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Detection of b-lactam resistance
genes in Gram-negative bacteria
from positive blood cultures
using a microchip-based
molecular assay
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Giulia De Angelis1,2*, Gian Maria Rossolini3,4

and Brunella Posteraro1,5
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Microbiologia Clinica”, Direzione Scientifica, Fondazione Policlinico Universitario A. Gemelli Istituto di
Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
Background: Accurate detection of b-lactam resistance genes in bloodstream

infections is critical for guiding antimicrobial therapy. This study evaluates the

Alifax Gram-negative resistance (GNR) microchip assay for detecting b-lactam
resistance genes directly from positive blood cultures (PBCs) for Gram-negative

(GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and

Acinetobacter baumannii.

Methods: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested

for blaKPC, blaVIM, blaNDM, blaIMP, blaOXA-23-like, blaOXA-48-like, blaSHV-ESBL,

blaCTX-M-1/9 group, and blaCMY-2-like genes using the GNR microchip assay.

Whole-genome sequencing (WGS) served as the reference assay for simulated

samples and, selectively, for clinical samples. The bioMérieux BioFire Blood

Culture Identification 2 (BCID2) panel assay was used as a comparator for

clinical samples.

Results: The GNR microchip assay correctly identified 203 (99.5%) of 204 b-
lactam resistance genes in simulated samples. One sample tested false negative

for a blaSHV-ESBL gene but true positive for a blaKPC gene. In clinical samples,

GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in

both assays. Additionally, the GNR assay detected blaCMY-2-like (n=6), blaOXA-23-

like (n=5), and blaSHV-ESBL (n=2), which are not targeted by BCID2, all confirmed

by WGS. In two b-lactam-resistant P. aeruginosa samples but negative by the

GNR assay, WGS confirmed the absence of acquired b-lactam resistance genes,

suggesting alternative resistance mechanisms.
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Conclusion: The GNR microchip assay demonstrated high concordance and

broader b-lactam resistance gene coverage compared to BCID2, supporting its

potential role in routine diagnostics. Further validation in larger, prospective

studies is warranted.
KEYWORDS

antimicrobial resistance, b-lactamase, GNR microchip assay, Gram-negative bacteria,
molecular detection, positive blood cultures
1 Introduction
Bloodstream infections (BSIs) represent a critical category of

microbial infections where the rapid identification of causative

pathogens is essential for timely and effective clinical decision-

making (Peri et al., 2022). Accelerated diagnostic methods play a

pivotal role in enabling the prompt initiation of targeted antimicrobial

therapy (Lamy et al., 2020), particularly in patients at risk of sepsis, an

infectious syndrome associated with alarmingly high morbidity and

mortality rates (GBD 2019 Antimicrobial Resistance Collaborators,

2022). Furthermore, the increasing global prevalence of antimicrobial

resistance (AMR) in BSIs (Diekema et al., 2019; European

Antimicrobial Resistance Collaborators, 2022) underscores the

urgent need for diagnostic approaches that not only identify

pathogens but also detect key AMR markers. This is particularly

relevant for Gram-negative (GN) bacterial species, such as third-

generation cephalosporin-resistant and carbapenem-resistant

Enterobacterales (GBD 2021 Antimicrobial Resistance Collaborators,

2024; Ikhimiukor et al., 2024), where AMR significantly limits

therapeutic options and emphasizes the importance of its

early detection.

Although the clinical impact of carbapenemase production is well

established, the prevalence and significance of non-carbapenemase-

producing extended-spectrum b-lactamase (ESBL)-producing

Enterobacterales remain less defined. The Centers for Disease

Control and Prevention (CDC) reported that in 2017, there were an

estimated 197,400 cases of ESBL-producing Enterobacterales among

hospitalized patients in the United States, resulting in approximately

9,100 deaths (CDC, 2025). Additionally, a study from Finland

observed that the annual proportion of ESBL-producing E. coli

among blood isolates increased from 2.4% to 8.6% in males and

from 1.6% to 6.4% in females over a 12-year period (Ilmavirta et al.,

2023). Regarding ESBL types, Castanheira et al. (2021) noted that the

global dominance of CTX-M-type b-lactamases has largely supplanted

SHV-type ESBLs, reflecting a shift in epidemiology. However, SHV-

ESBLs are often encoded by self-transmissible plasmids that frequently

harbor resistance genes to other antibiotic classes, suggesting that their

contribution to b-lactam resistance might still be significant, especially

in specific geographical contexts (Liakopoulos et al., 2016).
02
Conventional culture-based methods remain the cornerstone of

BSI diagnosis (Lamy et al., 2020), but their inherent slowness—

requiring 24–72 hours for pathogen identification and

antimicrobial susceptibility testing (AST) (Miller et al., 2018)—

poses challenges in time-sensitive clinical settings. To address these

limitations, molecular diagnostic assays such as the BioFire Blood

Culture Identification 2 (BCID2) panel (bioMérieux, Marcy l’Étoile,

France) (Berinson et al., 2021) have been introduced to accelerate

pathogen identification and resistance gene detection directly from

positive blood cultures (PBCs) (Peker et al., 2018). These assays

provide actionable results within hours, allowing clinicians to

initiate targeted therapy earlier than culture-based methods.

However, their limitations, including high costs and restricted

coverage of detectable pathogens and AMR markers, highlight the

ongoing need for innovative solutions in molecular diagnostics.

This study reports on the evaluation of a novel molecular assay,

the Gram-negative resistance (GNR) microchip (Alifax S.r.l.,

Polverara, PD, Italy), which received the Conformité Européene

(CE)-in vitro device (IVD) certification in 2022 for the detection of

clinically relevant AMR genes in GN bacterial species from PBCs.

The assay specifically targets b-lactam resistance genes, including

those encoding ESBLs and carbapenemases, and was evaluated

using both simulated and clinical PBCs.
2 Methods

2.1 Study setting and samples

This study was conducted at the clinical microbiology laboratory

of the Fondazione Policlinico Universitario A. Gemelli IRCCS, a large

tertiary-care teaching hospital in Rome, Italy, over a one-year period

(April 2023 to March 2024). To evaluate the Alifax GNR microchip

assay, simulated (n=146) and clinical (n=106) positive blood culture

(PBC) samples for GN bacterial organisms were used. Samples were

obtained after incubation of BacT/Alert FA (aerobic) or FN

(anaerobic) blood culture (BC) bottles (bioMérieux) and

subsequent positive flagging by the BacT/Alert Virtuo BC

automated system (bioMérieux). The aerobic or anaerobic bottle

was analyzed depending on which flagged positive first.
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The study consisted of two arms, as illustrated in Figure 1:
Fron
i. Technical evaluation arm, in which simulated PBC samples

were obtained by spiking bacterial cells from isolates (one

per bottle) into whole blood according to established

procedures (Menchinelli et al., 2019). The 146 bacterial

organisms used in the simulation experiments had been

characterized through WGS for the presence of b-lactam
resistance genes prior to their inclusion in this study. A

subset of these organisms had already been described in

previous studies (David et al., 2019; Di Pilato et al., 2021,

2022; Giani et al., 2017, 2018), while others were newly

sequenced in this study. Details on the sequencing data for

all organisms are provided in Supplementary Table S1. The

selected isolates were chosen to represent a wide range of b-
lactamase-encoding genes, with the aim of covering all

targets detectable by the GNR microchip assay (with the

exception of the CTX-M-2/8 group, which was not

represented among available isolates).

ii. Clinical evaluation arm, in which clinical PBC samples were

obtained as part of routine laboratory analysis. If Gram-stain

microscopy confirmed the presence of GN bacteria and

monomicrobial growth, samples were considered eligible for

the inclusion in the study. Aliquots from samples were

collected after species identification (via MALDI-TOF mass

spectrometry; Bruker Daltonics, Bremen, Germany) (Fiori

et al., 2016) and AST (via Vitek 2 system, bioMérieux) (De

Angelis et al., 2019). Samples were included in the study based

on phenotypic resistance criteria to maximize the detection of

b-lactam resistance genes targeted by the GNR microchip

assay. Specifically, GN bacterial organisms were selected if
tiers in Cellular and Infection Microbiology 03
their minimum inhibitory concentration (MIC) values for at

least one of the third-generation cephalosporins (cefotaxime

or ceftazidime) or one of the carbapenems (imipenem or

meropenem), as determined by routine Vitek 2 AST results,

were above the EUCAST epidemiological cut-off values

(ECOFFs) (EUCAST, 2025a). For bacterial species lacking

defined ECOFFs, EUCAST resistant breakpoints (EUCAST,

2025b) were used instead. The selected samples were directly

analyzed using the already mentioned BioFire BCID2 panel

assay, which detects bacterial species and resistance genes,

including those encoding carbapenemases (blaIMP, blaKPC,

blaOXA-48-like, blaNDM, blaVIM), ESBLs (blaCTX-M), and the

colistin resistance protein (mcr-1). Only results for the six b-
lactam resistance genes were considered in this study.
Aliquots from each PBC bottle were directly analyzed using the

GNR microchip assay (described below) or, in cases as specified

below, plated on MacConkey and 5% sheep blood tryptic soy agar

media (bioMérieux). Overnight-grown isolates were subsequently

analyzed via the WGS assay.
2.2 GNR microchip assay

The GNR microchip contains all the reagents required for

multiplex real-time PCR using the molecular mouse (MM)

instrument (Alifax) for qualitative DNA target detection (Alifax,

2024). These targets encompass 13 AMR markers specific to GN

bacteria, including blaKPC, blaVIM, blaNDM, blaIMP, blaOXA-23-like,

blaOXA-48-like, blaSHV, blaSHV-ESBL, blaCTX-M-1/9 group, blaCTX-M-

2/8 group, blaCMY-2-like,mcr-1, andmcr-2. For this study,mcr-1 and
FIGURE 1

Study design overview. Two sets of positive blood cultures for Gram-negative (GN) bacterial organisms were analyzed to detect b-lactam resistance
genes using the GNR microchip assay. In the first set, detection results were compared with whole-genome sequencing (WGS) analysis. In the
second set, detection results were compared with the BioFire Blood Culture Identification 2 (BCID2) panel assay and, in specific cases, with
WGS analysis.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1597700
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ivagnes et al. 10.3389/fcimb.2025.1597700
mcr-2 were excluded as they are not associated with b-lactam
resistance, while blaSHV was excluded despite its relevance to b-
lactam resistance, due to its high prevalence across multiple

microbial species and limited clinical utility in this context. The

GNR microchip assay specifically targets blaSHV-ESBL, as variants

with this phenotype have greater clinical relevance compared to

non-ESBL variants (Castanheira et al., 2021).

In this study, a 200-mL PBC sample was initially centrifuged at

500×g for 1 minute. The resulting supernatant was transferred into

a clean tube and centrifuged at 5000×g for 1 minute. The

supernatant was then discarded, and the pellet was resuspended

in 1 mL of H2O. A 100-mL aliquot of this suspension was mixed

with 900-mL of loading solution, and the mixture was thoroughly

vortexed. Following the manufacturer’s instructions, a 5-mL volume

of the prepared solution was loaded onto the GNR cartridge. At the

end of the PCR, the MM instrument software automatically

captured and analyzed the fluorescence signals from each well

where the PCR reactions occurred. The software generated a

graphical output, with positive results indicated by cycle threshold

values, defined as the number of cycles required for the fluorescent

signal to exceed the threshold, confirming positive detection.
2.3 Whole-genome sequencing assay

GN bacterial organisms used for simulated PBC samples had

been characterized by WGS before their inclusion in this study,

whereas those from clinical PBC samples with discordant results

between the GNR microchip assay and the BCID2 panel assay, or

with b-lactam-resistant phenotypes but negative GNR microchip

assay detection, underwent further WGS analysis. DNA was

extracted using the DANAGENE Microbial DNA kit (Danagen-

Bioted, Barcelona, Spain), and its concentration and purity were

assessed with a NanoDrop One spectrophotometer (Thermo Fisher,

Waltham, MA, USA).

Short-read genomic data were generated by preparing DNA

libraries with the Illumina DNA Prep kit (Illumina, San Diego, CA,

USA) and sequencing them on an Illumina MiSeq DX platform

according to the manufacturer’s protocols. Details of the WGS

analysis pipeline, including library preparation, sequencing, and

bioinformatic workflows, have been described previously (Posteraro

et al., 2024). AMRmarkers, including b-lactam resistance genes and

point mutations, were identified using the AMRFinderPlus

v.3.11.18 (https://github.com/ncbi/amr) and ABRicate v.1.0.1

(https://github.com/tseemann/abricate) tools.

Accession numbers for the sequencing data of all GN bacterial

isolates are provided in Supplementary Table S1.
2.4 Data analysis

The GNR microchip assay was evaluated by comparing its

results to those obtained with the WGS assay for simulated

samples and, for clinical samples, to those from the BCID2 panel

assay. Results were expressed as the proportion of b-lactam
Frontiers in Cellular and Infection Microbiology 04
resistance genes correctly detected (positive by both assays) or not

detected (negative by both assays). Discordant results were further

analyzed by WGS. Statistical analyses were performed using

GraphPad Prism (GraphPad Software, San Diego, CA, USA).
3 Results

We studied GN bacterial organisms from simulated (n=146)

and clinical (n=106) PBC samples, corresponding to the technical

and clinical evaluations of the GNR microchip assay (Figure 1). All

organisms exhibited phenotypic antimicrobial profiles suggestive of

acquired ESBL/AmpC and/or carbapenemase-encoding genes,

based on MIC values exceeding the EUCAST-established ECOFFs

or resistant breakpoints for key b-lactams, including third-

generation cephalosporins (cefotaxime and ceftazidime) and

carbapenems (imipenem and meropenem).

As shown in Table 1, using WGS as the reference assay, the

GNR microchip assay correctly detected at least one b-lactam
resistance gene in all 146 (100%) organisms from simulated

samples. This corresponded to a total of 203 b-lactam resistance

genes, including 84 encoding ESBL/AmpC-type enzymes (39 CMY-

2-like, 38 CTX-M-1/9 group, and 7 SHV-ESBL) and 119 encoding

carbapenemase-type enzymes (37 KPC, 27 NDM, 16 VIM, 16 OXA-

48-like, 13 OXA-23-like, and 10 IMP). Among these, 49 organisms

(47 Enterobacterales and 2 Acinetobacter baumannii) carried more

than one b-lactam resistance gene. Notably, one K. pneumoniae

isolate was positive for an SHV-ESBL gene (blaSHV-31) by WGS but

was also positive for a KPC-encoding gene, which was correctly

detected by the GNR microchip assay.

As shown in Table 2, the GNR microchip assay detected at least

one b-lactam resistance gene in 104 (98.1%) of 106 organisms from

clinical samples. Excluding 13 genes not detectable by the BCID2

panel assay (6 encoding CMY-2-like, 2 encoding SHV-ESBL, and 5

encoding OXA-23-like; all identified byWGS), this corresponded to

a total of 113 b-lactam resistance genes correctly detected by the

GNR microchip assay. These genes included 65 encoding ESBL-

type enzymes (all CTX-M-1/9 group) and 48 encoding

carbapenemase-type enzymes (32 KPC, 7 VIM, 6 NDM, and 3

OXA-48-like). Additionally, two organisms (P. aeruginosa, 1.9%)

tested negative for ESBL/AmpC- or carbapenemase-encoding genes

by the GNR microchip assay. WGS analysis confirmed the absence

of acquired b-lactam resistance genes in these isolates, suggesting

that alternative mechanisms, such as increased expression of efflux

pumps, may explain their b-lactam-resistant phenotype. Six

organisms (2 Escherichia coli, 1 Klebsiella pneumoniae, 1 A.

baumannii, 1 Enterobacter cloacae, and 1 Citrobacter freundii)

carried more than one b-lactam resistance gene. These genes were

concordantly detected by both the GNR microchip assay and the

WGS reference assay and, as expected, only partially by the BCID2

panel assay. Details on these genes are provided as Supplementary

Material (Supplementary Table S2).

Table 3 provides an overview of b-lactam resistance gene

variants identified in this study by WGS analysis. Among

organisms from simulated PBC samples, the most frequently
frontiersin.org
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detected b-lactamase types were CMY-2-like (n=39), CTX-M-1/9

group (n=38), KPC (n=37), and NDM (n=27), collectively

accounting for 141 (69.1%) of the 204 b-lactamase-encoding

genes identified. The predominant variants within each b-
lactamase type were CMY-16 (21/39), CTX-M-15 (35/38), KPC-3

(25/37), and NDM-1 (24/27). For CTX-M variants (Naas et al.,

2017), CTX-M-15 was the most prevalent and belongs to the CTX-

M-1 group, which also includes CTX-M-32 (one organism) and
Frontiers in Cellular and Infection Microbiology 05
CTX-M-55 (one organism), while CTX-M-27 was the only

representative of the CTX-M-9 group (one organism). For KPC

variants (Naas et al., 2017), KPC-3 was the most frequent (25/37)

and, along with KPC-2 (three organisms), belongs to the

carbapenemase class. In contrast, KPC-31 (four organisms), KPC-

66 (two organisms), KPC-49 (one organism), and KPC-50 (one

organism) are classified as inhibitor-resistant (IR) extended-

spectrum b-lactamases (ESBLs), while KPC-29 (one organism) is
TABLE 2 Results of GNR microchip assay for clinical GN-PBC samples as compared to the BCID2 panel assay.

Species (no. of
organisms tested)

No. of genes detected by the GNR assay (no. of genes detected by the BCID2 assay)a

blaCMY-

2-like
blaCTX-M-1/

9-group
blaKPC blaIMP blaNDM

blaOXA-

23-like
blaOXA-

48-like
blaSHV-
ESBL

blaVIM
Total
genes

K. pneumoniae (48) 2 (–) 23 (23) 31 (31) 0 (0) 4 (4) 0 (–) 3 (3) 0 (–) 1 (1) 64 (62)

E. coli (40) 3 (–) 38 (38) 1 (1) 0 (0) 0 (0) 0 (–) 0 (0) 0 (–) 0 (0) 42 (39)

A. baumannii (5) 0 (–) 0 (0) 0 (0) 0 (0) 1 (1) 5 (–) 0 (0) 0 (–) 0 (0) 6 (1)

P. aeruginosa (4) 0 (–) 0 (0) 0 (0) 0 (0) 0 (0) 0 (–) 0 (0) 0 (–) 4 (4) 4 (4)

P. mirabilis (3) 0 (–) 3 (3) 0 (0) 0 (0) 0 (0) 0 (–) 0 (0) 0 (–) 0 (0) 3 (3)

E. cloacae (2) 0 (–) 1 (1) 0 (0) 0 (0) 0 (0) 0 (–) 0 (0) 2 (–) 1 (1) 4 (2)

C. freundii (1) 1 (–) 0 (0) 0 (0) 0 (0) 0 (0) 0 (–) 0 (0) 0 (–) 1 (1) 2 (1)

P. stuartii (1) 0 (–) 0 (0) 0 (0) 0 (0) 1 (1) 0 (–) 0 (0) 0 (–) 0 (0) 1 (1)

Total species (104) 6 (–) 65 (65) 32 (32) 0 (0) 6 (6) 5 (–) 3 (3) 2 (–) 7 (7) 126 (113)
fro
GNR, Gram-negative resistance; GN-PBC, Gram-negative-positive blood culture; BCID2, Blood Culture Identification 2. The symbol “–”indicates data that are either unavailable or not
applicable, specifically for b-lactam resistance genes, such as blaCMY-2-like, blaOXA-23-like, or blaSHV-ESBL, which are not detectable by the bioMérieux BioFire Blood Culture Identification 2
(BCID2) panel assay. Excluding these cases, the concordance between the GNR assay and BCID2 panel across all samples was 100% (113/113). In these samples (all growing b-lactam-resistant
GN organisms), whole-genome sequencing (WGS) identified one or more b-lactam-resistance genes not included in the BCID2 panel; details on the gene variants are provided in Table 3.
Additionally, the set included 2 b-lactam-resistant P. aeruginosa organisms in which the GNR assay did not detect any b-lactam resistance genes. For both organisms, WGS confirmed the absence
of acquired b-lactam resistance genes, supporting the GNR assay results.
TABLE 1 Results of GNR microchip assay for simulated GN-PBC samples as compared to the WGS reference assay.

Species (no. of
organisms tested)

No. of genes detected by the GNR assay (no. of genes detected by the WGS assay)a

blaCMY-

2-like
blaCTX-M-1/

9-group
blaKPC blaIMP blaNDM

blaOXA-

23-like
blaOXA-

48-like
blaSHV-
ESBL

blaVIM
Total
genes

K. pneumoniae (70) 11 (11) 31 (31) 35 (35) 0 (0) 18 (18) 0 (0) 11 (11) 2 (3)b 3 (3) 111 (112)

E. coli (28) 11 (11) 7 (7) 0 (0) 0 (0) 5 (5) 0 (0) 5 (5) 4 (4) 5 (5) 37 (37)

P. aeruginosa (14) 1 (1) 0 (0) 0 (0) 10 (10) 1 (1) 0 (0) 0 (0) 0 (0) 2 (2) 14 (14)

A. baumannii (13) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2) 13 (13) 0 (0) 0 (0) 0 (0) 15 (15)

P. mirabilis (12) 12 (12) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1) 14 (14)

C. freundii (3) 2 (2) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2) 5 (5)

E. cloacae (2) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 2 (2)

C. koseri (1) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1)

P. monteilii (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1)

P. stuartii (1) 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2)

R. ornithinolytica (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 1 (1)

Total species (146) 39 (39) 38 (38) 37 (37) 10 (10) 27 (27) 13 (13) 16 (16) 7 (8) 16 (16) 203 (204)
GNR, Gram-negative resistance; GN-PBC, Gram-negative-positive blood culture; WGS, whole-genome sequencing. a Details on the b-lactam resistance gene variants identified by WGS analysis
are provided in Table 3. b This was the only false-negative result observed with the Alifax GNR microchip assay, involving a GN-PBC sample that grew an organism carrying a blaSHV-31 ESBL
gene identified by WGS analysis. Therefore, the concordance between the GNR assay and WGS for the total samples was 99.5% (203/204).
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classified as an IR carbapenemase, based on the established b-
lactamase classification system (Naas et al., 2017).
4 Discussion

This study provides a comprehensive evaluation of the Alifax

GNR microchip assay for the detection of b-lactam resistance genes

directly from PBC samples. To our knowledge, this is the first study
Frontiers in Cellular and Infection Microbiology 06
assessing its performance on a large set of PBC samples, including

both simulated samples—derived from WGS-characterized isolates

—and clinical samples. The findings demonstrate that the GNR

assay reliably detects a wide spectrum of b-lactam resistance genes,

with a broader target range compared to the BCID2 panel assay,

which served as a comparator for clinical samples.

In simulated samples, the GNR assay detected all but one of the

b-lactam resistance genes identified by WGS (99.5% concordance).

The single discordant case involved an SHV-ESBL gene (blaSHV-31)
TABLE 3 Variants of b-lactamases encoded by the resistance genes identified using whole-genome sequencing analysis.a.

Simulated positive blood culture samples

CMY-
2-like

n

CTX-
M-1/
9
group

n IMP n KPC n NDM n
OXA-
23-
like

n
OXA-
48-
like

n
SHV-
ESBL

n VIM n

CMY-16 21 CTX-
M-15

35 IMP-
13

9 KPC-
3

25 NDM-
1

24 OXA-
23

13 OXA-
48

9 SHV-
12

8 VIM-
1

13

CMY-2 5 CTX-
M-27

1 IMP-
19

1 KPC-
31

4 NDM-
5

3 OXA-
181

6 SHV-
31

1 VIM-
2

2

CMY-42 5 CTX-
M-32

1 KPC-
2

3 OXA-
244

1

CMY-6 4 CTX-
M-55

1 KPC-
66

2

CMY-4 1 KPC-
29

1

CMY-65 1 KPC-
49

1

CMY-99 1 KPC-
50

1

CMY-181 1

Total 39 Total 38 Total 10 Total 37 Total 27 Total 13 Total 16 Total 9 Total 15

Clinical positive blood culture samplesb

CMY-
2-like

n

CTX-
M-1/
9
group

n IMP n KPC n NDM n
OXA-
23-
like

n
OXA-
48-
like

n
SHV-
ESBL

n VIM n

CMY-16 2 CTX-
M-15

3 KPC-
3

1 NDM-
1

1 OXA-
23

5 SHV-
12

2 VIM-
1

3

CMY-2 1 CTX-
M-3

1

CMY-4 1

CMY-147 1

CMY-150 1

Total 6 Total 4 Total 1 Total 1 Total 5 Total 2 Total 3
fro
ntiersin
aThe b-lactamases are listed according to the designation of their respective targets included in the Alifax Gram-negative resistance (GNR) microchip assay evaluated in this study. Notably, the
CTX-M-1/9 group comprises two distinct subgroups: CTX-M-1 (including CTX-M-15, CTX-M-32, CTX-M-55, and CTX-M-3) and CTX-M-9 (including CTX-M-27). Similarly, the CTX-M-2/8
group (not listed here) consists of two subgroups: CTX-M-2 and CTX-M-8/25. Among the KPC variants detected, KPC-3 and KPC-2 are classified as carbapenemases, whereas KPC-31, KPC-66,
KPC-49, and KPC-50 are classified as inhibitor-resistant (IR) extended-spectrum b-lactamases. KPC-29 is classified as an IR carbapenemase.
bWhole-genome sequencing (WGS) analysis was initially planned for three targets (blaCMY-2-like, blaOXA-23-like, and blaSHV-ESBL), which are not included in the bioMérieux BioFire Blood
Culture Identification 2 (BCID2) panel assay. The BCID2 assay served as a comparator for the Alifax Gram-negative resistance (GNR) microchip assay for these samples. Additionally, WGS
analysis enabled the identification of gene variants for targets (blaCTX-M, blaKPC, blaNDM, and blaVIM) also included in the BCID2 panel assay, particularly in samples where the GNR microchip
assay detected multiple genes. These results encompass both targets covered by the BCID2 assay and those exclusive to the GNR microchip assay. Consequently, the total results for some targets
presented here do not match the totals shown in Table 2 (see text for details).
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that was not detected by the GNR assay, though a coexisting KPC

gene was correctly identified. In clinical samples, 98.1% of

organisms carried at least one b-lactam resistance gene detected

by the GNR assay, and for genes targeted by both assays, results

were fully concordant with those of the BCID2 assay. WGS analysis

confirmed 13 additional b-lactam resistance genes not included in

BCID2, further supporting the broader detection capability of the

GNR assay.

The inclusion of blaCMY-2-like and blaOXA-23-like, which are

absent from the BCID2 assay, enhances the GNR assay’s diagnostic

utility. CMY-2 is the most common plasmid-mediated AmpC b-
lactamase in Enterobacterales (Pires et al., 2015), while OXA-23 is a

key carbapenemase in A. baumannii (Koirala et al., 2020),

highlighting the clinical relevance of these targets. However, the

GNR assay does not include some b-lactam resistance genes

relevant for Acinetobacter species such as OXA-58 and OXA-24/

40 (Evans and Amyes, 2014), which could further enhance

its coverage.

WGS analysis in simulated samples provided insights into the

distribution of b-lactamase variants, emphasizing the relevance of

distinguishing functionally different groups. The classification of KPC

enzymes, for instance, is increasingly recognized as clinically

significant (Ding et al., 2023). While KPC-3 and KPC-2 function as

carbapenemases, other variants such as those found in this study

(KPC-31, KPC-66, KPC-49, and KPC-50) exhibit IR-ESBL activity,

whereas KPC-29 is classified as an IR-carbapenemase. Notably, KPC-

31 and KPC-66 have been linked to resistance to ceftazidime-

avibactam (CZA) (Ding et al., 2023), underscoring the need for

precise differentiation of b-lactamase variants to inform

antimicrobial therapy. Similarly, while the GNR microchip assay

effectively detects CTX-M-producing Enterobacterales, its grouping

of CTX-M targets into CTX-M-1/9 (and CTX-M-2/8) does not fully

account for the clinically relevant distinction between CTX-M-1 and

CTX-M-9 subgroups. This differentiation is particularly important

given that certain CTX-M variants have been associated with distinct

epidemiological trends and b-lactam resistance profiles (Castanheira

et al., 2021; Bush and Bradford, 2020). A more refined classification of

CTX-M and KPC subtypes in molecular assays could improve the

clinical utility of b-lactam resistance detection, enhancing treatment

decisions and antimicrobial stewardship efforts.

While this study provides strong technical evaluation of the

GNR microchip assay, several limitations should be acknowledged.

First, the study design did not include a consecutive clinical sample

set but instead enriched for b-lactam-resistant organisms based on

phenotypic criteria, limiting the generalizability of findings to

routine clinical workflows. Second, WGS was not performed for

all clinical PBC samples, leaving some resistance gene profiles

incompletely characterized. Third, the study does not assess the

potential clinical impact of the assay. Rapid molecular assays,

including the GNR microchip assay, are most valuable when they

facilitate early targeted therapy adjustments (Mauri et al., 2024),
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particularly in BSIs where timely intervention is crucial (World

Health Organization, 2025). Evaluating whether the assay enables

faster clinical decisions, reduces time to appropriate therapy, or

improves outcomes would be critical to justify its integration into

diagnostic workflows.

Fourth, unlike BCID2, the GNR microchip assay requires an

additional Gram stain step to select the appropriate cartridge, which

may delay processing and reduce suitability in time-critical settings.

Fifth, although the MM system also provides species identification

(ID) when combined with the GNID cartridge—designed to detect 15

key GN pathogens including E. coli, K. pneumoniae, Proteus spp., P.

aeruginosa, A. baumannii, Stenotrophomonas maltophilia—species-

level ID data were not reported. Nonetheless, all isolates, including K.

oxytoca and P. aeruginosa, were correctly identified, contrasting with

prior reports of occasional failures in polymicrobial samples (Mauri

et al., 2024).

Sixth, we did not report results for an additional 46 samples

with b-lactam-susceptible organisms, in which the GNR microchip

assay did not detect any b-lactam resistance genes. This is because

no WGS analysis was performed on these isolates that would have

been necessary to confirm the GNR microchip assay-negative

results. Seventh, the assay’s performance in polymicrobial samples

was not evaluated, and its ability to resolve mixed resistance profiles

(e.g., E. coli + K. pneumoniae) remains to be determined. Eighth,

while potential interference from sample-related inhibitors (e.g.,

heparin, hemolysis) was not assessed in our simulated PBCs,

internal validation by the manufacturer did not reveal significant

effects from common inhibitors.

Ninth, although no formal cost-effectiveness analysis was

conducted, the combined cost of the GNR and GNID cartridges is

below €100, which is lower than the BCID2 panel assay (>€140). In

settings where MALDI-TOF MS-based identification is already

implemented, pairing it with the GNR microchip assay may offer a

focused and cost-effective diagnostic alternative for GN-PBCs.

However, this approach may require specific workflow adaptations

and staff training. Tenth, while the GNRmicrochip assay received CE-

IVD certification in 2022, the process of certification under the new

European IVDR framework is ongoing, and the assay is not currently

FDA-cleared. In contrast, the BCID2 panel is FDA-cleared and widely

adopted in clinical practice. These regulatory differences may influence

the assay’s adoption in different healthcare systems.

Finally, the GNR microchip assay focuses specifically on b-
lactam resistance and does not detect resistance markers for other

antibiotic classes. Future versions could benefit from expanded gene

targets, particularly for non-fermenting GN bacteria (Huang et al.,

2024), and the inclusion of point mutations affecting b-lactamase

activity (Benhadid-Brahmi et al., 2025). Integration with

phenotypic AST systems—such as the Vitek Reveal rapid AST by

bioMérieux (Menchinelli et al., 2024)—could enhance clinical

utility by offering a broader phenotypic-genotypic resistance

overview (Cortes-Lara et al., 2025). Several of these aspects
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should be carefully evaluated before adopting the assay in specific

diagnostic scenarios.
5 Conclusion

In conclusion, the GNR microchip assay represents a reliable

molecular tool for detecting b-lactam resistance genes from PBC

samples, with potential applications in routine diagnostics. Its expanded

gene coverage compared to existing panels is amajor strength, particularly

for AMR determinants not targeted by other assays. However, further

validation in larger, prospective clinical cohorts is warranted to establish

its full diagnostic value. Future studies should also assess hands-on time,

turnaround time, and real-world implementation, including clinical

impact and antimicrobial stewardship outcomes.
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