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and Technology, Wuhan, Hubei, China, 3Hubei Provincial Engineering Research Center of Intestinal
Microecological Diagnostics, Therapeutics, and Clinical Translation, Wuhan, Hubei, China
Introduction: Sepsis remains a critical challenge in intensive care medicine,

necessitating novel therapeutic approaches.

Methods: In this study, healthy 8-week-old male C57BL/6J mice were treated

with cecal ligation and puncture (CLP) to induce a sepsis model. After successful

model establishment, mice in the sham and CLP groups were injected with 200

mL of normal saline, while mice in the SFI group were injected with 200 mL of SFI.

Changes in intestinal mucosal barrier function, inflammation, and intestinal

microbiota were assessed in septic mice after SFI treatment.

Results: SFI treatment significantly ameliorated intestinal inflammation and

reduced serum levels of pro-inflammatory cytokines (IL-1b, IL-6) and renal

injury markers (SCr, BUN). 16S rRNA sequencing revealed SFI-mediated gut

microbial remodeling, characterized by a marked reduction in pathogenic

Escherichia-Shigella abundance and concurrent enrichment of beneficial

probiotics, including Akkermansia and Lactobacillus. Mechanistically, SFI

exhibited dual regulatory effects on both systemic inflammation and gut

microbiota homeostasis.

Discussion: These findings not only validate SFI's efficacy in sepsis treatment but

also propose a novel mechanism involving gut microbiome modulation. This

study provides critical experimental evidence for repurposing traditional Chinese

medicine in sepsis therapy and establishes a foundation for future research on

microbiota-targeted interventions in critical care.
KEYWORDS
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1 Introduction

Sepsis is a systemic inflammatory response syndrome (SIRS)

caused by infection with a complex pathogenesis, and it is one of the

main causes of death in critically ill patients (Meyer and Prescott,

2024; Klingensmith and Coopersmith, 2023). According to the

international consensus (Sepsis-3 definition), sepsis is defined as a

dysregulated host response to infection, accompanied by a

Sequential Organ Failure Assessment (SOFA) score ≥2 (Seymour

et al., 2016). The core pathological mechanism of sepsis is that after

the invasion of pathogens, the body excessively releases

inflammatory mediators and cytokines, triggering an imbalance

between systemic inflammatory and anti-inflammatory responses,

causing vascular endothelial damage, microcirculation disorders,

and abnormal cell metabolism, ultimately leading to multiple organ

failure (Dobson et al., 2024; Hotchkiss and Karl, 2003; Hunt, 2019;

Shankar-Hari et al., 2016). In addition, patients with sepsis often

have reduced intestinal microbiota diversity, an increased

proportion of pathogenic bacteria (such as Escherichia coli and

Fusobacterium nucleatum), and a decrease in beneficial bacteria

(such as Bifidobacterium and Lactobacillus) (Haak and Wiersinga,

2017). Many studies have reported that the intestinal immunity

plays an important role in the development of many diseases like

systemic inflammatory response syndrome, and sepsis, and

(multiple organ dysfunction) MODS (Brandt et al., 2022; Oami

et al., 2024; Ge et al., 2020). Moreover, it was reported that Claudin-

2 upregulation enhanced the intestinal permeability, immune

activation, dysbiosis, and mortality in sepsis (Oami et al., 2024).

Therefore, it is increasingly urgent to study the effects of sepsis on

the intestinal immunity.

Intestinal microbiota is an important factor affecting intestinal

immunity, imbalance of microbiota causes pathogen-associated

molecular patterns (such as LPS) to enter the blood circulation

through the damaged intestinal barrier, activate the Toll-like

receptor (TLR4/2) signaling pathway, trigger excessive

inflammatory response (such as TNF-a, IL - 6 release), and then

cause systemic inflammatory response syndrome (SIRS) andMODS

(Adelman et al., 2020; Kullberg et al., 2021). In addition, intestinal

flora imbalance can lead to reduced expression of tight junction

proteins and increased intestinal permeability, allowing bacteria

and endotoxins to translocate to extraintestinal organs (Gai et al.,

2021). For example, LPS released by Gram-negative bacteria enters

the liver through the portal vein, activates Kupffer cells to release

inflammatory factors, and aggravates sepsis-related liver damage

and systemic inflammatory responses (Liu et al., 2023; Luan et al.,

2024). Short-chain fatty acids (SCFAs, such as butyrate) produced

by intestinal metabolism have anti-inflammatory effects, inhibit the

NF-kB pathway and promote the differentiation of regulatory T

cells. The level of SCFAs in the intestine of patients with sepsis is

reduced, leading to imbalanced immune regulation and

uncontrolled inflammatory response (Lou et al., 2023). And it was

reported that the composition of the intestinal microbiome is

affected by sepsis, and might contribute to the development of

organ failure (Haak and Wiersinga, 2017). Therefore, restoring the

balance of the microbiota is a key target for the treatment of sepsis.
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Shenfu injection (SFI) is a traditional Chinese medicine

containing extracts of red ginseng (Panax), aconite root (Radix

aconiti lateralis preparata) and black monkshood (Aconitum)

(Yang et al., 2014; Xu et al., 2024). It has been reported that SFI

has a variety of anti-inflammatory, anti-apoptosis, anti-oxidation

and regulation of innate immunity (Hong et al., 2015; Zhao et al.,

2022). When administered clinically, it has been reported to inhibit

excessive inflammatory responses (such as reducing TNF-a and IL -

6 levels) and alleviate the “inflammatory storm” in sepsis (Yang

et al., 2014; Luo et al., 2021; Li et al., 2022; Xu et al., 2022).

Traditionally, SFI is used to enhance myocardial contractility,

dilate peripheral blood vessels, and increase blood pressure, and

has the effects of improving circulation and resisting shock (Xu

et al., 2024). It is reported that the mechanism of action of SFI

includes restoring hemodynamic stability, increasing tissue oxygen

part ia l pressure and oxygen content , and improving

microcirculation and tissue metabolism. Therefore, SFI can

promote shock resuscitation (Liu et al., 2015; Hua et al., 2024).

SFI has also been shown to improve tissue function and

hemodynamic status in heart failure and exert potent anti-

endotoxin, anti-inflammatory effects and act as a potent oxygen

free radical scavenger (Li et al., 2014; Zhao et al., 2025). In addition,

studies have shown that SFI can alleviate the “inflammatory storm”

in sepsis by inhibiting excessive inflammatory responses (such as

reducing TNF-a and IL - 6 levels) (Jin et al., 2018; Wu et al., 2015;

Xing et al., 2015; Yang et al., 2025). However, the effects of SFI on

the gut microbiota remain largely unknown.

In this study, SFI was administered to septic mice to investigate

its effects on gut microbiota alterations. A severe sepsis model was

established via cecal ligation and puncture (CLP), followed by

intravenous SFI administration. We systematically assessed

intestinal epithelial integrity, inflammatory cytokine levels (e.g., IL

- 1b, IL - 6) to evaluate SFI’s potential intestinal protective effects.

High-throughput sequencing was employed to characterize gut

microbiome dynamics, with particular attention to changes in

dominant taxa. Our multimodal approach combining

histopathological analysis, cytokine profiling, and 16S rDNA

sequencing collectively contributes to a deeper understanding of

SFI’s therapeutic mechanisms in sepsis management, particularly its

role in microbiota-host crosstalk. This study provides valuable

insights for developing microbiota-targeted adjuvant therapies for

septic patients.
2 Materials and methods

2.1 Animals

All experiments were conducted with the consent of the

hospital’s animal ethics committee with the approval number

BSMS 2025 - 04-25A. Healthy 8-week-old male C57BL/6J mice

(25.0g ± 5.0g) were housed in our hospital’s experimental animal

center, with a temperature of 20°C ± 1°C, humidity of 50% to 60%,

under a 12:12 light/dark cycle, and a ventilation rate of 8 to 15 times

per hour. Using a randomized complete block design, mice were
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divided randomly into 3 groups of 15: sham operation group

(Sham), severe sepsis group (CLP), and Shenfu injection

group (SFI).
2.2 Animal model establishment and
intervention

Severe sepsis model was induced by CLP, as previously

described (Rittirsch et al., 2009). Briefly, on the day before CLP

surgery, the mice were fasted for 12 hours. After weighing, they

were anesthetized with 40mg/kg pentobarbital sodium. Under

sterile conditions, a small amount of feces was extruded.

Immediately after surgery, the animals were subcutaneously

injected with 50 mL/kg body weight of physiological saline to

counteract shock, and then returned to their cages. Fifteen

minutes later, mice in the sham group and CLP group received

200 mL of normal saline, whereas SFI-treated animals were

administered 200 mL SFI. The mice were treated through tail vein

injections. After the procedure, the mice were kept in an

environment at 22°C with unlimited access to food and water.

They were observed until they recovered from anesthesia, then

every 2 hours until 8 hours after surgery. Disease severity was

assessed using the Mouse Clinical Assessment Score (M-CASS)

method as reported previously (Mai et al., 2018). Briefly, the most

severe sepsis is manifested by the coat being shaggy and erect, the

posture being hunched, there being little or no movement,

breathing being labored, eyelid and chest movements being

mostly or completely closed, there being a strong fishy odor from

the abdominal cavity, the intestine being obviously congested and

edematous, and the ligated cecum being dark purple. Moderate

sepsis is manifested by shaggy fur, an arched back, tense or stiff

when disturbed or stimulated, and moderate dyspnea. Mild sepsis is

manifested by normal behavior and normal appetite. The coat is

slightly shaggy, activity is reduced, the back is arched, and behavior

and movements are slowed, with mild dyspnea.
2.3 Specimen collection

Sixteen hours after surgery, all live mice were anesthetized with

0.3% pentobarbital sodium. The eye blood sample was collected as

follows: the mice was fixed on the experimental table, the head and

body were kept stable, the eyes were disinfected, the blood vessels

were cut at the base of the eyeball with ophthalmic scissors, and

then the blood was gently squeezed out. The collected blood sample

was placed in a test tube containing heparin anticoagulant and

gently shaken to prevent blood coagulation, then the abdominal

cavity was opened. The whole intestine was removed and rinsed

with PBS and then divided into two parts. One part was fixed in 4%

paraformaldehyde for histological observation, and the other was

used for subsequent biochemical analysis. The flushed contents of

large intestine were collected in Eppendorf tubes for subsequent

intestinal flora analysis. All operations were performed in a

sterile environment.
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2.4 Histological observation

Intestine tissues fixed in 4% paraformaldehyde were maintained

in 10% neutral formalin buffer solution for 24h at room

temperature, dehydrated in wax, and embedded in paraffin wax

(JB-P5, Wuhan Junjie Electronics Co., Ltd, China). Sections were

cut at a thickness of 4 mm with a paraffin sectioning machine

(RM2016, Shanghai Leica Instrument, China) and stained with

H&E. Observations were made with a microscope camera Nikon

Eclipse E10 (Nikon, Japan).
2.5 Biochemical analysis

The blood samples were collected and centrifuged at 3,500 rpm

for 10 minutes at 4°C and the serum was harvested. Serum

interleukin (IL)-1b, IL - 6, serum creatinine (SCr), and blood urea

nitrogen (BUN) were measured using enzyme-l inked

immunosorbent assay (Wuhan Beiyinlai Biotechnology Co., Ltd.),

according to the manufacturer’s instructions.

2.6 DNA extraction, PCR amplification, and
sequencing

Genomic DNA from the gut contents was extracted using the

TIANamp Stool DNA Kit (Beijing Tiangen Biotechnology Co., Ltd.)

according to the manufacturer’s instructions. Extracted DNA were

assessed using 1% agarose gel electrophoresis and a NanoDrop 2000

spectrophotometer. Genomic DNA was used as a template to

amplify the V3-V4 region of the 16S rRNA gene using the

barcode universal primer 341F (5’-CCTACGGGNGGCWGCAG-

3’) and 806R (5’-GACTACHVGGGTATCTAATCC-3’). The

amplification products were sequenced by a commercial company

using Illumina NovaSeq PE250.

2.7 Bioinformatics and data analysis

Raw data from the Illumina platform were filtered using FASTP

(v0.18.0), and all obtained sequences were classified according to

the corresponding unique barcode. Reads from each sample were

spliced using FLASH (v1.2.7), and the spliced sequences were

processed by Fastp software (Bokulich et al., 2013) to obtain

high-quality reads. High-quality sequences were aligned with the

Species Annotation Database (https://github.com/torognes/

vsearch/) to detect chimeric sequences, and chimeric sequences

were finally removed using the UCHIME algorithm (Edgar et al.,

2011). Sequences were clustered into operational taxonomic units

(OTUs) using UPARSE software (v7.0.1001) with 97% identity as a

threshold (Edgar, 2013). Alpha diversity indices were calculated

using QIIME (v1.9.1) (Caporaso et al., 2010). For the beta diversity

index, the principal coordinate analysis (PCoA) was performed

using the UniFrac web tool (Lozupone et al., 2006). To assess overall

differences in microbial community structure, principal coordinate

analysis (PCoA)and cluster analysis using Bray- Curtis distances

were conducted, and microbial community functional profiles were
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inferred with PICRUSt version 1.0.0 (Langille et al., 2013). Bacterial

community profile data were statistically analyzed with one-way

analysis of variance (ANOVA) followed by a Tukey’s test in SPSS

19.0 (IBM Corporation, Armonk, NY, USA).

Data presented are pooled from three independent experiments.

Values of the results are presented with mean ± SEM. Statistical

analyses were performed with GraphPad Prism (v 10.0).

Comparisons between two independent groups employed either

the independent samples t-test (for homogeneous variances) or the

Satterthwaite t-test (for heterogeneous variances). When comparing

three or more independent groups, a one-way ANOVA was

executed, with subsequent pairwise comparisons made using

Tukey’s method. Repeated measures data were analyzed using

repeated measures ANOVA. The differences were considered

statistically significant at P<0.05.
3 Results

3.1 Establishment of a mice model of
sepsis

During the 16-hour postoperative observation period, no mice

died. Mice in the sham group exhibited typical behavior, were
Frontiers in Cellular and Infection Microbiology 04
responsive, had shiny fur, regular bowel movements, and displayed

no signs of intestinal hyperemia or edema. Mice in the CLP group

displayed altered behavior, manifested as unkempt and upright fur,

slow reactions, difficulty breathing, decreased appetite, loose stools,

dark fur, and bloody ascites. The abdominal cavity emitted a strong

fishy odor, the intestinal congestion and edema were obvious, and

the ligated cecum was dark purple. Furthermore, mice in the SFI

groups showed minimal differences in sham group. They exhibited

typical behavior and maintained a normal appetite. However, they

had formless stools, dull hair, and ascites.
3.2 The beneficial impact of Shenfu
injection on the intestinal mucosal barrier
in septic mice

In the sham group mice, it was observed that the intestinal villi

were abundant in number and uniform in length on the surface of

the intestinal tissue, with a single layer of columnar epithelium and

normal morphology and structure (Figure 1A). However, in mice in

the CLP group, mucosal epithelial cells were necrotic and sloughed

off, and a large amount of necrotic cell debris was seen in the

intestinal lumen (Figure 1B). In addition, after treatment with

ginseng and aconite injection, the intestinal tissue returned to
FIGURE 1

Histological comparison of intestinal tissue in three conditions: (A) Sham with normal tissue structure, (B) CLP showing tissue damage and
inflammation, (C) SFI exhibiting reduced damage. Each condition features a small-scale image with a detailed magnified section highlighting tissue
morphology. Scale bars indicate 1 millimeter and 200 micrometers.
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normal levels, with abundant and uniform intestinal villi on the

surface, a single layer of columnar epithelium, and occasional

necrosis and shedding of mucosal epithelial cells (Figure 1C).
3.3 The effects of Shenfu injection on the
of mice inflammation with sepsis

In order to assessment of sepsis and organ dysfunction, we

studied the inflammatory factors in the blood of mice. The
Frontiers in Cellular and Infection Microbiology 05
concentration of blood inflammatory factors after successful

model establishment are shown in Figure 2. The results showed

that compared with the sham group, the CLP group significantly

increased the concentrations of IL - 1b (8.9-fold), IL - 6 (344.6-fold),
SCr (5.5-fold) and BUN (4.4-fold) (P<0.05). However, compared

with the untreated group (CLP group), shenfu administration group

(SFI group) significantly reduced the concentrations of IL - 1b
(10.3-fold), IL - 6 (3.8-fold), SCr (4.5-fold) and BUN (3.3-fold)

(P<0.05). In addition, the concentrations of IL - 1b, IL - 6, SCr and

BUN in the CLP group were significantly higher than those in the
FIGURE 2

Comparison of biochemical indices in mice 16 hours after surgery. Levels of interleukin-1b (A), interleukin-6 (B), blood urea nitrogen (C) and serum
creatinine (D) in the serum. The all data are shown as the mean±S.D. of least five independent replicates and analyzed by one-way ANOVA with
Tukey’s post hoc test. P<0.01, P<0.001, ***P<0.0001 and and “ns” means “P>0.05”.
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sham group (P<0.05), while there were no significant differences in

the concentrations of IL - 1b, SCr and BUN between the SFI group

and the sham group.
3.4 Microbial diversity

The microbial complexity in the three groups was estimated

using alpha diversity index, including richness estimators

(Observed ASV) and diversity indexes (Shannon and Simpson

index). The result of Observed ASV showed there were

significantly differences between the sham and SFI or CLP (P

<0.05) (Figure 3A), and significant differences of Shannon and

Simpson Index were found between Sham and SFI (Figures 3B, C).

Using Tukey and Wilcoxon tests, beta diversity index showed a

significant difference between sham and CLP (P = 0.00 and 0.00,

respectively), but no significant difference between SFI and sham (P

>0.05). According to A principal coordinate analysis (PCoA) result

(based on weighted UniFrac distance matrixes), the similarity

among the microbial community composition of the samples
Frontiers in Cellular and Infection Microbiology 06
were estimated (Figure 3D). Based on PCoA results, it was found

that there were obvious differences in the bacterial community

composition between the sham group compared to the CLP group,

which indicated that the mice injected with CLP significantly

changed the composition of intestinal microbiome, while when

treated with Shenfu, more similarity was found in that composition

between the sham and SFI groups, which showed that Shenfu

injection could effectively regulate the disturbance of

intestinal microbiome.
3.5 Microbial composition

To further investigate the effect of SFI treatment on sepsis, the

differences in phylum and genus levels were analyzed. At the

phylum level, Firmicutes, Proteobacteria, Bacteroidota,

Verrucomicrobiota, and Actinobacteriota were predominant

(together accounting for 95.6, 94.9, and 93.7% of the microbiota

in the sham, CLP, and SFI, respectively). The relative abundance of

dominant phyla changed 16 hours after CLP surgery. Compared
FIGURE 3

Alpha diversity estimators and bacterial community composition of gut microbiota in mice 16 hours after surgery. (A–C) Alpha diversity estimators:
Observed ASV (A), Shannon (B), and Simpson (C). Differences are determined by one-way ANOVA analysis (with P < 0.05). A non-significant
difference is indicated with “ns.”. (D) Principal coordinate analysis (PCoA) (PCoA1: 33.2% and CoA2: 23.6% of the explained variance). Each dot shows
a single sample (Sham, CLP, and SFI indicate the samples from sham operation group, severe sepsis group, and Shenfu injection group, respectively).
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with the sham group, the CLP group significantly increased the

levels of Proteobacteria and Desulfobacterota and significantly

decreased the levels of Firmicutes, Actinobacteriota, and

Nitrospirota (P< 0.05). In the SFI-treated group, the most

significant change was a significant increase in the level of

Firmicutes and a significant decrease in the level of Proteobacteria

compared with the CLP group (P< 0.05). In addition, the SFI-

t r ea t ed group s i gn ifican t l y inc rea sed the l eve l s o f

Verrucomicrobiota and Proteobacteria and significantly decreased

the level of Actinobacteriota compared with the sham group (P<

0.05) (Figure 4A).

At the genus level, the dominant genera were classified as

Escherichia-Shigell, Akkermansia, Lactobacillus, Bacteroides,

Alistipes, Klebsiella, Bacillus, Prevotella, Lachnospiraceae

NK4A136 group and Mucispirillum (together accounting for

29.45%, 44.50%, and 43.76% of the microbiota in the sham, CLP,

and SFI groups, respectively). Sixteen hours after CLP surgery, the

CLP group significantly increased the levels of Klebsiella and

Alistipes, and significantly decreased the levels of Bacillus,

Lactobacillus, Bacteroides, and Prevotella compared with the sham

group (P< 0.05). In the SFI-treated groups, the SFI group

significantly increased the levels of Lactobacillus, Mucispirillum,

and Lachnospiraceae NK4A136 group, and significantly decreased

the level of Escherichia-Shigella compared with the CLP group (P<

0.05). In addition, the abundance of Akkermansia and Lactobacillus

was significantly increased, while the abundance of Bacteroides and

Bacillus was significantly decreased in the SFI group compared with

the sham group (P< 0.05) (Figure 4B).

Linear discriminant analysis (LDA) effect size (LEfSe) analysis

(LDA score > 2.0) was performed to identify specific taxa that

contributed to the differences between the three populations

(Figure 4). A total of 60 bacterial taxa (49 in the sham group; 1 in

the CLP group; and 10 in the SFI group) showed differences

between the three populations (Figure 5A). Firmicutes and

Bacil lales were enriched in the control group, while

Staphylococcus were enriched in the CLP group, and
Frontiers in Cellular and Infection Microbiology 07
Muribaculaceae and Bacteria were enriched in the SFI group.

Specifically, Muribaculaceae and Erysipelatoclostridium were

enriched in the SFI, while Staphylococcus were enriched in the

CLP. Cladogram analysis also revealed differences in bacterial taxa

between the experimental groups (Figure 5B).
3.6 Associations between gut microbiota
and inflammation

Spearman’s correlation analysis was used to determine the

relationships between differentially abundant taxa (at the genus

levels) and inflammation (Figure 6). The result showed that the

expression level of IL - 1b was negatively correlated with the relative

abundance of Enterococcus (Spearman’s r [rs] = -0.40, P = 0.04). IL

- 6 had a significant positive correlation with the relative abundance

of Ruminococcus (rs = 0.42, P = 0.04) andOdoribacter (rs = 0.40, P =

0.04), while negatively correlated with Enterococcus and

Staphylococcus. Furthermore, a strong positive correlation was

observed between SCR and Enterococcus (rs = -0.49, P = 0.01).
4 Discussion

In this study, a model of severe sepsis was established in mice

using CLP (Rittirsch et al., 2009), and the effects of drug

administration on intestinal epithelial cells and inflammation to

assess whether SFI can restore the balance of the microbiota. Cecal

ligation and puncture resulted in elevated heart rate, body

temperature, and white blood cell, indicating systemic

inflammation, which was not detected in the sham surgery. It also

significantly increased serum levels of IL - 1b and IL - 6, liver and

kidney function markers BUN and SCr levels. This model meets the

criteria of the Diagnosis and Treatment Guidelines for Sepsis: 2012

(Dellinger et al., 2013), indicating that a severe sepsis mice model

was successfully established.
FIGURE 4

Composition of gut microbiota in mice 16 hours after surgery of CLP and SFI, as well as in the Sham group. (A) Phylum level. (B) Genus level.
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Severe trauma or sepsis can induce accelerated apoptosis of

intestinal mucosal epithelial cells, lamina propria lymphocytes, and

eosinophils, thereby destroying the integrity of the intestinal barrier,

leading to abnormally increased mucosal permeability and

translocation of intestinal microbiota (Hotchkiss et al., 2016; Tao

et al., 2024; Wang et al., 2024a; Yan et al., 2025). In the severe sepsis

model that we established, the intestinal morphology changed

significantly 16 hours after CLP surgery, with a large amount of

necrotic cell fragments, necrotic and detached epithelial cells, and a

small amount of capillary congestion observed in the intestinal

cavity. These observations may be attributed to sepsis-induced

systemic blood flow redistribution, which can lead to intestinal

microcirculatory hypoperfusion, followed by hypoxic injury of

intestinal mucosal epithelial cells (Duess et al., 2023). This

pathological process further leads to increased mucosal

endothelial permeability, enhanced leukocyte-endothelial cell

adhesion, and degradation of tight junction proteins, ultimately

resulting in dual dysfunction of the intestinal mechanical barrier

and immune barrier (King et al., 2014).
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In addition, in the early stage of sepsis, the NF-kB signaling

cascade, triggers the positive feedback release of pro-inflammatory

factors such as IL - 1b, IL - 6, and PAF, and upregulates the

secondary infiltration of neutrophils mediated by IL - 8, forming an

“inflammation-coagulation vicious cycle”, which ultimately leads to

intestinal barrier collapse and multiple organ dysfunction (Kurt

et al., 2007; Sun et al., 2021; Wang et al., 2021). As observed in our

model, injury and bleeding may accelerate the inflammatory

response of intestinal epithelial cells. At 8 h after CLP surgery,

the levels of IL - 1b and IL - 6 in intestinal epithelial cells in the CLP

group were significantly higher than those in the control group. SFI

has previously been reported to alleviate inflammatory responses by

inhibiting the NF-kB pathway (Liu et al., 2019; Wang et al., 2024b).

In our model, SFI improved CLP-induced inflammatory responses

by reducing IL - 1b and IL - 6 levels.

In patients with sepsis, serum creatinine (SCr) and blood urea

nitrogen (BUN) are important indicators of renal function damage

and are closely related to the severity and prognosis of the disease.

Studies have shown that the BUN level of patients with sepsis is
frontiersin.or
FIGURE 5

Characterization of gut microbiota in mice 16 hours after surgery of CLP and SFI, as well as in the Sham by LDA and LEfSe analysis. (A) Histogram of
the LDA scores (log10) calculated for features differentially abundant in control, GOS, and RS samples (with LDA scores> 2.0). (B) Bacterial taxa
differentially represented among groups identified by LEfSe.
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significantly higher than that of patients without sepsis (Gao et al.,

2012; Min et al., 2022). Although there is no statistical difference in

SCr between the two groups, it is positively correlated with

oxidative stress factors such as malondialdehyde (MDA) and

nitric oxide (NO), indicating that oxidative stress may aggravate

renal function damage. The systemic inflammatory response and

microcirculatory disorders caused by sepsis can lead to acute kidney

injury (AKI), which in turn increases SCr and BUN, reflecting

decreased glomerular filtration rate and azotemia (Costa et al., 2016;

Qiu et al., 2019). In addition, the increase in BUN may also be

related to a high metabolic state, increased protein breakdown, and

insufficient renal perfusion. In our model, SCr and BUN levels in

the blood were significantly increased by 5.5-fold and 4.4-fold at 16

h after CLP surgery. SFI significantly reduced SCr and BUN levels.

These results suggest that SFI can prevent renal injury by regulating

SCr and BUN levels, an observation previously reported in a rat

model of intestinal ischemia-reperfusion (Hua et al., 2024) and

heart failure (Zhao et al., 2020) after SFI into intestinal and

cardiac tissues.
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The intestine has long been considered a key factor in multiple

organ dysfunction syndrome (MODS) (Klingensmith and

Coopersmith, 2016; Mittal and Coopersmith, 2014; Van Coillie

et al., 2022). Maintaining intestinal and systemic immune

homeostasis depends on a balanced microbiota, and an imbalance

in the intestinal microbiota may increase an individual’s risk of sepsis

(Haak and Wiersinga, 2017). Regulating the intestinal flora may

become a new direction for the treatment of sepsis (Haak et al., 2018).

In critically ill patients, dysbiosis is common, manifested by a

decrease in the number of “beneficial” commensal bacteria (such as

Firmicutes or Bacteroidetes) and an enrichment of potentially

pathogenic intestinal bacteria (such as Proteobacteria) (Sun et al.,

2022; Wozniak et al., 2022). The abundance of Proteobacteria may

become a potential indicator for disease diagnosis (Rizzatti et al.,

2017; Shin et al., 2015). In addition, the intestinal microbiota is able to

prevent foreign microorganisms from colonizing the gastrointestinal

tract, a phenomenon known as “colonization resistance” (Kim et al.,

2017). Studies have shown that Escherichia coli, Proteobacterium, and

Enterobacter may cause bacteremia in frail patients because these
FIGURE 6

A heat map of Spearman’s correlation coefficients. Correlation between the abundance of key microbial taxa (at the genus levels) and the levels of
inflammatory factors (IL-1b, IL-6, SCr and BUN) in mice 16 hours after surgery. Red and blue colors indicate positive and negative correlation
coefficients, respectively. Significant correlations (P< 0.05) are indicated with an asterisk.
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intestinal bacteria are more prone to translocation, especially obligate

anaerobes (Girard and Ely, 2007; Hyernard et al., 2019). Our study

showed that there were significant differences in the intestinal

microbial composition between the sham and CLP groups. As

expected, Shenfu could regulate the abundance of Muribaculaceae,

Lachnospirales, Escherichia-Shigella, and other bacteria, restoring

them to levels similar to those in healthy mice. Escherichia-Shigella

may cause sepsis-associated inflammation due to its ability to invade

and damage the human colonic epithelium (Azimirad et al., 2020).

Lachnospirales are butyrate-producing bacteria, anaerobes with

probiotic properties, and play specific roles in metabolic diseases,

inflammatory environments, and biotransformations (Xia et al., 2023;

Yang et al., 2024). Muribaculaceae was significantly reduced in

abundance in colitis mice and has an important role in microbiota

homeostasis (Niu et al., 2022; Zhu et al., 2024). In addition,

Interleukins can also interact with the microbiota in certain

circumstances. For example, gut microbiota can influence the

concentration of bile acid and the level of interleukin-22 to

orchestrate polycystic ovary syndrome (Qi et al., 2019),

Akkermansia muciniphila can improves cognitive function in aged

mice by reducing the proinflammatory cytokine IL - 6 (Zhu et al.,

2023). In this study, Enterococcus were significantly positive

correlated with IL - 1b, IL - 6, SCR. A previous study has reported

that antimicrobial overproduction sustains intestinal inflammation

by inhibiting Enterococcus colonization (Jang et al., 2023), which

demonstrate the relationship between Enterococcus and

inflammation. In addition, the relative abundance changes of

Staphvlococcus, Ruminococcus, Odoribacten were also significantly

correlated with the expression of IL - 6, indicating that IL6 might be

able to regulate the diversity changes of the bacterial community. As

mentioned above, Shenfu can regulate the intestinal microbiota of

septic mice by increasing beneficial bacteria and reducing pathogenic

bacteria. However, although this article has to some extent

expounded on the role of SFI in regulating the intestinal flora, the

16-hour observation window can only capture the acute-phase

response and cannot reflect the long-term results. Therefore, in

subsequent research and applications, if SFI is to be used clinically,

further in-depth studies on its mechanism of action are still necessary.
5 Conclusions

In conclusion, this study established a cecal ligation and

puncture (CLP) model to evaluate the therapeutic effects of

Shenfu Injection (SFI) in sepsis management. The experimental

results demonstrated that SFI administration significantly

attenuated intestinal inflammation and reduced serum levels of

pro-inflammatory mediators, including IL - 1b, IL - 6, SCr, and

BUN. Furthermore, microbial analysis revealed that SFI treatment

effectively modulated gut microbiota composition by decreasing the

relative abundance of pathogenic bacteria (particularly Escherichia-

Shigella) while enhancing probiotic populations, notably

Akkermansia and Lactobacillus species. These findings collectively

indicate the therapeutic potential of SFI in sepsis treatment through

dual mechanisms of inflammatory response mitigation and gut
Frontiers in Cellular and Infection Microbiology 10
microbiota regulation. Notably, this investigation provides a

valuable foundation for future mechanistic studies exploring SFI-

mediated sepsis management via intestinal microbiome

modulation, potentially informing the development of novel

therapeutic strategies for critical care medicine.
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