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Background: The rigorous non-pharmacological interventions (NPIs) during
SARS-CoV-2 outbreak posed a deep impact on the etiology and epidemiology
of acute respiratory tract infections (ARTIs). We aimed to elucidate the changing
patterns during and post NPIs of SARS-CoV-2 in Shenzhen, China.

Methods: A total of 4610 outpatients with ARTIs from the fever clinic of our
hospital were enrolled between June 2022 and May 2024, and nasopharyngeal
swabs were collected and tested for twenty-five common respiratory pathogens
using well-established RT-qPCR. The two year's period was further divided into
three stages: Stage 1 with strict NPIs, Stage 2 with outbreak of SARS-CoV-2 and
Stage 3 with regular epidemic of SARS-CoV-2. Demographic and clinical data
were also collected and analyzed.

Results: Overall, 57.05% (2630/4610) of patients were positive for at least one of
tested respiratory pathogens, with top five pathogens of IAV (17.09%),
H.influenzae (13.97%), SARS-CoV-2 (10.11%), 1BV (7.38%) and HAdV (5.66%).
Except for SARS-CoV-2, IAV and H.influenzae dominated the three stages,
while the other pathogens varied. Meanwhile, positivity rates of most viral
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pathogens have increased post NPIs. Moreover, HAdV and H.influenzae
infections were more frequently found in males. and higher overall rates of
viral and bacterial infections were found in both children and the elderly. Notably,
the results indicate a higher positivity rate in summer and autumn, with the lowest
rate observed in winter. The overall co-infection rate was 24.62%, and the most
frequent co-infections were between IAV, SARS-CoV-2, HAdV and H.influenzae.
Conclusions: In conclusion, the etiology and epidemiological patterns of ARTIs
during and post NPIs of SARS-CoV-2 in Shenzhen have changed overtime, and
sex, age and seasonal patterns were also found. The findings could provide useful
information for the public health measures and the clinical management of
respiratory infections.
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Introduction

Acute respiratory tract infections (ARTIs) are caused by the
invasion of the respiratory system by pathogens, including viruses,
bacteria, and atypical microorganisms (Claassen-Weitz et al, 2021;
Wang et al,, 2021). ARTIs pose a serious global health issue with high
incidence, rapid transmission, and mortality, resulting in a considerable
disease burden annually (GBD 2019 Diseases and Injuries
Collaborators, 2020; Li et al., 2021). According to the World Health
Organization (WHO), respiratory infections represent the fourth
leading cause of mortality, with nearly 3 million deaths globally in
2016 (Mortality and global health estimates). Particularly in low and
middle-income countries, ARTI contributes to a greater disease
burden. The outbreak of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) in 2019 resulted in millions of deaths
significantly disrupting societies, and devastated economies,
underscored the need for increased attention to ARTIs (COVID-19
cases | WHO COVID-19 dashboard; Li et al., 2020).

The implementation of non-pharmaceutical interventions
(NPIs), such as wearing masks and social distancing measures, to
reduce the transmission of SARS-CoV-2 has resulted in notable shifts
in the spectrum and epidemiology of respiratory infection pathogens
(Chow et al., 2023; Park et al, 2023). The typical seasonal cyclic
patterns of common respiratory infections have been substantially
disrupted under the influence of the pandemic (Chow et al., 2023;
Wei et al,, 2024). For example, the activity of influenza Virus (IV) and
respiratory syncytial virus (RSV) remained remarkably lower during
the usual circulating season in multiple countries (Adlhoch et al,
2021; van Summeren et al., 2021; Chow et al., 2023; Zhao et al., 2025).
The overall number of twelve notifiable infectious diseases and five
non-infectious respiratory diseases in Pakistan declined by 52.3% in
2020 (Rana et al, 2021). A total of 514,341 cases of 39 types of
notifiable infectious diseases (NIDs) were reported in Guangdong
during the emergency response period in 2020, which decreased by
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50.7% compared with the synchronous period during 2015-2019
(Xiao et al, 2021). Following the cessation of NPIs, there was a
notable shift in the ARTTs pathogen profile, with an increase in the
detection of pathogens such as respiratory syncytial virus (RSV),
influenza virus (IFV), human adenovirus (HAdV), and Mycoplasma
pneumoniae (Wei et al., 2024). As indicated in the January 2022
weekly sentinel surveillance report from New South Wales, Australia,
all included respiratory viruses exhibited substantially reduced
activity in 2020 compared to the 2015-2019 average, with
rhinovirus (RhV) and HAdV showing the least suppression, and
RSV remaining suppressed until an off-season resurgence in
September 2020. In contrast, parainfluenza virus (PIV) and
metapneumovirus (MPV) displayed limited circulation until mid-
2021, while IFV circulation persisted at very low levels through the
end of 2021 (Pneumonia Etiology Research for Child Health
(PERCH), 2021). In America, during the 2020-2021 influenza
season, the number of cases plummeted to an all-time low.
According to data from the Centers for Disease Control and
Prevention (CDC), the outpatient visit rate for influenza-like illness
(ILI) was only 0.8%, which is a 94% decrease compared to the average
rate during the same period over the previous five years. Following
the relaxation of NPIs in spring 2022, however, the prevalence of the
influenza A (H3N2) virus rebounded markedly. Seattle surveillance
data revealed that the detection rate increased from 0.35% during the
lockdown period to 1.15% (2021-2022 season | Influenza (Flu) |
CDG; Zhao et al,, 2025). Similar asynchronous resurgence was also
noted in other countries with varied timing and stridency of NPIs
(Kuitunen et al,, 2022; Li et al., 2022). Although studies have set out to
elucidate these changes (Feng et al., 2014; Li et al., 2021; Snoeck et al,,
2021), existing studies have been limited by either a small number of
detected pathogens or targeted groups of participants. Moreover,
most descriptions have been principally based on cross-sectional
studies without longitudinal surveys and analyses which introduced
bias from location, climate and demographics.
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Shenzhen, one of China’s most important port cities close to Hong
Kong (Figure 1A), faces greater risks of infectious disease importation
due to its unique geographical location, population structure, and
economic activities. This leads to notable regional characteristics in the
respiratory pathogen spectrum which may deeply affect other regions.
In this study, we conducted an in-depth longitudinal investigation into
the etiology and epidemiological patterns of ARTIs during and post
NPIs of SARS-CoV-2 in Shenzhen, China, based on a two years’
prospective cohort study of all ages.

Materials and methods
Sample collection

This study focused on patients presenting with febrile respiratory
symptoms and included those who sought treatment at the Fever

10.3389/fcimb.2025.1599536

Clinic of Shenzhen Third People’s Hospital from June 2022 to May
2024 (Figure 1B). The inclusion criteria were based on the presence of
clinical symptoms including fever (axillary temperature >37.3 °C),
cough, phlegm, nasal congestion, sneezing, runny nose, shortness of
breath, difficulty breathing, throat discomfort, dry or sore throat,
chest pain, muscle aches, and abnormal breath sounds upon
auscultation (e.g., moist rales, dry rales, wheezing, and dullness).
All enrolled patients diagnosed with ARTIs provided informed
consent, which was signed either by the patients themselves or
their family members. Basic patients information (including sex,
age and symptoms) and nasopharyngeal swabs were collected. The
enrolled patients and collected samples have been divided into three
stages for further analyses: Stage 1: Jun to Nov 2022 with NPIs; Stage
2: December 2022 to Jun 2023 with two outbreaks of SARS-CoV-2
after the deregulation of the NPIs; Stage 3: Jul 2023 to May 2024 with
regular epidemic of SARS-CoV-2 (Details in the

Supplementary Information).
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FIGURE 1

Design of the study. (A) The location of Shenzhen, subprovincial city in Guangdong, special economic zone close to Hong Kong and Macao.

(B) Flow chart of patient recruitment and disposition.
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Sample management and laboratory
testing

The collected nasopharyngeal swabs were subjected for nucleic
acid extraction and the detection of common respiratory
pathogens within 72 hours. The detected pathogens include 16
viruses (SARS-CoV-2, influenza A virus (IAV), influenza B virus
(IBV), RhV, RSV, AdV, human bocavirus (HBoV), human
metapneumovirus (HMPV), human parainfluenza virus 1-4
(HPIV-1-4), seasonal coronaviruses (HCoV-229E, HCoV-OC43,
HCoV-NL63, HCoV-HKU1), 6 bacteria (Haemophilus influenzae,
Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Moraxella catarrhalis),
Legionella pneumophila, Mycoplasma pneumoniae and
Chlamydia pneumoniae using multiplex quantitative real time
polymerase chain reaction (RT-qPCR) (Details in the

Supplementary Information).

Statistical analysis

The data were analyzed using SPSS Statistics 26.0, R 4.3.3 and
CNSknowall (https://www.cnsknowall.com). The chi-square test or
two-tailed Fisher’s exact test and false discovery rate (FDR)
correction(Benjamini-Hochberg) were used for group
comparisons. The significance level was set at o = 0.05, with P <
0.05 indicating a statistically significant difference. And we
performed an interrupted time-series analysis to evaluate the
impact of NPIs. Bacteria, Legionella pneumophila, M.pneumoniae
and C.pneumoniae will be analyzed together within the
bacterial group.

Results
Baseline characteristics of the cohort

A total of 4,659 febrile patients were initially included, among
whom 49 patients were excluded due to incomplete data recording
or sample quality issues (Figure 1B). Consequently, the final
analysis encompassed a total of 4610 patients, of which 2371 were
male (51.43%) and 2239 were female (48.57%). The median age was
28 years old. Among the patients, there were 1203 individuals with
<18 years of age (children group, 26.10%), 3,241 individuals with
18-59 years of age (adult group, 70.30%), and 166 individuals with
> 60 years of age (elderly group, 3.60%). As to the time-points of
enrollment, 546 (11.84%), 745 (16.16%) and 3319 (72.00%)
participants were from Stage 1, 2 and 3, respectively. The average
time from symptoms onset to seeking medical attention was 2 days
(Supplementary Figure 1A). Fever was found in 81.77% of the
enrolled patients with 19.15% participants presenting with high
fever (= 39.0 °C), and significantly higher proportion of fever and
high fever were found in viral infections and mixed infections than
in bacterial infections (P < 0.001). The main symptoms reported
included cough (76.83%), runny nose (48.59%), muscle pain
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(51.69%), and sore throat (50.02%). Nasal congestion, runny nose,
dizziness, headache, sore throat, chills fatigue and muscle ache were
higher in viral infections than in bacterial infections (P < 0.05),
while on the contrary for the abdominal pain and diarrhea
(Supplementary Figure 1B). Notably, the children group showed a
higher proportion fever, while higher incidences of other symptoms
such as cough, nasal congestion and muscle aches and pains were
found in the adult and elderly groups (Supplementary
Figures 1C, D).

Overall etiology and epidemiology of the
detected respiratory pathogens

Totally, 57.05% (2630/4610) of the samples were tested positive
for at least one pathogen, with 32.04% (1477/4610) and 10.95%
(505/4610) for the single infection of virus and bacteria,
respectively. Moreover, co-infection between viruses, co-infection
between bacteria, and co-infection between virus and bacteria were
found in 1.45% (67/4610), 1.78% (82/4610) and 10.82% (499/4610)
samples, respectively (Figure 2A). Positivity rates of bacteria
remained relatively stable around 20%, while the positivity rate of
virus fluctuated significantly (Figure 2B) with peaks in Jun 2022,
Oct 2022, Dec 2022, May 2023, Sep 2023 and Mar 2024. Specifically,
the highest positivity rate was IAV with 17.09% (788/4610),
followed by H.influenzae (13.97%, 644/4610), SARS-CoV-2
(10.11%, 466/4610), IBV (7.38%, 343/4610), HAAV (5.66%, 261/
4610), S.pneumoniae (5.27%, 243/4610), RhV (2.71%, 125/4610), S.
aureus (2.54%, 117/4610), P.aeruginosa (2.39%, 110/4610),
K.pneumoniae (1.54%, 71/4610) within the top 10 pathogens. For
the 4 seasonal coronaviruses of HCoV-229E, HCoV-NL63, HCoV-
0C43 and HCoV-HKU]I, only one sample was tested positive for
HCoV-NL63 (Figures 2C, D).

Comparative etiology and epidemiological
patterns during and post NPIs of SARS-
CoV-2

Overall, there were disparities in positivity rates of detected
pathogens across the three stages, with significantly higher rates of
Stage 2 than the other two Stages (Supplementary Table S1). In
Stage 1, the most predominant respiratory pathogen was IAV
(37.18%), followed by H.influenzae (9.16%), S.pneumoniae
(6.23%), K.pneumoniae (4.95%) and RhV (2.93%) within the top
5 pathogens. Then SARS-CoV-2 became the dominate pathogen
during Stage 2, accounting for an overall positivity rate of 35.44%.
Except for SARS-CoV-2, H.influenzae (13.02%), IAV (11.81%),
S.pneumoniae (4.61%) and S.aureus (4.56%) were within the top 5
pathogens. In Stage 3, IAV and H.influenzae possess the highest
positivity rate (both 14.97%), followed by IBV (9.73%), HAdV
(7.41%) and SARS-CoV-2 (6.09%), with an increase in the
positivity rate for IBV and HAdV and compared to the Stage 1
and Stage 2 (Figure 3A, Supplementary Table S1). In detail, distinct
epidemiological patterns were found for multiple pathogens
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The overall etiology and epidemiology of the detected respiratory pathogens. (A) The overall positive rate and infection types among all patients.
(B) Monthly trends for bacterial and viral infections. (C) Positive rates of each pathogen. (D) Positive number of each pathogen.

including SARS-CoV-2, IAV, IBV, RSV, HAdV, HPIV-1, HPIV-3,
HPIV-4, K pneumoniae, S.pneumoniae, S.aureus, H.influenzae and
M.pneumoniae among the three stages (Figure 3B, Supplementary
Table S1). Considering the possible influence of season, we further
divided Stage 3 into Stage 3.1 (Jul 2023-November 2023,
corresponding to Stage 1) and Stage 3.2 (2023.12-2024.05,
corresponding to Stage 2) for further analyses. The results showed
that positivity rates of SARS-CoV-2, IAV, IBV, RSV, HBoV,
K.pneumoniae, S.aureus, L.pneumophila and H.influenzae were
statistically different between Stage 1 and Stage 3.1 (Figure 3C),
and positivity rates of SARS-CoV-2, IBV, HAdV, HPIV-1,
S.pneumoniae, K.pneumoniae, S.aureus, L.pneumophila,
P.aeruginosa were statistically different between Stage 2 and Stage
3.2 (Figure 3D).

Further analyses on the monthly data showed that positivity
rates of SARS-CoV-2, IBV, HAdAV and H.influenzae pathogens
gradually increased with the termination of NPIs (Figures 4A, B).
And We further conducted an interrupted time-series analysis on
several important pathogens including SARS-CoV-2, IAV, IBV,
HAAdV, and H. influenzae. The analysis revealed that SARS-CoV-2
exhibited an immediate sharp peak following the lifting of NPlIs,
followed by a sustained downward trend, indicating that the
infection wave triggered by the termination of NPIs subsided
rapidly. Peaks for SARS-CoV-2 were found in December 2022
(82.26%), May 2023 (62.86%), September 2023 (19.21%) and
March 2024 (14.77%), with decreasing positivity rates
(Figures 4A, B, Supplementary Figure 2). IAV and IBV
demonstrated distinct response patterns. IAV serves as the most
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predominant respiratory pathogen during the NPIs with peak
prevalence in June (59.90%)-July (41.04%) 2022, and other peaks
post NPIs were found in April 2023 (43.04%), August 2023
(28.48%) and May 2024 (22.30%) (Figures 4A, B). In addition,
the positivity rates of pathogens such as influenza B, H.influenzae,
S.pneumoniae and S.aureus also showed a fluctuating increasing
trend (Figure 4C, Supplementary Figure 2). HAdV experienced an
epidemic peak in December 2023 and January 2024, primarily
affecting children, with 75.85% of pediatric cases attributed to
HAAV during this period (Figure 4, Supplementary Figures 2, 3).
Overall, this analysis reveals the heterogeneous responses of
different respiratory pathogens to changes in public health policies.

Comparative etiology and epidemiological
patterns between gender

The overall positivity rate of detected pathogens was
significantly higher for the males (1395/2371, 58.84%) than the
females (1235/2239, 55.16%). Among the males, the proportions of
single viral infection, single bacterial infection, viral co-infection,
bacterial co-infection, and co-infection between virus and bacteria
were 31.08% (737/2371), 12.78% (303/2371), 1.43% (34/2371),
1.94% (46/2371), and 11.60% (275/2371), respectively. Among the
females, the corresponding proportions were 33.05% (740/2239),
9.02% (202/2239), 1.47% (33/2239), 1.61% (33/2239), and 10.00%
(224/2239), respectively (Figure 5). The top five pathogens detected
in males and females were consistent with the overall distribution.
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Among viral pathogens, IAV (males: 16.87%, females: 17.33%),
SARS-CoV-2 (males: 9.28%, females: 10.99%), IBV (males: 7.04%,
females: 7.86%), HAAV (males: 6.83%, females: 4.42%), and RhV
(males: 3.16%, females: 2.23%) were the most prevalent in males
and females, and statistical difference was only found for HAdV (P
= 0.001). As to bacterial pathogens, the top five in both males and
females were H.influenzae (males: 16.20%, females: 11.61%),
S.pneumoniae (males: 5.78%, females: 4.73%), S. aureus (males:
2.61%, females: 2.46%), P.aeruginosa (males: 2.61%, females:
2.14%), and K.pneumoniae (males: 1.73%, females: 1.34%), and
statistical difference was only found for H.influenzae (P < 0.001)
(Supplementary Table S2, Supplementary Figure 3). We conducted
an analysis to explore the relationship between the Cycle Threshold
(Ct) values of individual pathogens and gender. Our findings
revealed no statistically significant differences in the Ct values of
when

any pathogens stratified by gender

(Supplementary Figure 5B).

Age-related etiology and epidemiological
patterns

The highest positivity rate of detected pathogens was found in

the elderly group 63.86% (95%CI: 56.29% - 71.43%), followed by the
children’s group 62.76% (95%CI: 60.05% - 65.47%) and then the
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adult group at 54.58% (95%CI: 52.89% - 56.27%), and the positivity
rates are higher in children and the elderly group than in adult
group (P =0.001). As to the viral infection, the positivity rates were
47.22%(95%CI: 44.40% - 50.04%), 45.18% (95%CI:37.38% -
53.15%) and 43.20% (95%CI: 41.53% - 44.87%) for the children’s
group, elderly group and adult group, respectively. However, for the
bacteria infections, the positivity rates were in the order of
children’s group (31.26%, 95%CI: 28.63% - 33.89%), elderly group
(30.72%, 95% CI: 23.77% - 38.32%), and then the adult group
(20.33%, 95% CI: 23.77% - 38.32%) (Supplementary Table S3).
Further age-specific analyses showed that the top five most
prevalent pathogens were different across age groups with the
rank being H.influenzae (22.69%, 95%CI: 20.30% - 25.08%),
HAdV (15.96%, 95%CI: 13.86% - 18.06%), IAV (13.38%, 95%CI:
11.40% - 15.36%), IBV (7.56%, 95%CI: 6.02% - 9.10%) and
S.pneumoniae (7.23%, 95%CI: 13.86% - 18.06%) for the children
group, and the prevalence of RhV, RSV, HMPV, HAdV,
S.pneumoniae, H.influenzae and M.pneumoniae were significantly
higher than the other two groups (Figure 6). For the adult group, the
top five pathogens were IAV (18.76%, 95%CI: 17.47%- 20.05%),
SARS-CoV-2 (11.51%, 95%CIL: 10.42% - 12.60%), H.influenzae
(10.64%, 95%CI: 9.56% - 11.72%), IBV (7.62%, 95%CI: 6.66% -
8.58%) and S.pneumoniae (4.50%, 95%CI: 1.38% - 2.32%), and the
positivity rate of IAV was significantly higher than the other two
groups (Figure 6). While in the elderly group, SARS-CoV-2
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(27.11%, 95% CI: 20.40% - 34.70%), H.influenzae (15.66%, 95% CI:
10.24% - 22.21%), IAV (11.45%, 6.70% - 17.46%), S.pneumoniae
(6.02%, 95% CI: 2.56% - 11.10%), and P.aeruginosa (4.22%, 95% CI:
1.37% - 8.58%) were within the top five, and the frequencies of
SARS-CoV-2, K.pneumoniae and M.catarrhalis were found to be
significantly higher (Figure 6, Supplementary Table S3). We further
analyzed the association between Ct values of each pathogen and
age. Our analyses revealed that the Ct values of IBV (P=0.036),
HAdV (P=0.002), and RSV (P=0.01) were significantly lower in the
pediatric group compared with the other two groups. Conversely,
the Ct value of SARS-CoV-2 (P=0.049) was significantly higher in
the elderly group than in the other two groups. No significant
differences in Ct values were noted for the remaining pathogens
(Supplementary Figure 5C).

Seasonal etiology and epidemiological
patterns

The highest positivity rate of detected pathogens was found in
summer (61.45%), followed by autumn (61.08%), spring (56.37%),
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and then winter (54.46%), For viral infection, the highest positivity
rate was also found in summer (49.70%), followed by spring
(47.37%), winter (43.24%), and autumn (40.23%). However, for
the bacteria infections, the highest positivity rate was found in
autumn (14.59%), winter (12.40%), summer (10.18%), and spring
(8.95%) (Figure 7A). In detail, the top 5 prevalent respiratory
pathogens were IAV (17.09%), SARS-CoV-2 (16.4%),
H.influenzae (11.29%), IBV (7.4%) and S.pneumoniae (4.5%) in
spring, TAV (29.82%), SARS-CoV-2 (12.61%), H.influenzae
(10.55%), S.pneumoniae (7.03%) and S.aureus (4.12%) in
summer, 1AV (16.94%), H.influenzae (15.14%), IBV (9.01%),
S.pneumoniae (7.57%) and SARS-CoV-2 (7.39%) in autumn, and
H.influenzae (16.94%), IAV (11.67%), HAAV (10.94%), IBV
(9.59%) and SARS-CoV-2 (4.38%) in winter (Figures 7B, C). The
infection rates of SARS-CoV-2 were found to be significantly higher
during the spring and summer months compared to the autumn
and winter months (P < 0.001). Furthermore, a noteworthy surge in
the prevalence of HAdV was observed in pediatric patients during
the winter season. Overall, clear seasonal trends were evident for a
range of respiratory pathogens with the exception of HMPV, HPIV-
2, M.catarrhalis and C.pneumoniae, and many pathogens were
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distinctly more prevalent in summer and autumn than in spring
and winter (Figure 7D).

Co-infection patterns

Co-infection with multiple pathogens is a common
phenomenon in acute respiratory infections. In our study, the
overall co-infection rate was 24.62%, with 19.76% of cases
involving two pathogens and 4.86% involving three or more
(Figure 8A). Specifically, the viral co-infection rate was 23.44%,
with the highest co-infection rates found for RhV (44.00%), HAdV
(37.55%), SARS-CoV-2 (30.47%), IBV (28.28%), and IAV (25.38%)
(Figure 8A). Among them, the most common viral co-infections
were TAV and H.influenzae, followed by SARS-CoV-2 and
H.influenzae, HAAV and H.influenzae, 1BV and H.influenzae,
SARS-CoV-2 and S.pneumoniae, IAV and S.pneumoniae
(Figure 8B). Compared to viral co-infection, higher rates of
bacterial co-infection were found (53.40 vs. 23.44%). Except for
the viral-Among the top 10 infection pathogens, the highest co-
infection rates were observed with bacterial pathogens, specifically
S.aureus (72.65%), S.pneumoniae (70.37%), K.pneumoniae
(66.20%), P.aeruginosa (57.27%) and H.influenzae (53.42%).
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Then we conducted a thorough analyses of the co-infection
patterns of HAdV, SARS-CoV-2, IAV, IBV, H.influenzae,
S.pneumoniae and S.aureus across different periods, genders, ages,
and seasons. The results showed that no significant differences were
observed in the co-infection rates of several major pathogens at
different stages. (Supplementary Table S4). Among them, the most
frequent co-infections of IBV found to be SARS-CoV-2. However, the
most commonly co-infection of SARS-CoV-2 was associated with
H.influenzae. The co-infection rate of IAV in males is higher than
that in females (29.50% vs 21.13%; X° = 6.843, P = 0.001)
(Supplementary Table S5), and the co-infections between IAV with
H.influenzae were the most frequent. The co-infection rates of
multiple pathogens differ across various age groups. In the pediatric
group, the rates of co-infections involving SARS-CoV-2, TAV, and
H.influenzae were 54.17%, 37.27% and 60.44%, respectively, and all of
them were significantly higher than the other two groups
(Supplementary Table S6). Moreover, the co-infections between
SARS-CoV-2 and H.influenzae, TAV and H.influenzae, HAAV and
H.influenzae in the pediatric group were the most frequent.
Additionally, in terms of seasonality, both IAV (37.23%) and IBV
(48.00%) exhibited the a significantly higher co-infection rates in
autumn (Supplementary Table S7), both most frequently co-infected
with H.influenzae.
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Age-related etiology and epidemiological patterns of the detected pathogens. (A) The positivity rate of different viruses in the three age groups.
(B) The positivity rate of different bacteria in the three age groups. (C) Comparative analyses of positivity rates for each virus in the three age groups.
(D) Comparative analyses of positivity rates for each bacteria in the three age groups. ** means P<0.01, *** means P< 0.001

Discussion

In this two years’ prospective cohort study, we enrolled 4610
patients from the fever clinic of Shenzhen Third People’s Hospital
and analyzed the changing causal and epidemiological
characteristics of ARTIs during and post NPIs against SARS-
CoV-2. We further described the patterns of infection and co-
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infection of 16 viral and 9 bacterial pathogens associated with age,
gender and seasons. In this study, the pathogen epidemics of the
two years were divided into three stages based on the SARS-CoV-2
epidemics to investigate the longitudinal etiology and
epidemiological patterns of ARTIs during and post NPIs of
SARS-CoV-2 in Shenzhen, China. Stage 2 was found to have the
highest positivity rate of pathogen, and SARS-CoV-2 also had the
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highest positivity rate of in this stage. This may be due to the fact
that the level of immunity to various pathogens was lower in the
population during the period of NPIs (Rana et al, 2021), and
therefore Stage 2 presents an outbreak epidemic with SARS-CoV-2
as the main pathogen. In addition, the positivity rates of multiple
pathogens showed significant differences between three stages (Xiao
et al,, 2021). Therefore, the NPIs has changed the epidemiological
spectrum of respiratory pathogens to some extent (Rana et al., 2021;
Li et al., 2022; Wei et al., 2024).

During various NPIs stage for SARS-CoV-2, there have been
substantial fluctuations in the circulation of ARTIs: In the strict NPI
stage (Stage 1), IAV exhibited a dominant prevalence, while other
viral activities were suppressed, and bacterial infection rates
remained stable. In the post-NPI relaxation stage with SARS-
CoV-2 outbreaks (Stage 2), SARS-CoV-2 became the
predominant pathogen, with a positivity rate of 35.44%. In the
Stage 3, which is characterized by a regular epidemic, IAV and H.
influenzae began to rebound, accompanied by a significant increase
in the positivity rates of other viruses and bacteria, including HAdV
and IBV. The majority of viruses exhibited elevated detection rates
following the implementation of NPIs. Conversely, bacterial
infection rates remained stable, while co-infections with viruses
demonstrated a notable increase (resulting in an overall co-
infection rate of 24.62%).
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Ecologically, viral interference and super-infection likely
contributed to these shifts. Viral interference may have occurred
when dominant pathogens (e.g., SARS-CoV-2 in Stage 2)
suppressed the circulation of other viruses, with reduced
interference post-NPIs enabling the resurgence of IAV, HAdV,
and IBV in Stage 3. These findings decisively address key knowledge
gaps regarding the circulating characteristics of common
respiratory viruses in the post-pandemic era and provide clear
insights into virus-specific factors of circulating patterns. These
factors might include environmental stability, infectivity,
transmissibility, population immunity, and reservoirs, as well as
possible virus-virus interaction (Kuitunen et al., 2022).

We revealed that ARTIs elicited similar symptoms in both
children and adults, including fever, cough, rhinorrhea, sore
throat, and myalgia. The prevalence of fever was higher in
children and the symptoms reported were more varied for adults.
This discrepancy could be attributed to younger children’s potential
inability to accurately convey their symptoms. We showed an
overall positivity rate 57.05%, which was comparable to previous
studies (Arancibia et al., 2014; Zhang et al., 2023). Similar with a
nationwide multi-center study in China (2009 to 2019) (Li et al,
2021), viral infection (44.32%) was also found to be more frequent
than bacterial infection (23.60%) in our study, while both rates were
higher in our study. For the remaining samples with undetermined
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The characteristics of co-infections between respiratory pathogens. (A) The overall distribution of mono- or multi-infections. (B) Heat map shows
the detailed co-infections between different respiratory pathogens.

pathogens (approximately 40%), various factors could be involved, Several studies have reported a significant decrease in the
including sample collection, load of pathogens, and coverage of the  positivity rate of IFV during the SARS-CoV-2 pandemic, such as
detected pathogens. These cases should not be overlooked, and  a sharp decrease from 59.5% to 12.3% (Cullinan et al.,, 2022), and
more sensitive detection techniques or sequencing methods could  only a positivity rate of 4.3% in Ireland during the period from 2021
be employed to investigate potential pathogen “X”, especially when ~ to 2022 (Brady et al., 2023). The largest decrease of annual
a sudden increase in unknown causes is observed. cumulative positivity rate for IFV was observed in China with a
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reduction of 87.6% (from 9.94% to 1.23%) (Li et al., 2022).
Consistent with other studies, the IFVs (including IAV and IBV)
dominated the respiratory infections (24.53%) (Ren et al., 2009; Lu
et al., 2013). Our results were demonstrated that after the end of the
epidemic, IFV resumed its original epidemiological pattern. In
addition, the samples did not include SARS-CoV-2 positive cases
until December 2022 due to the implementation of the SARS-CoV-
2 epidemic prevention and control measures. Our results found
that, positivity rates of most viral pathogens have increased after the
termination of NPIs, it may be due to prolonged absence of
exposure to and infection with the respiratory pathogens, lack of
stimulation of the body’s immune system by the pathogen, and
reduced levels of herd immunity caused disease epidemics when re-
exposed to the pathogen (Huang et al., 2022). The three infection
epidemics of SARS-CoV-2 in one year, outbreaks in December
2022, May 2023, and August-September 2023, are the same as the
trend of SARS-CoV-2 infection epidemics released by China CDC
and WHO (COVID-19 cases | WHO COVID-19 dashboard).

Sex has been shown to be a factor influencing respiratory
infections and their severity (Kadel and Kovats, 2018). Strong
epidemiological evidence now exists that gender is an important
biologic variable in immunity (Wilkinson et al., 2022). Several
studies have shown that respiratory infections are associated with
the influence of physiological gender, with differences in innate
immune cells and differences in sex hormone secretion between
men and women during the life cycle, with different susceptibility to
disease (Arancibia et al., 2014; Zhang et al., 2023). Sex differences in
innate immune cells may influence both the pro-inflammatory/
effector phase and the resolution/tissue repair phase, which are
crucial for the host response to respiratory pathogens infections
(Kadel and Kovats, 2018; Silveyra et al, 2021). In addition, sex
differences in lung development, structure, and function have been
identified (Sathish et al., 2015; Lindgren et al., 2022). The lungs of
human females are smaller than those of males of the same heil cells
express sex steroid receptors, and their functional responses to
different hormonal environments may influence the immune
response and modulate infection severity (Thurlbeck, 1982;
Sathish et al., 2015). Consistent with these studies, the overall
positivity rate was also found to be higher in males than females
(58.84% vs 55.16%, P < 0.001) in our study. Specifically, the
prevalence of HAdAV infection was more frequent in males than
in females (6.83% vs 4.42%) within the viral pathogens, and also the
H.influenzae within the bacterial pathogens (16.20% vs 11.61%).
Some studies have indicated that the incidence of IAV, RSV, and
SARS-CoV-2 is higher in males than in females, potentially due to
the influence of estrogen receptor signaling on respiratory
infections (Glezen et al., 1971; Karlberg et al, 2004). Our
observations also revealed that the infection rates of HAdV and
H.influenzae were higher in males than females, which may
similarly be influenced by estrogen receptor signaling (Karlberg
etal., 2004). Nevertheless, the specific mechanisms underlying these
differences need further investigation.

ARTIs represent the most prevalent cause of disease in
individuals across all age groups, characterized by high morbidity
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and mortality rates with a significant global health concern (Global
burden of 369 diseases and injuries in 204 countries and territories,
1990-2019: a systematic analysis for the Global Burden of Disease
Study 2019 - PubMed), and a number of studies have demonstrated
that the etiology of ARTIs varies with age (Ruuskanen et al., 2011;
Zar et al, 2016; Pneumonia Etiology Research for Child Health
(PERCH) Study Group, 2019; Li et al., 2021; Snoeck et al., 2021).
Our results showed that the pathogen positivity rate was higher in
elderly group (63.86%) and children’s group (62.76%) than adult
group (54.58%) with statistical significance (P=0.001). These age-
dependent patterns may also be associated with increased
susceptibility to infection in childhood and elderly people, mainly
due to a lower specific immune response, both quantitatively and
functionally (Prendergast et al., 2012). Infections in children are
more complex, suggesting the need for early clinical consideration
of the possibility of bacterial-viral co-infection and avoidance of
bacterial infections missed by single antiviral therapy (Prendergast
etal, 2012). The high prevalence of SARS-CoV-2 and P. aeruginosa
infections, in conjunction with the high prevalence of underlying
disease, necessitates the prioritization of surveillance for co-
infection with these two pathogens. Furthermore, heightened
vigilance is imperative to address the risk of severe disease, and
prompt intervention is essential. Specifically, the declining physical
function and basic illnesses may increase the susceptibility of the
elderly (Prendergast et al., 2012; Liu et al,, 2023), and lower levels,
affinity and less diversity of T cell-dependent antibody responses in
children than adults may also account for these age-dependent
patterns (Prigge et al., 2020). TAV and SARS-CoV-2 were
established as the foremost viral pathogens in adults and the
elderly, concordant with contemporary literature (Li et al., 2021;
Seon et al., 2023). Interestingly, previous studies demonstrated that
RSV was found to be the most prevalent respiratory pathogen in
children with ARTTs (Li et al., 2021; Wang et al., 2021). In our study,
H.influenzae was identified as the dominant pathogen, followed by
HAdAV and TAV in childhood. Furthermore, we observed that the
rates of co-infections involving SARS-CoV-2, TAV, and
H.influenzae were 54.17%, 37.27%, and 60.44% in the pediatric
group, respectively, which is higher than in the other two age
groups. This difference may be attributed to the underdeveloped
immune system of children and the types of environments they
experienced, such as kindergartens and schools, where cross-
infections among pathogens are more likely to occur.

Previous studies have found that the seasonality of various
viruses differs across different countries, research periods, and
regions. Understanding the relationship between the seasonality
of different viruses and meteorological factors is key to successfully
implementing prevention and control programs (Li et al., 2019).
Studies have shown that temperature and humidity have an effect
on the prevalence of respiratory pathogen infections, so the
seasonality of respiratory pathogens has been widely described
(Audi et al., 2020; Moriyama et al., 2020; Hamid et al., 2023), and
previous studies have also shown that the virus-positive rate was
higher in southern China than in northern China, with relatively
small monthly differences (Li et al., 2019; Li et al., 2021). Outbreak
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dynamics driven by climatic factors (mainly temperature) partially
explained the overall detection rates and seasonal patterns of
respiratory viruses, and these relationships varied with latitude
(Yu et al., 2013; Baker et al.,, 2019; Li et al., 2021; Snoeck et al.,
2021). In our study, the overall positivity rates of detected
pathogens were significantly higher in summer and autumn than
those in winter and spring, with the most frequent of viral infections
in the summer and the bacterial infections in the autumn. This
result differs from observations from the northern China with the
higher prevalence in winter and spring (Li et al, 2021).
Additionally, the co-infection of IAV and IBV with other
pathogens tends to be more severe in the summer and autumn.
This may be attributed to the rainy and windy conditions in the
Shenzhen area during these seasons, which create a humid
environment. Moreover, strong winds can lower surface body
temperature, leading to vasoconstriction of the respiratory
mucosa and suppression of the immune response, thereby
increasing susceptibility to infections (Xu et al, 2021). Notably,
SARS-CoV-2 was shown to be the most common cause of
respiratory illness in spring, and a notable increase in HAdV
positivity rates was observed in winter. Previous research has
shown that humidity is positively correlated with HAdV, it is
relatively stable at high humidity levels, and the higher humidity
in the Shenzhen area during spring may be a significant reason for
the elevated incidence of HAdV infections (Pica and Bouvier, 2012;
Xu et al,, 2021). It is imperative to formulate seasonal prevention
and control strategies in conjunction with seasonal patterns. For
instance, in the Shenzhen area, ventilation and disinfection
measures should be augmented during the summer months to
mitigate viral transmission. Concurrently, clinical vigilance for
bacterial infections should be heightened in the autumn. These
strategies are crucial to address the heightened prevalence of viral
infections during summer months and the emergence of active
bacterial infections in the autumn.

The reported prevalence of co-infection between pathogens
varies significantly among different studies, ranging from 5.0% to
62.0% (average of 23.0%), and is associated with heightened risks of
hospitalization and severe disease (Goka et al., 2014). Viral and
bacterial co-infections are most prevalent, driven by factors such as
respiratory microbiota imbalances, cell apoptosis, and
inflammatory mediator dysregulation, which can suppress
respiratory epithelial immune function (Liu et al, 2023). In our
cohort, 24.62% of patients presented with co-infections, with the
most common co-infections involved IAV and H.influenzae,
followed by SARS-CoV-2 and H.influenzae, HAdV and
H.influenzae, and IBV and H.influenzae. Several studies have also
identified IFV co-infecting with H.influenzae as the most frequent
scenario (Goka et al.,, 2013; Li et al., 2015). IFV infection coupled
with other pathogens has been found to be associated with risks of
increased severity and mortality (Goka et al, 2013; Kash and
Taubenberger, 2015). As shown by one study, viral neuraminidase
of IFV can augment bacterial adherence by inducing TGF-f,
thereby elevating the risk of bacterial superinfection (Kash and
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Taubenberger, 2015). According to a recent study, bacterial co-
infections were observed in 29.8% of hospitalized COVID-19
patients, and the presence of comorbidities further elevated the
risk of severe disease and mortality (Zhang et al., 2020). The
presence of co-infection can serve as a prognostic indicator,
prompting enhanced monitoring and intervention strategies for
affected patients, such as early hospitalization and intensive care.
Our data has also revealed a notable coexistence of H.influenzae and
SARS-CoV-2, which is of concern during the treatment of SARS-
CoV-2 infections. The study’s findings underscore the necessity of
employing a multifaceted testing approach in clinical settings.

This study has several limitations that should be noted. Firstly, the
study sample was limited to patients attending the fever clinic, the
hospitalized individuals were not included. Secondly, the sample
collection period during strict NPIs was relatively short. Thirdly, the
study is a single-center study, which may limit the representativeness.

In conclusion, we conducted an in-depth longitudinal investigation
into the etiology and epidemiological patterns of ARTIs during and
post NPIs of SARS-CoV-2 in Shenzhen, China, based on a two years’
prospective cohort study of all ages. Our results showed that the
etiology and epidemiological patterns of ARTIs during and post NPIs
of SARS-CoV-2 in Shenzhen have changed overtime, and sex, age and
seasonal patterns were also found. These findings are vital for the early
and rapid detection of various respiratory pathogens, understanding of
susceptible populations, and rational vaccination. Furthermore, the
emergence of alternating epidemics of SARS-CoV-2 and influenza
viruses necessitates meticulous surveillance. The implementation of
vaccination programs, such as the influenza vaccination initiative, and
the dissemination of pandemic alerts to susceptible populations well in
advance are of paramount importance. The findings could provide
useful information for the public health measures and the clinical
management of respiratory infections.
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