;

Xu et al., 2018). MLN4924 has advanced to phase II clinical trials

and demonstrated promising antitumor activity in preclinical and

clinical settings (Zhou et al., 2018). Its toxicity profile has been

extensively studied. Although some adverse effects have been

observed, they are generally milder, and to date, no grade 4

adverse events and treatment-related deaths have been reported

(Shah et al., 2016). However, UBL-specific inhibitors beyond the

NEDDylation pathway remain largely unexplored. High-

throughput virtual screening based on compound libraries,

combined with structural modeling of key enzymes involved in

UBL cascades, represents a viable approach for identifying

promising molecules. Although such strategies may yield

numerous candidate compounds, significant challenges persist in

drug development. Key concerns include the efficient intracellular

delivery of compounds to targets, minimizing off-target toxicity,

and ensuring sufficient therapeutic efficacy. For instance, suramin

has demonstrated inhibitory activity against NEDDylation, but its

clinical application has been limited by considerable side effects and

suboptimal efficacy (Guo et al., 2021a). Future efforts may focus on

chemical modification of existing compounds or combination

therapies to enhance binding affinity to UBL-specific targets while

reducing adverse effects. Overcoming these pharmacological

limitations will be essential for translating UBL-targeted therapies

into clinical effective treatments.
8 Discussion

HIV remains a major global health threat, with its infection

process highly dependent on the precise regulation of the protein

PTM system. PTMs orchestrate HIV infection by reversibly

modifying both viral and host proteins, thereby altering their

structure, function, and interactions to influence viral replication

cycles, immune evasion, and host defense responses. Among diverse

PTM types, the canonical regulatory mechanism ubiquitination
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governs HIV infection through substrate degradation, localization

control, and signaling modulation. Recent advances have unveiled

expanding roles of UBLs, including SUMOylation, ISGylation,

NEDDylation, ATG8ylation, and FAT10ylation, in regulating HIV-

host interactions. This review systematically summarizes the

multidimensional functions of UBL networks in HIV infection,

highlighting their spatiotemporal regulation of viral entry, replication,

latency, and budding (Table 1) (Figure 4).The bidirectional dynamic

regulation of PTM is particularly prominent in HIV infection.

Deubiquitinating enzymes (DUBs), as key regulatory factors, reverse

ubiquitination to participate in viral replication and serve as critical

mechanisms for intracellular regulation of protein function, stability,

and interactions. Different types of PTMs dynamically add or remove

modifying molecules to precisely regulate protein biological functions.

During HIV infection, the regulatory role of PTMs is especially crucial,

particularly the impact of ubiquitination and UBL modifications on

the viral life cycle (Teh et al., 2022). For example, USP21 inhibits HIV-

1 replication by downregulating Tat expression (Gao et al., 2021a),

while USP7 stabilizes Tat to exert the opposite effect (Ali et al., 2017).

USP37 enhances SAMHD1’s anti-HIV-2/SIV activity (Cui et al.,

2025), and USP8 counteracts Vif-mediated A3G degradation (Gao
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et al., 2021b). Notably, UBL systems also possess corresponding

deconjugating enzymes (DUBLs). SUMOylation is regulated by the

SENP family (Li and Hochstrasser, 1999, 2000), where SENP-

mediated deSUMOylation of integrase IN significantly suppresses

viral infectivity (Madu et al., 2015). Additionally, the CSN complex

(containing CSN5/JAB1) promotes HIV-1 replication in CD4+ T cells

through deneddylation (Kinoshita et al., 2012). USP18 enhances HIV-

1 replication by inhibiting ISG15 synthesis (Lin et al., 2024). These

studies suggest that DUBs/DUBLs constitute critical regulators in the

host-virus interplay. We propose that other UBLs may harbor

undiscovered DUBLs, and systematic characterization of their

functional networks will provide novel targets for intervening in

HIV infection.

Breakthroughs in ubiquitination research have established

critical paradigms for exploring UBL mechanisms. Mabbitt et al.

found that the human E3 ubiquitin ligase Myc binding protein 2

(MYCBP2) modifies threonine (Thr) residues via a “RING-Cys-

relay” (RCR) mechanism, extending UBL modifications even to

non-amino acid molecules such as glycerol (Mabbitt et al., 2020).

Furthermore, PTMs of Ub itself, exemplified by serine 65 (Ser65)

phosphorylation, dynamically regulate its functionality through
TABLE 1 The effects of UBL modifications on host factors and HIV proteins.

Ubiquitin-
like
Modifications

E1 E2 E3 Effects on Host Factors Effects on
HIV Proteins

SUMOylation SAE1/
SAE2

Ubc9 PIAS
Family and
RanBP2
,etc

1. Enhancing the Antiviral Activity of Host Restriction Factors TRIM5a
(Dutrieux et al., 2015b; Nepveu-Traversy and Berthoux, 2014; Portilho
et al., 2016), SAMHD1 (Martinat et al., 2021), Daxx (Maillet et al., 2020)
2. Maintaining PLK1 Stability to Support Cell Survival (Zhou et al., 2020)
3. SUMOylation of STAT5 Inhibits HIV Transcription (Sorensen et al.,
2020; Bosque et al., 2017)
4. SUMOylation of IkBa Inhibits HIV Transcription (Desterro et al., 1998)
5. SUMOylation of CDK9 Inhibits HIV Transcription (Ma et al., 2019)
6. SUMOylation of HP1a Mediates HIV Silencing (Maison et al., 2016)
7. SUMOylation of HP1a Mediates HIV Silencing (Wu et al., 2022)
8. SUMOylation of the SMC5/6 Complex Mediates Epigenetic Silencing of
HIV-1 DNA (Irwan et al., 2022)
9. Hyper-SUMOylation of PML NBs Inhibits HIV Replication (Turelli
et al., 2001; Dutrieux et al., 2015a; Kahle et al., 2015; Shytaj et al., 2020)

1. SUMOylation of p6
Reduces Infectivity
(Göttlinger et al., 1991; Gurer
et al., 2005)
2. SUMOylation of IN
Inhibits Intergration Activity
(Zamborlini et al., 2011)
3.Rev binds to SHPR to
mediate HIV-1 replication
inhibition (Roisin
et al., 2004).

ISGylation UBE1L UBE2L6,
etc

HERC5
TRIM28

1. ISGylation of p53 Inhibits HIV-1 Replication (Osei Kuffour et al., 2019) 1. ISGylation of Gag Inhibits
Early Assembly of HIV-1
(Dastur et al., 2006)

NEDDylation NAE UBE2M
or
UBE2F

Rbx1,
Rbx2,etc

1. Mediating the Degradation of SAMHD1 to Enhance Infection (Hrecka
et al., 2011; Laguette et al., 2011; Zhang et al., 2021; Hofmann et al., 2013)
2. Mediating the Degradation of APOBEC3G to Enhance Infection (Yu
et al., 2003; Liu et al., 2005)
3. Mediating the Degradation of UNG2 to Enhance Infection (Nekorchuk
et al., 2013)

Unidentified

ATG8ylation ATG7 ATG3 ATG12-
ATG5-
ATG16L1
complex

1. The Interaction Between TRIM5 and GABARAP Restricts HIV-1
Infection (Mandell et al., 2014)
2. The Interaction Between LC3B and the Plasma Membrane Promotes
HIV-1 Entry into Cells (Mandell et al., 2014)
3. The Interaction Between IGRM and GABARAP Promotes HIV-1 Entry
into Cells (Kumar et al., 2020a)

1. The Interaction Between
HIV-1 Vpu and LC3C
Antagonizes the Restriction of
BST2 (Madjo et al., 2016)

FAT10ylation UBA6 USE1 Unknown 1. Apoptosis-Related Proteins Induce the Death of Infected Cells (Ross
et al., 2006; Snyder et al., 2009)

Unidentified
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multiple mechanisms: impairing E2-E3 pairing (Wauer et al., 2015),

altering binding domain affinities (Swaney et al., 2015), and

modulating Ub chain topology (Gersch et al., 2017). These

findings illuminate potential unconventional UBL modification

modes, suggesting that UBL modifiers may similarly target non-

lysine residues (e.g., Ser/Thr) or non-protein substrates, while their

own PTMs (e.g., phosphorylation) could spatiotemporally regulate

conjugation dynamics. Systematic investigation of these atypical

UBL modification paradigms will profoundly expand our

understanding of multidimensional virus-host interplay.

Emerging studies have proved multilevel crosstalk among

SUMOylation, ubiquitination, and ISGylation. Interferon (IFN)

signaling coordinately upregulates SUMO3, ubiquitination, and

ISGylation pathways by stabilizing enzymes like UBE2L6 and

HERC5, thereby enhancing expression of antiviral proteins

including IFITMs and SAMHD1 (Kubota et al., 2008; Nakagawa

and Yokosawa, 2002; Ran et al., 2011). Key regulatory paradigms

include: (1) Competitive modification, SUMOylation of TRIM5a
antagonizes its ubiquitination to maintain protein stability
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(Nepveu-Traversy and Berthoux, 2014); (2) Functional

interference, ISG15 conjugation to Ubc13 impairs its Ub-binding

capacity (Takeuchi and Yokosawa, 2005; Zou et al., 2005); (3)

Synergistic enhancement, SUMOylation stabilizes MDM2 to

promote Ub-dependent p53 degradation (Buschmann et al.,

2001), while NEDDylation activates CRLs to amplify substrate

ubiquitination (Hofmann et al., 2013; Yu et al., 2003; Liu et al.,

2005; Stanley et al., 2012; Nekorchuk et al., 2013). These

interactions demonstrate that UBLs can independently or

cooperatively regulate pivotal biological processes. Systematic

elucidation of their interaction networks will provide a conceptual

framework for designing multi-target therapeutic strategies.

In summary, the UBL system orchestrates HIV infection through

multilayered, dynamically reversible regulatory networks. Mechanistic

dissection and therapeutic exploitation of this system, particularly

through discovery of novel modification types, exploration of non-

canonical modification paradigms, and elucidation of DUB/DUBL

regulatory circuits, hold transformative potential for developing novel

strategies against HIV.
FIGURE 4

Roles of UBL modifications in the HIV-1 life cycle. This figure highlights the roles of various UBL modifications in the HIV-1 life cycle, demonstrating
both HIV-promoting (shown in red text and arrows) and anti-HIV (shown in blue text and inhibitory symbols) functions. SUMOylation related
regulatory mechanisms are described in detail in Figure 2. ISGylation stabilizes the tumor suppressor protein p53 to limit HIV-1 replication, inhibits
early post-entry steps including viral DNA integration, and interferes with viral budding and release. NEDDylation promotes viral replication by
facilitating the formation of CRL complexes that target host restriction factors such as A3G, SAMHD1, and UNG2 for degradation. ATG8ylation
contributes to viral entry through LC3 lipidation at the plasma membrane, which drives membrane remodeling, and also mediates selective
autophagic degradation of HIV-1 virions via TRIM5-GABARAP interactions. FAT10ylation plays a HIV-promoting role as the HIV-1 accessory protein
Vpr induces FAT10 expression in RTECs, activating intrinsic apoptotic pathways and promoting cell death. This Figure is drawn using the BioRender
website. This figure is generated using BioRender (http://biorender.com/).
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