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Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has

plagued humankind for millennia. Claiming 1.25 million lives in 2023, TB remains

the worldwide leading cause of death from a single-infectious agent. Improved

vaccines, diagnostics and treatment regimens for drug-susceptible and drug-

resistant cases are paramount to attain the goals of the WHO’s End TB Strategy.

Our knowledge gap in protective immunity in TB impedes the development of

such new vaccines and host-directed interventions. Mtb is a pathogen highly

adapted to humans and primarily infects the lungs. Access to relevant specimens is

invasive, preventing ample human TB studies, which therefore mostly rely on

peripheral blood specimens and biopsies. Thus, there is a need for relevant

surrogates. In recent years, in vivo, in vitro, and in silico systems have arisen to

approach andmodel different aspects of TB pathogenesis. Moving away from cell-

line infections and classical animal models, TB research has advanced to

genetically diverse mice, 3D organoid cultures and computational modelling. We

will review current TB models and discuss their applicability to decipher protective

human immunity, understand disease progression, transmission, as well as

evaluate vaccine candidates and unravel host-directed therapeutic approaches.
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Introduction

Tuberculosis (TB) elimination remains an ambitious target. Despite extensive research,

this ancient disease keeps claiming 143 lives every hour, making Mycobacterium

tuberculosis (Mtb) the leading single-infectious killer (WHO, 2024). The WHO has

outlined a strategy to end the global TB epidemic by 2035. This includes reducing

mortality by 95% and incidence by 90% compared to 2015. To reach those goals, we

urgently need new vaccines, improved drug regimens and innovative, host-directed

interventions. Owing to ethical restrictions as well as limited access to in situ samples,

human TB studies are scarce. Thus, there is a need for appropriate surrogates that allow us

to decipher protective traits against this pathogen, which after millennia of co-evolution is

highly adapted to humans. Intriguingly, while a substantial proportion of the human

population is thought to be latently infected (estimates ranging between 25 and <10%
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(Houben and Dodd, 2016; Schwalb et al., 2024)), only <5% of

encounters with Mtb result in active TB disease (Behr et al., 2018).

Progression to active disease is dependent on the strain, the age and

the intensity of exposure (Sloot et al., 2014; De Jong et al., 2008). In

contrast, most current infection systems fail to capture the 90-95%

of protective outcomes. Hence, several susceptibility traits to TB,

such as impaired T cell function or IL-12/IFN-g and TNF-a
signaling, have successfully been dissected by combining research

in animals, humans and in vitro systems with epidemiological data

(Scriba et al., 2017; Bustamante et al., 2014; Wallis, 2007). We have

further come to realize that environmental factors (e.g. nutrition,

economic status) may be as influential as genetic and

immunological ones (Bhargava et al., 2023). Historically, studying

resistance to disease over susceptibility has greatly contributed to

improving public health by delivering the smallpox vaccine

(developed after observing cowpox-exposed milkmaids resisted

the disease) and CCR5-inhibitors for HIV treatment (after

realizing that individuals carrying a CCR5 variant are HIV-

resistant). A similar approach could be useful for TB too, for our

understanding of TB protective traits is very limited. With ongoing

efforts to recruit and characterize natural or vaccine-induced

“resister” cohorts, research into TB resistance is gaining

momentum. We here review recent in vivo, in vitro and in silico

approaches that may capture and dissect protective traits in TB,

which in turn could be leveraged for vaccine and host-directed

therapy (HDT) drug design. Particularly, we emphasize the

potential of human-based in vitro approaches, combined with

advanced technologies and computational modeling, as promising

tools to characterize protective immune mechanisms and to serve as

clinical platforms for vaccine and drug development.
In vivo studies

In vivo studies in animals

The first experimental infections of guinea pigs with Mtb date

back to 1882, when Robert Koch identified Mtb as the causative

agent of TB. Since, animal models ranging from amoeba and zebra

fish, over rodents to cattle and non-human primates have been

invaluable to increase our understanding of TB pathogenesis.

Animal models for TB have been extensively reviewed elsewhere

(Ernst, 2012; Dube et al., 2020; Singh and Gupta, 2018; Williams

and Orme, 2016; Bucsan et al., 2019) and more specifically in light

of vaccine (Gong et al., 2020) and chemotherapy (Yang et al., 2021)

development. Here, we will emphasize limitations and advantages

of selected animal models to study protective immunity in human

TB and discuss ongoing efforts in overcoming their caveats.

Mtb is one of several TB-causing pathogens, collectively known

as the Mycobacterium tuberculosis complex (MTBC). The MTBC

encompasses 10 lineages infecting humans, with lineages 1 to 4

accounting for 99% of TB cases, and nine animal infecting ones

(Goig et al., 2025). Zoonotic TB can occur in humans, e.g. infection

with the bovine pathogenMycobacterium bovis following ingestions

of unpasteurized milk (Olea-Popelka et al., 2017), which adds to the
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global TB burden in areas of human contact with live-stock. Rare

instances of TB reactivation from latent M. bovis infection have

been reported (Capoferri et al., 2024). While TB also exists in

animals, MTBC strains that infect humans are highly restricted to

their host and failed to induce lung lesions in cattle (Villarreal-

Ramos et al., 2018). Mtb has plagued and coevolved with humans

for thousands of years (Gagneux, 2012). In that regard, experiments

conducted in animals, aiming to decipher TB in humans, can

legitimately be criticized to “pervade the field” (Scriba et al.,

2017). Due to the global spread of institutional facilities and

availability of an arsenal of genetic and immunological tools, mice

constitute the most commonly used model in TB in vivo studies

(Figure 1). This is yet very concerning, as mice are no natural host

for Mtb and are not naturally infected by any MTBC member.

Nonetheless and as elegantly reviewed elsewhere (Ernst, 2012),

animals can serve as surrogates of specific stages in the

“immunological life cycle” of tuberculosis. Guinea pigs and mice

model the delayed onset of adaptive immunity, rabbits capture

necrosis and lung cavitation, NHPs and mice reproduce the impact

of CD4 T cell defects or NHPs and cattle allow to study latency and

reactivation. Mouse breeds used in TB research include susceptible

(C3HeB/FeJ, DBA/2, 129/Sv) and resistant (BALB/c and C57BL/6)

mice (Soldevilla et al., 2022). However, a common denominator

across mouse models is that they cannot eliminate the infection and

do not reflect the large majority (>95%) of human infection

outcomes. Efforts to develop mouse models that may better reflect

human TB pathogenesis are being pursued (Yang et al., 2021). In

2021, Kevin Urdahl’s group reported an ultra-low dose (ULD)

aerosol challenge model (Plumlee et al., 2021). Unlike other

infection models, ULD-infected mice responded heterogeneously

to infection and remarkably showed singular, organized

granulomas. Furthermore, the authors were able to extract blood

transcriptional signatures that correlated with disease severity in

NHPs and predict TB risk in humans. Aside from optimized

infection doses, advances are being made to account for genetic

diversity. Collaborative cross (CC) or diversity outbred (DO) mice

are deployed to address how the genetic background may influence

immune responses and vaccine efficacy (Saul et al., 2019). The use of

humanized mice, in which human immune cells are engrafted into

immunodeficient mice, is also emerging and their applications

recently reviewed (Mcdonald et al., 2024). Humanized mice have

been utilized in TB research as promising tools in the assessment of

drugs (Arrey et al., 2019), bacteriophage therapy (Yang et al., 2024),

innovative vaccines strategies (Afkhami et al., 2023), and to dissect

HIV-Mtb co-infection (Bohórquez et al., 2024; Calderon et al.,

2013). Together, these advanced murine models hold promise in

overcoming some of the caveats of standard mouse research for TB,

e.g. more diverse infection outcomes, while still benefitting from

genetic manipulation avenues. ULD, CC and DO mice may provide

valuable data for vaccine development (Wang et al., 2024) and new

insights into protective or detrimental immune traits. However,

their use – together making up a mere 0.25% of publications - is still

in its infancy (Figure 1).

Despite its importance for human interventions, the

transmission feature of human TB disease is understudied (Behr
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et al., 2020). Nevertheless, guinea pigs are particularly susceptible to

Mtb infection and like humans; they can transmit the disease via

aerosols (Lurie, 1930). An intriguing study revealed that a glycolipid

component of the Mtb cell wall (sulfolipid-1) is able to induce

cough in guinea pigs (Ruhl et al., 2020). Rabbits constitute

important models in TB research, which has been reviewed

elsewhere (Bucsan et al., 2019). Noteworthy, the rabbit was the

first animal model able to mimic HIV-immune reconstitution

inflammatory syndrome (IRIS) using corticosteroids (Manabe

et al., 2008). Besides, rabbit infection with Mtb notably allowed

studying the dynamics of cavitary disease and found a significant

degree of molecular and pathological correlates with humans

(Kübler et al., 2015). Studies in zebra fish (infected with M.

marinum) and cattle (infected with M. bovis) provide an

interesting opportunity to study TB in the context of natural

host-pathogen pairs; the former being much easier to use and the

latter genetically closer to humans. Interestingly, the zebra fish

model has provided mechanistic insights into human bone TB. In

an elegant study ignited by a TB outbreak with atypical rates of

disseminated and skeletal TB, Saelens et al. linked occurrence of

bone TB to increased macrophage motility, dependent on the

presence of esxM (Saelens et al., 2022). This gene is present in its
Frontiers in Cellular and Infection Microbiology 03
full length in ancestral lineages, while modern lineages carry a

truncated form. This discrepancy, in conjunction with host factors

(Rachwal et al., 2024), supports the association of particular ancient

lineages with extra-pulmonary TB (EPTB) (Click et al., 2012; Du

et al., 2023). Models of natural host-pathogen pairs also allow

assessing the conservation of protective or susceptibility traits

across different species. This is particularly relevant as zoonotic

TB associated to M. bovis infections can cause human deaths

(Capoferri et al., 2024) and M. marinum can cause skin infections

in humans (Gonçalves et al., 2022). Non-human primates

(comprising cynomolgus monkeys, rhesus monkeys and

marmosets (Yang et al., 2021)) display TB pathology and disease

spectrum closely resembling those of humans (Scanga and Flynn,

2014), likely rendering them the most relevant model of human TB.

Cynomolgus macaques (Capuano et al., 2003) are particularly

suitable to study latent infection (O'Garra et al., 2013). However,

financial, logistical and ethical concerns imped the wide adoption of

these models. Nonetheless, NHPs have proven highly valuable in

highlighting human-like heterogeneity of disease presentation

across animals and across individual granulomas within a single

animal (Lin et al., 2014). Recently, NHP studies yielded further

insights into correlates of protection associated with the presence of
FIGURE 1

Tuberculosis in vivo studies in animals. Treemap representing the proportion of publications using the respective animal models. Yellow shades
indicate challenge models of natural host-pathogen pairs. DO diversity outbred; ULD ultra-low dose; CC collaborative cross. Generated with
biorender.com; Based on a PubMed search on 21.11.24 using the queries: “tuberculosis” AND (“mice”OR “mouse”) | (“mice”OR “mouse”) AND (“ULD”OR
“ultra-low dose”) | (“mice” OR “mouse”) AND (“collaborative cross”) | (“mice” OR “mouse”) AND (“diversity outbred” OR “DO”) | (“mice” OR “mouse”) AND
(“humanized mice”) | “cattle” | (“guinea pigs”OR “guinea pig”) | (“rabbits”OR “rabbit”) | (“rats”OR “rat”) | (“zebrafish”OR “zebra fish”) | (“NHPs”OR “NHP”OR
“non-human primate*” OR “nonhuman primate*”).
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a NK cell subset in the lungs of latently infected macaques (Esaulova

et al., 2021). Comparison of low and high-burden granulomas in

cynomolgus macaques also suggested correlates of bacterial

clearance associated to the accumulation of TH17 and cytotoxic T

cells (Gideon et al., 2022). Interestingly, a parallel study also

identified cytotoxic signatures to be associated with protection

(Winchell et al., 2023). Hansen et al. made a breakthrough by

demonstrating unprecedented sterilizing immunity following

vaccination with a cytomegalovirus-vectored TB vaccine

(RhCMV/TB) (Hansen et al., 2018). Later, similar successes were

achieved using an intra-venous (IV) BCG vaccination route

(Darrah et al., 2020; Larson et al., 2023). IV BCG vaccination

induced protective humoral responses (IgM titers, complement)

and NK cell activation in a dose-dependent manner (Irvine et al.,

2024). In a separate study, the recruitment and priming of alveolar

macrophages and polyfunctional T cells characterized the lung

response of protected animals (Peters et al., 2025). Another study

demonstrated the necessity of CD4 T and innate CD8 lymphocytes,

but not adaptive CD8 lymphocytes, for IV BCG-mediated

protection (Simonson et al., 2025). Altogether, recent data

collected through the IV BCG approach in NHPs suggest that a

plethora of immune players is likely required to synergize

for protection.

Overall, animal models have proven valuable to dissect different

aspects of TB pathogenesis (Soldevilla et al., 2022). However,

controversy remains in the extent of translatability of these

findings across different models and, most importantly, to

humans (Warren et al., 2015). One of few studies directly

comparing immune responses to in vivo Mtb infection across DO

mice, NHPs and humans found a great degree of overlap of genes

differentially expressed during TB disease (Ahmed et al., 2020). Yet,

animal models are raising controversial conclusions. For example, a

study in mice found a therapeutic potential of MAIT T cells, where

their expansion induced by an antigen increased bacterial control

(Sakai et al., 2021a); however, in NHPs, the same treatment induced

exhaustion of MAIT T cells (Sakai et al., 2021b). In vitro models

(detailed in the sections below), have highlighted further similarities

and discrepancies. Corroborating Ahmed et al., a recent preprint

found human and murine alveolar macrophage responses to Mtb

infection to be majorly conserved; however, they also identified

several pathways (e.g. cholesterol, IFN genes) that differ between the

two species (Dill-Mcfarland et al., 2025). Other studies have

highlighted that rapamycin-induced autophagy restricts Mtb

replication in murine (Gutierrez et al., 2004), while it would

promote it in human macrophages (Andersson et al., 2016). This

lack of total translatability is inevitable, given the inherent,

irrevocable differences between animals and humans, and the

respective TB pathogeneses. While advanced animal models

retain relevance as in vivo surrogates and will remain an essential

tool in pre-clinical safety assessment, scientific efforts are being

made to focus translational TB research on human-based

approaches. In that perspective, we will now review available

approaches aiming at identifying protective traits in humans or

human-based systems.
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Human in vivo studies

Studying TB in humans is challenged by legitimate ethical

considerations and the particularly invasive access to the primary

infection sites (lung, lymph nodes, bones or brain), making diseased

and non-diseased specimens globally scarce. Consequently, most in

situ specimens are derived from biopsies or lung/lymph node

resections that mostly reflect late stages of failed immune

responses and do not allow studying the early onset of disease

nor protective traits. Nonetheless, such specimens have provided

valuable insights into the spatial organization (Marakalala et al.,

2016) of late-stage human TB granulomas, as well as unexpected

immunoregulatory features (McCaffrey et al., 2022).

To understand protective immunity, it appears paramount to

study infection and ensuing pathogenesis from its earliest onset.

Such investigations have become possible through controlled

human infection model (CHIM) studies (Pollard et al., 2012) that

have already yielded exciting results in vaccine efficacy and drug

assessment for the Malaria field (Sauerwein et al., 2011). In TB, the

first CHIM trial was conducted over a decade ago, first with intra-

dermal (Minassian et al., 2012) and later aerosol-administration of a

live-attenuated BCG vaccine strain (Satti et al., 2024). Currently,

conditionally replicating Mtb strains are being explored as a BCG

replacement (Wang et al., 2024; Balasingam et al., 2024).

Specifically, a triple-kill-switch Mtb strain may present a safe and

more physiological candidate for CHIM studies (Wang et al., 2025),

holding promise to propel TB vaccine development. While mainly

used to assess vaccine efficacy, insights into protective immunity are

expected to arise from samples collected alongside CHIM studies.

Similarly, a growing body of investigations benefit from existing

vaccination cohorts to seek biomarkers of (i) correlates of

protection, by identifying vaccine-induced markers that are

respectively absent and present in individuals that later

progressed or not to active disease; (ii) correlates of risk, with

markers whose presence/absence are respectively associated with a

low or a high risk of disease, reviewed in (Scriba et al., 2017; Walzl

et al., 2011). Yet, vaccination cohorts do not allow identification of

naturally occurring protective traits that do not necessarily overlap

with vaccine-induced correlates of protection. In that context, the

identification of “TB resisters” sparked new hope in the

identification of protective traits in human TB. Resisters are

defined as individuals repeatedly exposed to Mtb that do not

harbor detectable immune-reactivity to mycobacterial antigens by

TST and/or IGRA testing (Simmons et al., 2018). Study of resister

phenotypes is hampered by limitations in the classification of

resisters, linked to the lack of tools to assess and estimate the

degree of exposure, which is under the influence of the index case’s

TB disease status, including bacillary load, cough and strain

diversity affecting transmission rate (Simmons et al., 2018). Yet,

TB resistance in the absence of adaptive immune memory supports

an exceptional potency of innate myeloid responses, which have

been shown to be epigenetically regulated in a cohort of health care

workers (Zhang et al., 2021). Evidence from historical and

contemporary studies suggest that the frequency of resisters is
frontiersin.org
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below 10%, although high inter-study variability is observed

(Simmons et al., 2018). Recent data suggest that this figure may

be over-estimated due to IFN-g independent and regulatory

responses, such as those characterizing the T cell response of

household contacts in Kampala (Sun et al., 2024). Further

research is necessary to untangle the importance of the various

mechanisms supporting natural resistance to Mtb infection; and

potentially exploit them in host-directed therapeutic approaches.

Such approaches may encompass training innate immune

responses, and/or boosting IFN-g-independent cellular

mechanisms mediated by lipid-specific MAIT or gd T cells at the

instar of peptide-specific T cells measured in IGRAs. Furthermore,

B cells and antibodies might play an additive role (Simmons et al.,

2018). Investigation of these resister phenotypes constitutes

exquisite translational research for which data from human-based

in vitro systems may nicely complement animal challenge models.

Specimens of resister cohorts may indeed be subjected to an arsenal

of in vitro tools (described in the section below) to extract features

and demonstrate mechanisms of TB resistance.

In summary, human in vivo studies encompassing vaccine and

drug trials, resister cohorts and controlled human infections are

generating a multitude of specimens that can now be used in

human-based in vitro approaches to further dissect protective

traits (Figure 2). This is of particular relevance, since human trials

are lengthy and costly. It is thus paramount to make informed

choices on bio-banking relevant specimens to pursue the most

promising leads. We will now seek to outline the newest advances in

that respect.
Human ex vivo and in vitro studies

This section highlights human-derived TB in vitro studies,

summarized in Table 1. In vitro infections of macrophages to

study TB date back to the 1940s (Lurie, 1942). Since then,

technological advances surged from alveolar and foamy

macrophages, over bilayer systems and 3D granuloma models all

the way to lung tissues and stem cell-derived organoids, even

extending to entire organs (Figure 2). In vitro approaches based

on human specimens hold great promise to assess comorbidities

and incorporate the complex dimension of human genetic diversity.

Some are scalable and might find applications for drug screening.
Single-cell systems

Mtb can survive and thrive in the very cells deployed for its

clearance. Consequently, macrophages have long been the center of

attention in TB research. Numerous infection systems exist to study

the host-pathogen interaction betweenMtb andmacrophage host cells.

Cell lines
The human monocytic leukemia THP-1 cell line can be

differentiated into macrophages and has been widely used in

immunological studies of monocyte and macrophage functions
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(Shah et al., 2022). THP-1s are easy to culture and economic to

maintain. Assays are readily scalable and allow for large-scale drug

screening on intracellular bacteria (Rankine-Wilson et al., 2022).

Yet, THP-1s do not account for human genetic diversity and as a

cancerous cell-line have limited physiological relevance.

Primary cells
Cellular TB immunology research is very often conducted on

human macrophages derived from blood monocytes (MDM),

whose polarization and ultimate phenotypes upon Mtb infection

vary with specific culture conditions (Vogt and Nathan, 2011;

Murray, 2017). Mtb infection of MDMs has elucidated distinct

immune escape and protection mechanisms, such as inhibition of

phagosome-lysosome fusion (Armstrong and Hart, 1971),

phagosome escape (Van Der Wel et al., 2007) and autophagy

(Gutierrez et al., 2004). However, since Mtb transmits via

aerosols, the first cells to be infected in vivo, are alveolar

macrophages (AMs), which have distinct characteristics and

responses to Mtb infection than MDMs (Campo et al., 2024;

Tomlinson et al., 2012; Papp et al., 2018). AMs can be isolated

from bronchioalveolar lavage (BAL) specimens (Dodd et al., 2016);

albeit, in limited numbers. Hence, differentiation of blood

monocytes into alveolar-like macrophages facilitates ample study

of human alveolar macrophage functions (Pahari et al., 2023, 2024).

Another macrophage phenotype commonly observed in TB

granulomas consists of foamy macrophages (FMs), which result

through lipid droplets accumulation. FMs provide a niche for Mtb

dormancy and persistence and can be differentiated from

monocytes in response to mycolic acids (Peyron et al., 2008) or

hypoxia (Daniel et al., 2011). Their study has provided insights into

the interconnected macrophage and Mtb lipid metabolism

associated with Mtb dormancy and TB reactivation (Daniel et al.,

2011; Santucci et al., 2016).

Stem cells
The discovery of inducible-pluripotent stem cells (iPSC)

continues to revolutionize medical research (Shi et al., 2017;

Cerneckis et al., 2024). iPSCs are expandable, genetically editable

and can be differentiated into most organ-specific cell types, all

while retaining the genetic background of the original donor (Shi

et al., 2017). Gutierrez’ lab used CRISPR-Cas9 edited iPSC-derived

macrophages to identify a role for ATG14 (a gene involved in

autophagy) as a regulator of phagosome-lysosome fusion (Aylan

et al., 2023). This study demonstrates the utility of iPSCs to study

Mtb-macrophage interaction at single-gene level, which was

previously not possible in primary human cells. In combination

with Mtb reporter strains (detailed below), iPSC-derived

macrophages allow for high-throughput assessment of such host-

pathogen interactions, as well as assessment of drug penetration,

toxicity and efficiency. Furthermore, iPSC can be derived from

patients, opening avenues for personalized medicine and cell

therapy (Shi et al., 2017; Cerneckis et al., 2024). Finally, iPSC

(and other stem cells) make the generation of (patient-specific)

organoids possible. The implications of organoids in disease

research are discussed below.
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FIGURE 2

Overview of current human-based approaches to decipher protective immunity. Sources of human diversity, co-factors, co-morbidities, co-
infections and disease spectrum (yellow boxes and arrows). Sources of human specimens (light blue box). Human specimens obtainable from those
sources and in vitro approaches human specimens can be used for (purple box). Cutting-edge technologies and computational approaches that can
be applied to in vitro systems (pink boxes). CHIM, controlled human infection model; BAL, broncho-alveolar lavage fluid; PBMC, peripheral blood
mononuclear cell; VOCs, volatile organic compounds; ASC, adult stem cell; iPCS, inducible pluripotent stem cell; MDM, monocyte-derived
macrophage; AM, alveolar macrophages; FM, foamy macrophage; FACS, fluorescence-activated cell sorting. Generated with biorender.com.
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Dual-culture systems

Modeling the first cellular interaction with Mtb in the alveolar

space seems of particular relevance to elucidate how an infection

can be favored or cleared prior to the onset of an adaptive immune

response. A system modelling the alveolar barrier was first

developed in 1999 (Birkness et al., 1999). Human lung epithelial

type II pneumocytes were cultured with endothelial cells in a two-

chamber transwell system. The addition of macrophages allowed

the characterization of multiple scenarios of Mtb translocation

across the cellular bilayer (Bermudez et al., 2002). Interestingly, a

similar model was transposed for M. bovis infections (Lee et al.,

2020; Lee and Chambers, 2019). More advanced systems modeling

the alveolar space are discussed in the ‘complex models’ section

below. In addition, T cell/macrophage dual-culture systems were
Frontiers in Cellular and Infection Microbiology 07
notably used to highlight the poor recognition of M2-like infected

MDMs by Mtb-specific autologous T cells (Gail et al., 2023) or the

antimicrobial activity of granulysin delivered upon degranulation of

gd T cell clones onto Mtb-infected macrophages (Stenger

et al., 1998).
Multi-cellular systems

Primary cell profiling
Direct assessment of primary cells (mostly of blood origin) has

been leveraged to improve TB diagnostics, assess the impact of co-

morbidities and -infections (HIV and diabetes cohorts, helminth

co-infections) or to identify immune correlates of protection in

vaccine trials. These studies analyzed whole blood, peripheral blood
TABLE 1 Overview of human in vitro TB infection systems.

Model
(ascending
complexity)

Technical
difficulty

Cell source
Can be
donor-
specific

Applications* Reference(s)

THP-1 – Cell line NO
H-P interaction; drug-

screening (HTS)
Shah et al., 2022

MDM + PBMC YES
H-P interaction; drug-

screening (HTS)
Vogt and Nathan, 2011

AM ++ PBMC YES
H-P interaction; innate

alveolar response
Pahari et al., 2024

FM ++ PBMC YES H-P interaction; Mtb persistence
Daniel et al., 2011;
reviewed by Santucci et al., 2016

iPSC ++ PBMC, BAL YES
H-P interaction; role of specific
genes; drug-screening (HTS)

Aylan et al., 2023

Alveolar barrier ++ Cell line, PBMC (YES) Innate alveolar responses
Birkness et al., 1999;
Bermudez et al., 2002

2D granuloma models + PBMC YES
Innate and adaptive responses;
drug-screening (HTS); HDT

Puissegur et al., 2004;
Guirado et al., 2015

3D granuloma models ++(+) PBMC YES
Innate and adaptive responses;

Mtb resuscitation; HDT

Kapoor et al., 2013; Tezera et al.,
2017; Arbués et al., 2020b;
reviewed by Elkington et al., 2019

Spheroid granulomas +++ BAL, PBMC YES
Innate and adaptive
responses; HDT

Kotze et al., 2021

Miniaturized TB
spheroids

+++
THP-1/PBMC, cell
line fibroblasts

YES
Innate and adaptive
responses; HDT

Mukundan et al., 2021a

ALI-PBEC ++++ Human lung tissue YES Innate alveolar responses; HDT Barclay et al., 2023

Experimental human
lung tissue

++++
Cell line fibroblasts,
epithelial cells, PBMC

(YES)
Innate alveolar responses; HIV

co-infection; drug-screening; HDT
Hoang et al., 2012 model;
Parasa et al., 2014 Mtb application

Human bronchial
airway organoid model

+++++
Human lung
tissue (ASC)

YES Innate alveolar responses, HDT Iakobachvili et al., 2022

Human lung organoid +++++
Human pluripotent

stem cells (H9 cell line)
(YES)*

Innate alveolar responses;
drug-screening; HDT

Kim et al., 2024

Lung-on-a-chip ★★★★★
Primary murine lung

epithelial and
endothelial cells, BM

(YES)*
Innate alveolar responses; drug-

screening; HDT

Huh et al., 2010 model;
Thacker et al., 2020
Mtb application
*can be combined with MTBC diversity.
ALI-PBEC, air-liquid interface model of human primary bronchial epithelial cells; ASC, adult stem cells; HTS, high-throughput screening; HDT, host-directed therapy; PBMC, peripheral blood
mononuclear cells; H-P, host-pathogen. (YES) partially, because cell lines involved; (YES)* theoretically feasible but not yet done for Mtb.
Symbols represent technical difficulty from very easy (-) to highly demanding (+++++) and extraordinarily demanding (stars).
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mononuclear cell (PBMC), as well as BAL specimens in vitro

directly (e.g. by single-cell RNA sequencing) or following

infection or stimulation with relevant antigens (Scriba et al., 2017;

Walzl et al., 2011). In a pillar study using whole-blood

transcriptome analysis, an interferon-driven neutrophil signature

associated with active TB disease (Berry et al., 2010). Issued from

relevant clinical cohorts, such samples provided valuable insights

for disease prediction. However, the potential for mechanistic

investigation remains limited, unless combined with in vitro

models detailed below.

In vitro and ex vivo granulomas
Granulomas constitute the hallmark of human TB immune

reactions. These aggregates of immune and non-immune cells form

to physically contain Mtb, which may be cleared resulting in a

fibrotic or calcified lesion. Otherwise, Mtb may persist in a non-

replicating state or continue to replicate and eventually exploit the

expansion of the granulomatous response to leak into the airways

and spread (Ehlers and Schaible, 2012). As such, granulomas hold

potential to be tuned towards protectiveness by host-directed

interventions. The first granuloma-like structures were generated

from PPD-coated beads (Puissegur et al., 2004). Since then, several

granuloma models have been developed (Kapoor et al., 2013;

Guirado et al., 2015; Tezera et al., 2017), and previously reviewed

(Elkington et al., 2019). In vitro granuloma models have provided

insights into the capacity of LTBI over healthy controls to better

control Mtb growth (Guirado et al., 2015; Crouser et al., 2017), and

to promote Mtb dormancy or resuscitation upon exposure to TNF-

a antagonists (Kapoor et al., 2013; Arbués et al., 2020a; Tezera et al.,

2020). 3D granuloma models restore antimicrobial susceptibility to

pyrazinamide (Bielecka et al., 2017) and capture the variable impact

of Mtb genetic diversity (Arbués et al., 2025). 3D models (Kapoor

et al., 2013; Arbués et al., 2020b), unlike 2D ones (Guirado et al.,

2015), generate a hypoxic environment that specifically inducesMtb

to exhibit dormant-like features (Arbués et al., 2021). However,

matrix and electrospray 3D technologies (Tezera et al., 2017)

hamper the high-throughput-capacity of these models. In

contrast, 2D granuloma models are easier to use, which makes

them more suitable for drug screening-platforms.

Spheroid models
A spheroid model leveraged magnetic cell levitation to

generated three-dimensional spheroid granulomas from primary

human AMs infected with BCG as “innate” spheroids or with

autologous T cells to generate “adaptive” spheroids (Kotze et al.,

2021). Interestingly – and unlike the granuloma models described

above – spheroids form even in absence of infection and the

architecture is altered upon infection by containing an AM-rich

core and a cuff of T cells. A miniaturized TB spheroid model allows

formation of granuloma-like structures without addition of an

extracellular matrix from both cell lines (THP-1, Jurkat) and

primary cells (PBMCs) (Mukundan et al., 2021a, 2021). This

model may include fibroblasts and was used to study disruption

of granuloma formation following HIV co-infection.
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Alveolar interface systems
Characterizing the alveolar microenvironment and the

interaction of epithelial cells with Mtb and immune cells is crucial

to decipher host-pathogen interactions at the onset of infection. An

air-liquid interface model of human primary bronchial epithelial

cells (ALI-PBEC) was used to compare the infection of epithelial

cells across mycobacterial species (Barclay et al., 2023). These ALI-

PBECs incorporate a mixture of PBEC cells from various donors to

account for human diversity. Interestingly, this model

demonstrated that alveolar cells’ secretome attracts neutrophils,

highlighting an immune regulatory function in response to

infection. Besides, an experimental human lung tissue model of

epithelial cells and fibroblasts that produces extra-cellular matrix

(ECM) and secretes mucus, was used to study dendritic cell

function and monocyte migration, revealing that granuloma

formation was dependent on ESAT-6 secretion by mycobacteria

(Parasa et al., 2014; Hoang et al., 2012).
Complex models: from organoids to
organs-on-a-chip

While multicellular systems can account for genetic diversity

and assess interactions between various immune cells, they do not

apprehend the structural features of the lung (Kim et al., 2024).

Organoids are functional 3D in vitro replicates of human organs

that self-organize and self-renew (Clevers, 2016). They constitute

very promising platforms that can bridge between animal models

and human clinical trials (Thangam et al., 2024), thereby

contributing to reducing animal use (3R) and research costs.

They can be induced from embryonic/pluripotent (ESC), induced

pluripotent (iPSC) or organ-specific adult stem cells (ASC)

(Clevers, 2016). For lung organoids, one distinguishes alveolar,

airway and whole-lung organoids. The application of these

systems covers everything from basic research to regenerative

medicine. Importantly, organoids can be generated from healthy

and ill tissues to establish differential biomarker expression and

further our understanding of disease pathophysiology and cure

through drug screening. Regarding the latter, patient-specific ASC-

derived organoids are of particular relevance to test personalized

interventions. iPSC-derived organoids on the other hand, allow for

genetic recombination of progenitor cells prior their differentiation

and assessment of the functional contributions of the knock-in or

knock-out out genes. In recent years, organoids have gained

momentum as tools to model infectious diseases. For TB, a

human bronchial airway organoid model was used to

demonstrate the increased fitness of M. abscessus over Mtb to

invade the airway microenvironment (Iakobachvili et al., 2022).

Besides, human lung organoids (LOs) based on a human

pluripotent stem cell line allowed the assessment of long-term

replication of Mtb within THP-1 cells following LO micro-

injection (up to 31 days) and were used to validate the potential

of two promising HDT pathways in a knock-down approach (Kim

et al., 2024). Albeit based on cell lines, this model holds great
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potential to study protective responses by incorporating ASC/iPSC

as well as autologous primary human macrophages and other

immune cells of individuals suffering from or resisting TB.

The most advanced in vitro systems are organs-on-a-chip,

which are microfluidic devices allowing renewal of “body” fluids

that are being widely adopted in different fields of research to allow

for mechanistic dissection of human diseases and drug treatment

(Ingber, 2022). Lungs-on-a-chip can recapitulate the alveolar-

capillary interface, with organ-level functions such as breathing-

type movements and inflammatory responses to pathogens (Huh

et al., 2010). Until a few years ago, organoids and lungs on-a-chip

had not yet been used for TB research (Fonseca et al., 2017).

Recently, using a murine-based lung-on-a-chip, Thacker et al.

demonstrated the protective role of surfactant, an essential factor

that cannot be knocked-out in in vivo systems, in the control ofMtb

replication (Thacker et al., 2020). Their findings shed light on the

increased TB susceptibility of elderly and smokers. In combination

with a mouse in vivomodel and agent-based modelling, they further

enlightened dynamics of Mtb cording (Mishra et al., 2023). The

translational potential of human-based lungs-on-a-chip to study

human pathophysiology in TB is underlined by its recent

development and use to demonstrate the implication of

endothelial cells damage in the pathogenesis of coronavirus

infection (Thacker et al., 2021).
Advanced experimental technologies

Several cutting-edge technologies are being progressively

implemented into the various experimental systems to

mechanistically dissect their outputs (Figure 2). Advances in

single-cell RNA sequencing for TB research has been reviewed

recently (Pan et al., 2023). Moreover, high-dimensional (spatial)

mass cytometry and spectral flow-cytometry, as well as high-

throughput and live-cell microscopy are being applied to the TB

research field (Aylan et al., 2023; Silva-Miranda et al., 2015;

McCaffrey et al., 2022; Ogongo et al., 2024). These tools are now

commercialized as kits enabling standardized and reproducible

read-outs for clinical studies and allowing data concatenation and

comparison across sites (e.g. Standard Biotools’ MDIPA, BD

Rhapsody Targeted human immune gene panel). The body of

cloud-based platforms offered by companies developing these kits

is almost systematic while sequencing costs are dropping

substantially, rendering these systems more accessible.

Computational tools to analyze high-dimensional data are also

growing by the day. These tools are openly shared on web-based

platforms (GitHub, Bioconductor, …) and generously maintained

by their developers, encouraging a fruitful, collaborative

environment, promoting advances in scientific research globally.

Many come with step-wise guides or examples, making them easy to

use, even for non-computational experts.

Remarkably, an array of reporter Mtb strains has been

constructed and generously shared upon request to track bacteria

while reporting on their viability or response to immunological

stresses (Abramovitch, 2018; Aylan et al., 2023; Bryson et al., 2019;
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Sukumar et al., 2014). Fluorescent Mtb strains greatly facilitate

microscopy-based high-throughput read-outs. Furthermore,

barcoded Mtb strains were built to demonstrate that single

bacteria lead to individual granulomas in NHPs (Martin et al.,

2017; Bromley et al., 2024). Like knockout mutants, Mtb reporter

strains provided substantial insights into the host-pathogen

interaction occurring in their respective models, by delivering

complex microbiological endpoints associated to immunological

responses or environments.
In silico approaches

Beyond wet-lab systems, the computational field has delivered

algorithms and deep-learning models that can be trained with

experimental and clinical data to infer immune cell interaction

and predict drug efficacy (Linderman and Kirschner, 2015). As

such, computational models hold great potential to guide research

and tailor funding towards the most promising leads (Linderman

and Kirschner, 2015). A hybrid multi-scale model of granuloma

formation (called GranSim) integrated experimental and

computational modeling to study cytotoxic and regulatory

signaling dynamics in granulomas (Warsinske et al., 2017), as

well as to study granuloma-associated fibrosis, predicting a

potential role for macrophage-to-myofibroblast transformation

(Evans et al., 2021). A further development of this model,

HostSim, integrates multiple physiological and time scales,

tracking cellular, granuloma, organ and whole-host events (Joslyn

et al., 2022). HostSim may provide valuable predictions of

understudied lymph node granuloma dynamics (Krupinsky et al.,

2025) and even allow conducting virtual clinical trials (Michael

et al., 2024). In silico approaches seem especially promising when

integrated with multi-omics read-outs of experimental models to

reproduce an observed phenotype (Chen et al., 2023). In an elegant

approach, an agent-based model fed with data from advanced in

vitro systems was used to assess the immunological determinants

enabling better control of Mtb growth by macrophages in a

spheroid granuloma model (Kotze et al., 2021; Petrucciani

et al., 2024).
Discussion

Further considerations and future
perspectives

iPSC limitations
The opportunities awarded by the possible use of stem cells to

study infectious diseases appear endless. Nevertheless, some

limitations may likely arise, as iPSC-derived macrophage function

was notably found to differ depending on culture conditions, which

ultimately affected Mtb growth (Bussi et al., 2024). It is presumable

that organoid functions will be affected similarly and preclude usage

of unphysiological conditions to increase a translation potential of

the generated data in vivo.
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Strain variation
Likewise, and often overlooked, the selection of the infecting

strain may be consequential. Clinical and epidemiological data

indicate that the strain genetic background may influence the

nature and extent of TB disease (Peters et al., 2020). Mtb global

phylogenetic diversity contrasts the limited diversity of strains used

in TB research, which is mostly conducted on a handful of

laboratory-adapted Mtb strains (e.g. H37Ra, H37Rv, Erdman,

CDC1551, HN878) (Gagneux and Small, 2007) or related species

(e.g. M. bovis BCG, M. smegmatis, M. marinum, M. avium). While

this enables comparison of findings across laboratories, Mtb strain

variation has implications for the efficacy of TB vaccines,

diagnostics and host-directed therapeutics (Tientcheu et al.,

2017). Clinical Mtb strains can be routinely isolated and

identified from sputum samples, as well as less invasive tongue

swaps or mask samples that are being investigated to improve TB

diagnosis (Nogueira et al., 2022). Ideally, this variable will be

systematically included while advancing immunological studies

into complex cellular systems, as previously appreciated within

simpler experimental systems (Portevin et al., 2011; Reiling et al.,

2013; Wang et al., 2010; Arbués et al., 2025; Hiza et al., 2024;

Romagnoli et al., 2018).
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Co-prevalent microorganisms
Gut microbiome dysbiosis as well as co-infections, such as

helminths, are gaining recognition as potent influencers of

immune responses to vaccination and Mtb infection (Cadmus

et al., 2020; Eribo et al., 2020; Feng et al., 2025). Microbiome

interactions may be particularly relevant in further understanding

the contribution of innate-like lymphoid (ILC) and mucosa-

associated invariant T cells – two cell types tightly linked to

microbiota (Mori et al., 2021) –, to TB protective immunity.

Therein, microbiota might constitute a point of manipulating

mucosal responses towards protectiveness. An in-depth overview

of the interactions between microbiomes and tuberculosis has been

provided elsewhere (Mori et al., 2021; Namasivayam et al., 2018).

Epigenetics
Another emerging concept relates to epigenetic changes resulting

from BCG vaccination and chronic infections (such as TB), which

respectively increase non-specific protection through innate immune

training (Ziogas et al., 2025) or promote post-TB morbidity and

mortality (Abhimanyu et al., 2024; Bobak et al., 2022). Recent

findings in guinea pigs and humans indicate that Mtb infection

induces premature epigenetic aging, which could support post-
FIGURE 3

An integrative approach to decipher human protective immunity in TB. H-P, host-pathogen; HTS, high-throughput screening; MDMs, monocyte-
derived macrophages; AM, alveolar macrophages; FM, foamy macrophages; iPSC, induced pluripotent stem cells; MTBC, Mycobacterium
tuberculosis complex. Generated with biorender.com.
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disease morbidity (Bobak et al., 2022). Metabolic responses, e.g.

tricarboxylic acid (TCA) cycle (Abhimanyu et al., 2024), are

crystallizing as important drivers of these epigenetic changes.

Particularly in the elderly, epigenetic remodeling by host-directed

immunomodulation constitutes a promising therapeutic approach

(Romero-Rodrıǵuez et al., 2025). Interestingly, epigenetic changes

have been associated with resisters' monocytes in independent studies

(Zhang et al., 2021; Seshadri et al., 2017). TB research should further

investigate epigenetic changes occurring following Mtb infection, the

effect of these changes on subsequent immune responses and their

potential suitability for therapeutic intervention.

Concluding remarks

TB immunological research has to distinguish between

protective immunity in terms of (i) natural protection against

primary infection, (ii) vaccine-induced protection against

infection or disease, (iii) natural or vaccine-induced protection

against disease progression. How different samples and models

may facilitate the identification of correlates of protection for

vaccine development has been recently reviewed by Wang et al.,

2024. Advanced in vitro approaches were not featured, and we

aimed to cover this gap in the present review.

Individual models of TB immunology cannot capture all facets of

human TB pathology. However, they allow us to performmechanistic

investigations of specific factors and to evaluate the impact of human

diversity. An ultimate model would likely integrate multiple

approaches, shining light on protective immune traits from all

necessary angles (Figure 3). We posit that an iterative systems

approach is necessary to dissect the many facets of human

protective immunity in TB, where in vitro, in vivo, and in silico

approaches are gradually being integrated. Collective efforts should

extract the most of human in vitro studies by sharing and making use

of clinical samples and combining the generated data with fast-

growing computational modeling field in order to: (1) Extract

protective traits from human-based in vitro systems, aided by

computational modeling. (2) Perform mechanistic investigations in

advanced multi-cellular organoid systems that may feed predictive in

silico models to capture the spectrum of human outcomes in TB. (3)

Translate and confirm findings in vivo in animal models prior scale-

up for clinical safety and efficacy evaluation in human trials. Such an

integrative, collaborative approach may pave the way for innovative

interventions needed to reduce TB burden globally.
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