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Introduction: The pathogenesis of severe malaria is primarily attributed to the

cytoadherence properties of Plasmodium-infected erythrocytes (IRBC), which

include rosetting and IRBC-endothelial cytoadherence. These cytoadherence

events are influenced by various parasite- and host-derived factors. Previously,

antibodies against human periostin (OSF-2), an inflammation-associated protein,

were reported to inhibit rosetting. In this study, we aimed to characterize the

OSF-2-mediated cytoadherence in infections caused by Plasmodium falciparum

(the most fatal human malaria parasite) and P. knowlesi (an emerging, potentially

fatal zoonotic malaria parasite).

Methods: Laboratory-adapted P. falciparum and P. knowlesi isolates were

cultured, and the late-stage parasites were purified for experiments using

recombinant human OSF-2.

Results: We found that OSF-2 at a concentration of 200 ng/ml induced rosette-

stimulation in both parasite species. Furthermore, we demonstrated the serum

dependency of OSF-2-mediated rosetting. The rosette-stimulating effect of

OSF-2 was completely abolished when IRBC were treated with a low

concentration of trypsin. This suggests a role for P. falciparum erythrocyte

membrane protein 1 (PfEMP1) in OSF-2-mediated rosetting by P. falciparum,

and reveals the trypsin-sensitive nature of the P. knowlesi-derived ligands
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involved in OSF-2-mediated rosetting. We also found that OSF-2-mediated

rosetting was independent of the ABO blood group. Additionally, we

demonstrated the ability of OSF-2 to disrupt the IRBC-endothelial binding.

Discussion: This work contributes to our understanding of the host-parasite

interactions in malaria pathobiology.
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1 Introduction

Malaria remains a significant global health concern, particularly

in tropical and subtropical regions (WHO, 2024). Among the

medically important malaria parasites, Plasmodium falciparum is

the primary cause of the malaria-associated fatalities worldwide

(WHO, 2024). Since the beginning of the third millennium, the

frequent reporting of potentially fatal zoonotic malaria caused by P.

knowlesi in Southeast Asia has led to its recognition as the fifth

medically important malaria parasite (White, 2008; Chin et al.,

2020; Lee et al., 2022a).

The pathogenesis of severe malaria is strongly associated with

the cytoadherence properties of infected erythrocytes (IRBC) (Lee

et al., 2019; 2022b). P. falciparum-IRBC with display of ‘knobs’ on

their surface can adhere to endothelial cells via interactions with

various endothelial surface receptors such as CD36, ICAM-1,

VCAM-1, EPCR, P-selectin and E-selectin (Turner et al., 1994;

Yipp et al., 2000; Armah et al., 2005; Metwally et al., 2017; Lee et al.,

2019). This leads to the sequestration of late-stage IRBC in the deep

vasculature (Roberts et al., 1985). This process triggers endothelial

activation and inflammation, resulting in vascular damage and

severe malaria, which can manifest as cerebral malaria, acute

respiratory distress syndrome, acute kidney injury, placental

malaria and severe malaria-induced anemia (Chilongola et al.,

2009; Lee et al., 2019). Notably, most IRBC-endothelial

cytoadherence studies have focused on P. falciparum, with fewer

studies examining P. vivax and P. knowlesi (Sherman et al., 2003;

Carvalho et al., 2010; Lee et al., 2022c). Furthermore, the clinical

manifestations of severe complications vary among different species

of malaria parasites. For example, neurological complications are

predominantly associated with falciparum malaria (Trivedi and

Chakravarty, 2022), and are rarely reported in knowlesi malaria

patients (Cox-Singh et al., 2010; Kantele and Jokiranta, 2011).

Therefore, findings from P. falciparum studies may not be

directly applicable to P. knowlesi or other malaria parasites.

In addition to IRBC-endothelial binding, rosetting – the stable

adherence of IRBC to uninfected erythrocytes (URBC), has been

discovered as another related but independent IRBC cytoadherence

phenomenon (David et al., 1988; Kaul et al., 1991). Rosetting has
02
been reported in all medically important malaria parasites (Lowe

et al., 1998; Lee et al., 2014, 2022). Similar to the IRBC-endothelial

cytoadherence investigations, most rosetting studies have focused

on P. falciparum. Notably, IRBC-endothelial binding and rosetting

in P. falciparum shared many biological properties, including the

involvement of similar parasite-derived ligands and host-derived

receptors (Handunnetti et al., 1992; Chen et al., 1998; Chilongola

et al., 2009; Bachmann et al., 2022; Rajan Raghavan et al., 2023),

while the ligands and receptors involved in the cytoadherence

mediated by other species of malaria parasites remain poorly

understood. Importantly, the dynamics of IRBC cytoadherence to

both endothelial cells and URBC have yet to be fully elucidated.

Beyond parasite-derived ligands and host-derived receptors, these

cytoadherence phenomena can be influenced by other host-derived

factors such as complement factor D (CFD) and insulin-like growth

factor binding protein 7 (IGFBP7) (Luginbühl et al., 2007; Lee et al.,

2020). Previously, we observed that antibodies against human

periostin (OSF-2) could block the rosette-stimulating effect

induced by the culture supernatant of human monocytic THP-1

cells primed with P. falciparum antigens (Lee et al., 2020),

suggesting a role for OSF-2 in IRBC-mediated cytoadherence

during malaria pathogenesis.

Periostin, originally identified as osteoblast-specific factor-2

(OSF-2), was discovered as a potential cell adhesion protein for pre-

osteoblasts in the mouse osteoblastic MC3T3-E1 cell line (Takeshita

et al., 1993). Subsequently, it was named periostin due to its presence

in the periosteum and periodontal ligament (Horiuchi et al., 1999).

This protein interacts with various extracellular matrix proteins, and

involves in regulating intercellular adhesion (Takayama et al., 2006).

Notably, OSF-2 expression is associated with localized and systemic

inflammatory conditions, including infections (Takayama et al., 2006;

Sonnenberg-Riethmacher et al., 2021; Tuna et al., 2024), and its

secretion by several immune cells is increased upon activation (Liu

et al., 2014; Li et al., 2015). Given the association between OSF-2 and

inflammation, as well as its potential involvement in IRBC-mediated

cytoadherence events critical to malaria pathogenesis, the impact of

OSF-2 on these phenomena warrants further investigation. Here, we

characterized the effect of OSF-2 on rosetting and IRBC-endothelial

cytoadherence in P. falciparum and P. knowlesi.
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2 Materials and methods

2.1 Materials used

Information ofmaterials used is available in Supplementary Table 1.
2.2 Study approval and general conditions
of the experiments

The sample collection and all experiments were conducted

under guidelines approved by the Institutional Biosafety and

Biosafety Committee (IBBC) of Universiti Malaya (UMIBBC/PA/

R/FOM/PARA-025/2022) and University of Malaya Medical

Centre (UMMC) Medical Research Ethics Committee

(MRECID#2024312-13526). All experiments in this study were

conducted with at least six biological replicates unless stated

otherwise, where biological replicates of parasite were defined as

individual parasite cultures of different culture batches that

contained distinct individual IRBC (either with or without

distinct individual URBC). The biological replicates of endothelial

cell lines were defined as independent batches of cultured cell lines

seeded in distinct culture chambers of fixed dimensions and

culture conditions.
2.3 Parasite and endothelial cell cultures

Laboratory-adapted P. falciparum and P. knowlesi were thawed

using the sodium chloride method and cultured with group O RBC

at 2% hematocrit in RPMI-1640 media enriched with AlbuMAX II

and 20% (v/v) heat-inactivated human serum. Cultures were

maintained under standard in vitro cultivation conditions: 37°C,

humidity exceeding 90%, and gas mixture of 7% CO2, 5% O2, 90%

N2 (as previously described in Lee et al., 2014 and Lee et al., 2022c).

Late-stage parasites were purified using a magnetic-activated cell

sorting (MACS) system.

For the cultivation of human endothelial cell lines, culture flask

was treated with 0.5% gelatin solution for 6 hours at 37°C prior to

the inoculation of thawed cell lines. The cell lines used were human

cerebral microvascular endothelial cell line (hCMEC/d3), human

renal glomerular endothelial cell line (HRGEC), human pulmonary

microvascular endothelial cell line (HPMEC) and human umbilical

vein endothelial cell line (HUVEC)]. They were cultured with the

complete endothelial cell medium (ECM).
2.4 Recombinant periostin protein solution
preparation

Recombinant human periostin protein (henceforth known as

“OSF-2”) was reconstituted with 1X phosphate-buffered saline

(PBS) (stock protein concentration: 100 mg/ml) according to the

manufacturer’s manual. The stock was aliquoted and stored at 4°C

until its subsequent use.
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2.5 Rosetting characterization

The experiment was conducted when approximately 70% of the

parasite population had reached late-stage development (late

trophozoite to schizont stages). The parasite culture suspension

was exposed to various working concentrations of OSF-2. A

separate aliquot of parasite culture suspension, which was

unexposed to OSF-2, served as the control. Notably, the selected

OSF-2 concentrations were within the reported pathophysiologic

range of serum OSF-2 levels (Supplementary Table 2) (Okamoto

et al., 2011; Yamaguchi et al., 2013; Kou et al., 2014; Caswell-Smith

et al., 2016; Yang et al., 2016; Zhu et al., 2016; Thuwajit et al., 2017;

Ding et al., 2018; Gadermaier et al., 2018; Yildiz et al., 2021). The

plate was incubated for one hour under standard in vitro cultivation

conditions before the rosetting assay (Lee et al., 2013; Lee and Rénia,

2020). Briefly, the culture suspension was stained with Giemsa,

transferred to a clean glass slide, and mounted with a glass cover-

slip. The wet mount was then examined with a light microscope

using immersion oil magnification. The rosetting rate was

calculated as the percentage of IRBCs that formed rosettes, by

recruiting 200 IRBC. After determining the optimal working

concentration of OSF-2 for subsequent experiments, the

importance of human serum availability to the OSF-2-mediated

rosetting was tested by repeating the assay with the selected working

concentration of OSF-2 in culture media supplied with different

levels of human serum enrichment, where the original culture

medium (20% serum-enriched medium) was removed via

centrifugation (300 g for 2 minutes), and the pelleted cells were

suspended with experimented culture media.

In a separate experiment, trypsinization was performed based

on previous trypsin sensitivity profiling of P. falciparum

cytoadherence ligands (Kyes et al., 2000; Niang et al., 2014).

Briefly, purified late-stage IRBC were divided into three groups.

One treated with 10 µg/mL of trypsin, another with 1mg/ml of

trypsin, and a third untreated control group. Following a ten-

minute incubation under in vitro culture conditions, the

enzymatic reaction was stopped with human serum-enriched

culture medium. Each group was then divided into two parts; one

was supplemented with OSF-2 (200 ng/ml) and the other served as a

control. The rosetting assay was conducted after one hour of

incubation under in vitro cultivation conditions.

An additional experiment was conducted, where MACS-sorted

late-stage IRBC were divided into four groups. Each group of

purified IRBC was mixed with URBC of A, B, O, and AB groups,

respectively, to create a suspension of 1% parasitemia with 2%

hematocrit. Each group was further divided into two experiment

fractions (OSF-2-exposed and unexposed control), and incubated

under in vitro cultivation conditions for one hour before the

rosetting assay.
2.6 IRBC-endothelial cytoadherence assay

When the cultures of endothelial cell lines reached

approximately 70% confluency, they were transferred into the
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gelatin-coated eight-well LABTEK chamber slides (each well was

seeded with 1 × 105 cells). On the following day, a mixture of ECM

and parasite antigen suspension in a 2:1 ratio was added to the

seeded cell lines and incubated under in vitro cultivation conditions

for 24 hours, to ‘prime’ the cells with parasite antigens (Lee et al.,

2022c). After cell priming, each well of the seeded cells was allocated

parasite culture suspension (1% parasitemia, 2% hematocrit) and

OSF-2 suspension (200 ng/ml). An aliquot of suspension from each

well was taken for rosetting assay. The endothelial cell-parasite

mixture was incubated for two hours under in vitro cultivation

conditions. Subsequently, the suspension from each well was

collected into separate microcentrifuge tubes for rosetting assay to

evaluate the before-after effect. For the seeded endothelial cells, the

unbound IRBCs were gently washed away with human serum-

enriched medium for three times. This was followed by fixation

with ice-cold absolute methanol for ten minutes. The chambers

were then removed from the chamber slides, and the slides were

stained with 5% Giemsa for 20 minutes before being examined

under a light microscope using immersion oil magnification. The

IRBC–endothelial cell line cytoadherence rate was determined by

counting the number of IRBCs attached to endothelial cells per 100

fields (equivalent to coverage of approximately 8,000 cells). The

IRBC-endothelial cytoadherence assay was repeated with a separate

set of “primed” cell lines that were not exposed to OSF-2

(as control).
2.7 Statistical analyses

GraphPad Prism 9.5.1 software was used for data analyses.

Normality of the data was evaluated using Shapiro-Wilk test. For

normally distributed datasets, Welch’s t-test was used for the

comparison of two datasets with unequal variances. For paired

comparisons, paired t-test was used. For multi-group comparison

against a control group, One-way ANOVA with Dunnett’s test was

performed. For non-normally distributed datasets, Mann-Whitney

test was used to compare two datasets, andWilcoxon matched-pairs

signed rank test was used for paired comparison. For the

comparison of multiple datasets, Kruskal-Wallis with Dunn’s test

was conducted. For the comparison of multiple sets of matched

non-parametric data, Friedman with Dunn’s test was performed. P

values smaller than 0.05 were considered as statistically significant.
3 Results

3.1 Effect of OSF-2 on Plasmodium
rosetting rates

A preliminary experiment was conducted to examine the basal

rosetting rates of the parasites across seven cycles of cultivation

post-thawing. Both species of parasites demonstrated persistent but

fluctuating rosetting rates. The fluctuation of P. knowlesi rosetting

rates across the monitored period was of insignificant difference
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(Kruskal-Wallis H(2) = 7.15; P = 0.41) (Supplementary Figure 1A).

However, significant difference in rosetting rates of P. falciparum

across the monitored cycles was found (Kruskal-Wallis H(2) =

16.11; P = 0.01) (Supplementary Figure 1B). Thus, culture cycle-

matched statistical comparison was done for data collected from

subsequent experiments.

The rosetting rates of P. falciparum and P. knowlesi responded

positively to OSF-2 (Friedman with Dunn’s test X2(7) = 38.94; P <

0.0001 for P. falciparum; and X2(7) = 35.37; P < 0.0001 for P.

knowlesi). For P. falciparum, significant rosette-stimulation was

observed at OSF-2 working concentration of 200 ng/ml (P =

0.0016) and 250 ng/ml (P < 0.0001) (Figure 1A). For P. knowlesi,

significant rosetting rate increment was recorded at OSF-2 working

concentrations of 150 ng/ml (P = 0.0027), 200 ng/ml (P = 0.0007),

and 250 ng/ml (P = 0.0002) (Figure 1B). Of note, there was no

significant difference in rosette-stimulation between OSF-2 of 200 ng/

ml and 250 ng/ml for spP. falciparum. Similarly, no significant

difference in P. knowlesi rosette-stimulation was found at OSF-2 of

150 ng/ml, 200 ng/ml and 250 ng/ml. Subsequent experiments were

then conducted with 200 ng/ml OSF-2. The OSF-2-mediated

rosetting was human serum-dependent for P. falciparum

(Friedman with Dunn’s test X2(7) = 28.40; P < 0.0001) (Figure 1C)

and P. knowlesi (Friedman with Dunn’s test X2(7) = 27.76; P < 0.0001

for P. knowlesi) (Figure 1D), where significant increment of rosetting

rates was found at conditions supplied with 15% serum (P = 0.0028

and 0.005 for P. falciparum and P. knowlesi, respectively) and 20%

serum (P = 0.0001 and 0.0015 for P. falciparum and P. knowlesi,

respectively), as compared with the serum-free setting. For both

species, the OSF-2-mediated rosette stimulation under conditions

supplied with 15% and 20% serum were of insignificant difference. In

short, OSF-2 stimulated P. falciparum and P. knowlesi to form more

rosettes in a human serum-dependent manner.
3.2 Characterization of potential ligands
and receptors involved in OSF-2-mediated
rosetting

For P. falciparum, treatment with either low (10 µg/ml) or high

(1 mg/ml) concentration of trypsin to IRBC abrogated the OSF-

mediated rosette-stimulating effect (Figure 1E). Similarly, the OSF-

2-mediated rosette-stimulation on P. knowlesi was abolished by the

IRBC treatment with both concentrations of trypsin (Figure 1F).

We also investigated the role of human ABO blood groups in OSF-

2-mediated rosetting. The OSF-2-mediated rosetting in P.

falciparum (Figure 1G) and P. knowlesi (Figure 1H) was

independent of human ABO blood groups, where the OSF-2-

mediated rosette-stimulation on IRBC purified from the same

batch of parasite culture was insignificantly different when

subjected to URBC of A, B, O and AB groups (Friedman with

Dunn’s test X2(7) = 1.68; P = 0.64 for P. falciparum; and X2(7) =

3.16; P = 0.37 for P. knowlesi). Succinctly, the OSF-2 mediated

rosetting by P. falciparum and P. knowlesi was trypsin-sensitive and

independent of human blood ABO groups.
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3.3 Effect of OSF-2 on the dynamic of
rosetting and IRBC-endothelial
cytoadherence

We evaluated the effect of OSF-2 on the P. falciparum-IRBC

cytoadherence dynamics using endothelial cell lines hCMEC/d3

(Figures 2A, B), HRGEC (Figures 2C, D), HPMEC (Figures 2E, F),

and HUVEC (Figures 2G, H). The protein demonstrated similar

effects on the P. falciparum-IRBC cytoadherence dynamics with
Frontiers in Cellular and Infection Microbiology 05
these endothelial cells. Following the parasite-endothelial cell line

incubation, OSF-2 significantly increased the rosetting rates of P.

falciparum as expected (Wilcoxon matched-pairs signed rank test

W = 21; P = 0.03 for hCMEC/D3, HRGEC, HPMEC and HUVEC)

(Figures 2A, C, E, G, respectively). The IRBC-endothelial binding

was significantly lower when OSF-2 was supplied (Paired t-test: t =

12.60, df = 5, P < 0.0001 for hCMEC/D3; t = 20.17, df = 5, P < 0.0001

for HRGEC; t = 7.652, df = 5, P = 0.0006 for HPMEC; t = 8.92, df =

5, P = 0.0003 for HUVEC) (Figures 2B, D, F, H, respectively).
FIGURE 1

Characterization of OSF-2-mediated rosetting. (A, B) Rosetting rates of P. falciparum (A) and P. knowlesi (B) under different working concentrations
of OSF-2. Dotted lines indicated data collected from the same parasite culture batch with experiments performed on the same day. (C, D) OSF-2-
mediated rosetting of P. falciparum (C) and P. knowlesi (D) under conditions with different enrichment of human serum. (E, F) Effect of IRBC-trypsin
treatment on OSF-2-mediated rosetting for P. falciparum (E) and P. knowlesi (F). (G, H) Effect of human ABO blood groups on OSF-2-mediated
rosetting for P. falciparum (G) and P. knowlesi (H). Error bars in the plots represent mean and S.D.
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Similar OSF-2-mediated effect was observed with P. knowlesi

when tested with hCMEC/D3 (Figures 3A, B), HRGEC (Figures 3C,

D), HPMEC (Figures 3E, F), and HUVEC (Figures 3G, H). The

rosetting rates by the zoonotic parasite were significantly increased by

OSF-2 (Wilcoxon matched-pairs signed rank testW = 21; P = 0.03 for
Frontiers in Cellular and Infection Microbiology 06
hCMEC/D3, HRGEC, HPMEC and HUVEC) (Figures 3A, C, E, G,

respectively), whereas the P. knowlesi-IRBC-endothelial

cytoadherence was significantly reduced under OSF-2-supplied

settings (Wilcoxon matched-pairs signed rank test W = 21; P = 0.03

for hCMEC/D3, HRGEC, HPMEC and HUVEC) (Figures 3B, D, F,
FIGURE 2

Effect of OSF-2 on the P. falciparum-IRBC cytoadherence dynamics between URBC and endothelial cells. (A, B) Rosetting rates (A) and IRBC-endothelial
cytoadherence rates (B) from the experiments with hCMEC/D3. (C, D) Rosetting rates (C) and IRBC-endothelial cytoadherence rates (D) from the
experiments with HRGEC. (E, F) Rosetting rates (E) and IRBC-endothelial cytoadherence rates (F) from the experiments with HPMEC. (G, H) Rosetting
rates (G) and IRBC-endothelial cytoadherence rates (H) from the experiments with HUVEC. Error bars in the plots represent mean and S.D.
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H, respectively). Of note, at basal level, the P. falciparum IRBC-

endothelial binding rate was the highest with the brain-derived

hCMEC/D3, and the P. knowlesi IRBC-endothelial binding rate was

the highest with the umbilical cord-derived HUVEC. To sum up,
Frontiers in Cellular and Infection Microbiology 07
following the coincubation of OSF-2, IRBC, URBC, and endothelial

cells, the protein significantly increased the rosetting rates while

reducing the IRBC-endothelial cytoadherence with endothelial cell

lines derived from the brain, kidney, lung, and umbilical cord.
FIGURE 3

Effect of OSF-2 on the P. knowlesi-IRBC cytoadherence dynamics between URBC and endothelial cells. (A, B) Rosetting rates (A) and IRBC-
endothelial cytoadherence rates (B) from the experiments with hCMEC/D3. (C, D) Rosetting rates (C) and IRBC-endothelial cytoadherence rates (D)
from the experiments with HRGEC. Horizontal dotted line in (C) represents zero value (the detection limit of the assay). (E, F) Rosetting rates (E) and
IRBC-endothelial cytoadherence rates (F) from the experiments with HPMEC. (G, H) Rosetting rates (G) and IRBC-endothelial cytoadherence rates
(H) from the experiments with HUVEC. Error bars in the plots represent mean and S.D.
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4 Discussion

In this study, we characterized OSF-2 as a novel host-derived

factor that facilitates type II rosette formation by P. falciparum

and P. knowlesi. To date, other host-derived factors, including

IGFBP7, TSP-1, VWF, naturally occurring anti-band 3 Ig G,

CFD and Ig M, have been reported to promote type II rosette

formation (Clough et al., 1998; Rowe et al., 2002; Luginbühl

et al., 2007; Lee et al., 2020, 2022). OSF-2 exerts its rosette-

stimulatory effect at concentrations (150 ng/ml for P. knowlesi,

and 200 ng/ml for P. falciparum) that are consistent with those

reported in pathological conditions (Supplementary Table 2)

(Zhu et al., 2016; Ding et al., 2018). Of note, the range of OSF-2

concentrations tested in this study were based on various non-

malaria pathological conditions. Therefore, it is imperative to

investigate the serum OSF-2 level of malaria patients with

different disease severity in future.

The OSF-2-mediated rosette-stimulation is serum-dependent,

suggesting that other serum components are needed to facilitate the

rosette-stimulation induced by OSF-2. Notably, the presence of

human serum is also crucial for the IRBC surface expression of

cytoadherence ligands by P. falciparum (Langreth et al., 1979). The

importance of serum in the cytoadherence of P. knowlesi-IRBC has

also been documented (Lee et al., 2022c). However, it is important

to emphasize that, in this study, we observed that both species of

parasites could form rosettes under serum-free conditions

(Figures 1C, D), albeit of lower rosetting rates. This highlights the

complexity of rosetting in P. falciparum and P. knowlesi, where

different types of rosettes have varying formation requirements. In

addition, it is important to note that the basal rosetting rates by the

IRBC were relatively low. We did not perform any procedure to

concentrate the rosette-forming IRBC prior to the experiment, so

that the non-rosetting IRBC in basal condition were covered in

our investigations.

Various host-derived proteins have been deciphered as the

receptors that interact with the IRBC (Lee et al., 2022b),

including the blood group A and B antigens that have been

investigated intensively in the field of malaria cytoadherence

research (Carlson and Wahlgren, 1992; Chotivanich et al., 1998;

Barragan et al., 2000; Vigan-Womas et al., 2012; Hedberg et al.,

2021). Here, we ruled out the involvement of human A or B blood

group antigens in the OSF-2-mediated rosetting for P. falciparum

and P. knowlesi. Nevertheless, more in-depth investigations are

needed to decipher the actual receptors involved in the OSF-2-

mediated rosetting. Besides, the effect of OSF-2 on the expression

profile of various cytoadherence receptors by the endothelial cells

deserves to be investigated further. With regards to the parasite-

derived ligands involved in OSF-2-mediated rosetting, PfEMP1 is

likely the involving P. falciparum-derived ligands. Among the

discovered P. falciparum rosetting ligands, PfEMP1 is highly

sensitive to trypsin treatment (removed from the surface of the

IRBC after treatment of 10 µg/mL of trypsin), whereas ligands like

RIFIN and STEVOR are partially resistant to trypsin treatment

(require higher concentration of trypsin to be cleaved from the
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surface of the IRBC) (Fernandez et al., 1999; Kyes et al., 2000; Chan

et al., 2014; Niang et al., 2014; Bachmann et al., 2015; Goel et al.,

2015; Lee et al., 2020). Our approach with trypsin treatment on the

purified IRBC ruled out the involvement of STEVOR and RIFIN as

the ligands of OSF-2-mediated rosetting. Importantly, these

experiments did not place PfEMP1 as the only parasite-derived

IRBC surface protein that is involved in the OSF-2-mediated

cytoadherence. The cytoadherence ligands of P. knowlesi have yet

to be deciphered. Nevertheless, the P. knowlesi-derived ligands

involved in OSF-2-mediated rosetting are highly sensitive to

trypsin treatment.

From the basal IRBC-endothelial binding assays, both species of

malaria parasites demonstrated varied binding affinity to different

human endothelial cells. As demonstrated earlier (Lee et al., 2022c),

P. knowlesi had low affinity to the brain-derived hCMEC/D3

(Supplementary Figure 4A) as compared to other endothelial cell

types, whereas P. falciparum demonstrated the highest binding

affinity to hCMEC/D3 among the human endothelial cell lines

tested (Supplementary Figure 4B). Interestingly, P. knowlesi-IRBC

showed the highest binding affinity to the umbilical cord-derived

HUVEC. Although P. knowlesi infections during pregnancy are rare

(Barber et al., 2015), an experimental infection of P. knowlesi on

pregnant baboons revealed the accumulation of parasites in the

placenta (Onditi et al., 2015). Besides, the binding interaction

between P. knowlesi-IRBC and HUVEC has been documented

previously (Chuang et al., 2022).

As mentioned earlier, PfEMP1 mediates both the rosetting and

IRBC-endothelial binding by P. falciparum. In fact, IRBC with dual

cytoadherence properties have been reported (Kaul et al., 1991;

Udomsangpetch et al., 1992; Adams et al., 2014). Nevertheless, the

dynamics and equilibrium of these cytoadherence events remained

to be elucidated fully. Here, we demonstrated that the presence of

OSF-2 skewed the IRBC cytoadherence tropism towards the URBC

(via rosette formation), as compared to the endothelial cells. Given

that IRBC-endothelial cytoadherence can lead to endothelial

activation and injury, the reduced tendency of IRBC to interact

with endothelial cells under the presence of OSF-2 may alter the

pathogenesis route of malaria, hence the disease outcome of the

infection. OSF-2 may interact with the cytoadherence players (the

parasite-derived ligand and the host-derived receptors), and alter

the cytoadherence outcomes by either hampering the interaction

between the ligand and endothelial-specific receptors, or facilitating

rosette formation between IRBC and URBC, hence hampering the

binding of IRBC to endothelial cells due to steric hindrance.

Nevertheless, more studies are needed in future to decipher the

mechanisms of OSF-mediated changes to the Plasmodium-IRBC

cytoadherence dynamics. Besides, the OSF-2-mediated IRBC

cytoadherence changes should be investigated further to evaluate

its potential application as an adjunct treatment regime to reduce

the manifestation of severe malaria. Taken together, we reported the

involvement of OSF-2 as a novel host-derived factors of type II

rosetting and characterized the role of OSF-2 in the IRBC

cytoadherence dynamics between URBC and endothelial cells for

P. falciparum and P. knowlesi.
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