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signature for active
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and Xingan Xing1,3*

1Yaneng Bioscience Co. Ltd., Shenzhen, Guangdong, China, 2Department of Clinical Laboratory,
Jiangxi Provincial Chest Hospital, Nanchang, Jiangxi, China, 3School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou, Guangdong, China
Background: Tuberculosis (TB) diagnostics urgently require non-sputum

biomarkers to address the limitations of conventional methods in

distinguishing active TB (ATB) from latent infection (LTBI), healthy controls

(HCs), and TB-mimicking diseases (ODs, other diseases).

Methods: Transcriptomic data from GSE83456 and GSE152532 were combined

to form the selection dataset. Marker genes were identified from differentially

expressed autophagy-related genes using a Random Forest classifier. The

optimal gene signature was selected based on optimal performance through a

linear Support Vector Machine (SVM) classifier with cross-validation. The

signature was subsequently evaluated in six independent evaluation datasets

and validated using whole blood samples collected from 70 participants.

Results: We identified a novel four-gene autophagy-related signature (CASP1,

FAS, TRIM5, C5) in the selection dataset. This signature demonstrated robust

diagnostic accuracy across multiple evaluation datasets: Area Under the Curve

(AUC) 0.83–0.98 for ATB vs. LTBI and 0.82–0.94 for ATB vs. HCs. Crucially, it

maintained high specificity (AUC 0.89–0.90) against ODs. RT-qPCR validation in

whole blood samples confirmed elevated expression in ATB, while an SVMmodel

achieved promising differentiation (AUC 0.86 for ATB vs. LTBI and AUC 0.99 for

ATB vs. HCs).

Conclusions: Our findings yielded a four-gene signature in whole blood that is

robustly diagnostic for ATB, validated across multiple evaluation datasets and

clinical samples. The autophagy-driven specificity and PCR-compatible design of

this signature offer a blood-based, cost-effective strategy to enhance TB

detection, addressing WHO-aligned diagnostic needs.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(Mtb), remains a leading global cause of morbidity and mortality,

with an estimated 10.8 million new cases and 1.25 million deaths in

2023 (World Health Organization, 2024). Despite the intricate

interplay between Mtb replication and host immune defenses,

infected individuals may remain asymptomatic, or progress to

LTBI or ATB (Chandra et al., 2022). ATB poses a particularly

urgent challenge due to its high transmissibility and the limitations

of current diagnostic tools. Conventional sputum-based TB

diagnosis methods, such as sputum smear microscopy and

culture, exhibit low sensitivity and prolonged turnaround times,

while molecular assays like Xpert MTB/RIF, though rapid, depend

on sputum quality (Datta et al., 2017). Furthermore, existing

immunodiagnostic tests, such as tuberculin skin tests (TST) and

interferon-gamma release assays (IGRAs), cannot distinguish ATB

from LTBI or predict progression to disease (Carranza et al., 2020).

These gaps underscore the urgent need for non-sputum

biomarkers that reflect host-pathogen dynamics and enable early,

accurate diagnosis.

Recent advances in transcriptomics have identified blood-based

gene signatures as promising solutions. Early research identified a

393-gene signature in ATB through blood transcriptomic profiling

(Berry et al., 2010), which highlights the potential of blood-based

biomarkers. Subsequent studies identified a large number of

reduced gene number signatures for the diagnosis of ATB. For

instance, Sweeney3 (GBP5, DUSP3, and KLF2) discriminated ATB

from LTBI, healthy controls (HCs) and other diseases (OD) with

promising sensitivity and specificity across diverse cohorts

(Sweeney et al., 2016; Sutherland et al., 2022). Similarly, RISK6, a

6-gene signature, demonstrated robust performance for

distinguishing ATB in multi-country evaluations, meeting WHO

target product profiles for non-sputum triage tests (Penn-Nicholson

et al., 2020). However, transcriptomic signatures face critical

limitations. Their diagnostic accuracy diminishes in subclinical

TB and HIV-coinfected populations, while cross-reactivity with

viral infections and non-TB inflammatory conditions compromises

specificity (Turner et al., 2020; Mendelsohn et al., 2022). Validation

studies in real-world cohorts have demonstrated suboptimal

diagnostic accuracy of these signatures in clinical practice (Hoang

et al., 2021). These challenges underscore the need for identifying

novel transcriptomic signatures and optimizing gene combinations

to enhance accuracy and clinical utility in TB diagnosis.

Autophagy, a lysosomal degradation process essential for cellular

homeostasis, plays dual roles in clearing damaged organelles and

combating microbial invaders. During Mtb infection, autophagy acts

as a critical host defense mechanism by restricting intracellular

bacterial survival through phagolysosomal fusion and by delivering

pathogen-derived components to immune receptors (Kim et al.,

2019). Experimental models, including human macrophages and

murine systems, demonstrate that genetic ablation of autophagy-

related genes (ARGs) such as ATG5 and ATG7 exacerbates Mtb

replication and promotes necroptotic cell death, rendering hosts

more susceptible to infection (Gutierrez et al., 2004; Kimmey et al.,
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2015; Wang et al., 2023). Strategies to enhance autophagic flux have

shown promise in restricting the survival of Mtb (Pahari et al., 2020).

Conversely, Mtb subverts autophagy through virulence effectors (e.g.,

ESX-1, PDIMs), blocking autophagosome maturation to create a

permissive niche for intracellular replication and immune evasion

(Koster et al., 2017; Mittal et al., 2024). This tug-of-war underscores

autophagy’s centrality inMtb-host dynamics, with emerging evidence

suggesting that autophagy-related biomarkers could enhance

tuberculosis diagnostics by distinguishing latent from active

infection. Targeting this pathway may thus offer clinical

diagnostic benefits.

Here, we hypothesize that a combinatorial ARG signature in

peripheral blood can robustly discriminate ATB from LTBI, HC, and

OD. To address the critical unmet need for non-sputum biomarkers,

we integrated transcriptomic profiling of ARGs with machine learning-

driven feature selection, identifying a novel four-gene signature

(CASP1, FAS, TRIM5, and C5) through differential expression

analysis and random forest validation. This signature demonstrated

high diagnostic specificity for ATB across independent cohorts and

standardized RT-qPCR assays. By bridging autophagy biology and

clinical diagnostics, our work could deliver a blood-based signature as a

cost-effective and translatable tool for ATB detection, advancing

precision in global TB management.
Materials and methods

Data acquisition

Public transcriptomic datasets were retrieved from the Gene

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/),

using the search terms: “tuberculosis blood gene expression”,

“tuberculosis blood microarray”, and “tuberculosis blood RNAseq”.

Datasets were selected based on the following criteria: adult

whole-blood samples, genome-wide profiling platforms (microarray

or RNA sequencing), and exclusion of cohorts with small sample

sizes (<10 per group) or incomplete clinical annotations.

Two microarray datasets (GSE83456 and GSE152532) generated

on the Illumina Human HT-12 V4.0 Expression BeadChip were

chose as the selection datasets due to platform consistency and

sufficient sample size. For evaluation datasets, GSE107994,

GSE19439, GSE19444, and GSE28623 were selected to represent

ATB, LTBI, and HC, while GSE144127 and GSE42830 were

included to evaluate specificity against OD. All datasets excluded

individuals who pregnant, or participants aged <16 years. All datasets

except GSE144127 excluded immunosuppressed individuals and

patients receiving antimycobacterial therapy. GSE144127 contains a

small subgroup of participants with comorbidities (HIV, asthma,

diabetes, etc.). The characteristics of all datasets are summarized in

Table 1, and the study design is illustrated in Figure 1.

Autophagy-related genes (ARGs) were initially compiled from two

sources: the Human Autophagy Database (http://www.autophagy.lu/

index.html) and the GO_AUTOPHAGY gene set available on the

Gene Set Enrichment Analysis (GSEA) website (http://www.gsea-

msigdb.org/gsea/msigdb). A total of 531 ARGs were identified.
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Data pre-processing

To minimize technical noise and low-abundance signals, probes

with consistently low expression were systematically filtered. For each

dataset (GSE83456 and GSE152532), probes were first ranked by

expression intensity in all samples, then those consistently below the

50th percentile across these samples were excluded from further

analysis. The remaining data was then log2-transformed, quantile

normalized and merged with batch correction. Batch effect was

corrected by adjusting means and standard deviations for

individual probes on each dataset. As dataset GSE152532 does not

consist of LTBI samples, only data from TB samples and HC samples

was used to calculate means and standard deviations for correction.

These two metrics were first calculated for TB class and HC class and

then averaged as mean and deviation sets for each batch which were

then equalized between datasets in correction. This process generated

a selection dataset containing sufficient ATB, LTBI, and HC samples.

Based on the corrected probe expression level and annotations

provided by the microarray manufacturer, related data were

assigned to genes and the gene expression abondance was

obtained by averaging the related probe expression abondance. As

this study is focus on ARGs, the expression data was further filtered

with the 531 ARGs mentioned previously. As a result, expression

abundance for 395 ARGs were retained for next step analysis

(Supplementary Table S1).
Differential expression analysis

To identify the differentially expressed genes (DEGs),

moderated t-statistics were applied using the “limma” R package
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(v4.2.0, Bioconductor 3.18) within R version 4.3.1 to compare

differentially expressed autophagy-related genes (DE-ARGs)

expression profiles between ATB and LTBI/HCs groups in the

selection dataset. After applying the t-test, a Bonferroni correction

was performed to adjust for multiple comparisons, and a

significance level of 0.0001 was used to identify significant DE-

ARGs. The detailed list of DE-ARGs is provided in Supplementary

Table S2. Then, the intersection of DE-ARGs between the ATB vs

LTBI comparison and ATB vs HC comparison was identified for

further analysis and visualized using Venn diagrams. A heatmap of

the upregulated and downregulated DE-ARGs was generated using

“pheatmap” R package (v1.0.12).
Functional enrichment analysis

Gene Ontology (GO) functional annotations were performed

using the PANTHER knowledgebase (Release PANTHER18.0)

(https://geneontology.org/) with a significance cutoff of 0.05.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis was carried out using DAVID 6.8 under

default settings (gene count ≥4 and p<0.05). The most

significantly enriched GO terms and KEGG pathways were then

visualized with bubble and bar plots.
Screening marker genes with random
forest

We employed Random Forest (RF)–a supervised ensemble

learning method based on multiple classification trees generated
TABLE 1 Summary of GEO datasets used for selection and evaluation.

Usage Dataset Platforms Country
Age (mean,
range, years)

Gender
(Male/%)

ATB LTBI HC OD Comorbidities

Selection

GSE83456 Microarray UK 36 (18-82) 88(58%) 92 / 61 /
Negative for HIV, diabetes,
autoimmune diseases or

pulmonary system diseases

GSE152532 Microarray UK 28 (28-60) 63(65%) 17 69 11 /
Negative for HIV and any

other significant co-morbidity

Evaluation

GSE107994
High

throughput
sequencing

UK 38 (16-84) 103(59%) 53 72 50 /
Negative for HIV and any

other significant co-morbidity

GSE19439 Microarray UK 32 (20-52) 24(57%) 13 17 12 /
Negative for HIV, diabetes, or

autoimmune diseases

GSE19444 Microarray UK 37 (18-72) 31(57%) 21 21 12 /
Negative for HIV, diabetes, or

autoimmune diseases

GSE28623 Microarray Gambia 30 (16–54) 57(53%) 46 25 37 / Negative for HIV

GSE144127 Microarray UK 41 (16-87) 382(61%) 301 / / 327
HIV 45 (ATB 25, OD 20),

Asthma 54 (ATB 16, OD 38),
Diabetes 54 (ATB 15, OD 39)

GSE42830 Microarray UK 43 (20-72) 33(58%) 16 / / 41
Negative for HIV and any

other significant co-morbidity
GEO, Gene Expression Omnibus; ATB, active tuberculosis disease; LTBI, latent tuberculosis infection; HC, healthy control; OD, other diseases.
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from random subsets of features–to identify the most important

DE-ARGs. Specifically, the ‘randomForest’ R package (v4.6.14) was

used with ntree = 150. Gene importance was ranked according to

the mean decrease in accuracy and the mean decrease in Gini index,

and the top-ranked genes were selected as candidate marker genes.
Evaluation of the diagnostic potential of
the marker genes and signatures

To evaluate the diagnostic performance of individual marker

genes, we employed logistic regression (LR) with 5-fold cross-

validation using the “glmnet” R package (v4.1.8). Specifically, the

selection dataset was stratified into 5 folds, ensuring each fold

contained a minimum of 15 samples to maintain statistical power.

In each iteration, a LR model was trained on 4 folds and tested on

the remaining fold. For each fold, a Receiver Operating

Characteristic (ROC) curve was generated using the “pROC” R

package (v1.18.5), and its AUC was calculated. A mean ROC curve

was then obtained by averaging sensitivities at corresponding

specificity points across folds, and the mean AUC was reported as

the primary performance metric.

For multi-gene signature construction, candidate gene

combinations were identified using a linear Support Vector

Machine (SVM) classifier (R package e1071 v1.7.16) with k-fold

cross-validation applied to the all datasets for performance

evaluation. In each cross-validation iteration, an SVM model was

trained on (k-1) subgroups and validated on the remaining

subgroups. ROC curves and AUC values were computed in each
Frontiers in Cellular and Infection Microbiology 04
iteration, followed by calculation of a mean ROC curve and mean

AUC after all iterations. The optimal gene combination was selected

based on the highest cross-validation performance within the

selection dataset. To maintain the generalizability of our findings,

all SVM parameters except for the fold number of cross-validation

were deliberately kept identical across all datasets. The k-fold values

was adjusted with dataset size and variability control: k=3 for

GSE19439, GSE19444 and GSE42830; k=5 for the the selection

dataset, GSE107994, GSE28623 and GSE144127. Model

performance was evaluated on the evaluation datasets to assess

the signature’s ability to differentiate: ATB vs. LTBI, ATB vs. HC,

and, where applicable, ATB vs. other diseases (OD).
Study participants and sample collection

A total of 70 participants including 24 ATB patients, 22 LTBI

individuals, and 24 HCs were recruited from Jiangxi Provincial

Chest Hospital, Jiangxi, China. ATB samples were collected from

active pulmonary tuberculosis patients which confirmed by at least

one positive Mtb culture or nucleic acid amplification test of

sputum samples. LTBI patients were defined by positive T-

SPOT.TB results, no clinical symptoms of tuberculosis, no history

of tuberculosis, and normal chest X-ray. HCs were defined by

negative T-SPOT.TB results, no tuberculosis-related symptoms,

no history of tuberculosis, and normal chest X-ray. All

participants were aged 18–50 years. Individuals with HIV

infection, autoimmune illnesses, current immunosuppressive

therapies, pregnancy, non-TB pulmonary diseases, or recent

antimycobacterial treatment (within 6 months) were excluded.

Peripheral blood of 3 mL from each participant was collected in

heparinized Vacutainer tubes and stored at −80°C until analysis.

The study was approved by the Ethics Committee of Jiangxi

Provincial Chest Hospital, and all participants provided written

informed consent.
RNA isolation and reverse transcription
quantitative PCR analysis

The mRNA expression of candidate marker genes were

analyzed by Reverse Transcription quantitative PCR (RT-qPCR).

Total RNA was extracted using TRIzol reagent (Invitrogen, MA,

USA), according to the manufacturer’s instructions. Five microliters

of RNA were used in the One Step RT-qPCR Probe Kit (Q231,

Vazyme, Jiangsu, China), and RT-qPCR was carried out on a

SLAN-96S Real-time PCR System (Hongshi, Shanghai, China). b-
actin served as reference gene, and relative gene expression levels

were calculated using the 2^(-DDCT) method. Primer and TaqMan

probe sequences for all target genes are listed in the Supplementary

Table S3. Subsequently, expression data were analyzed by one-way

analysis of variance (ANOVA) followed by Tukey’s post hoc test for

multiple group comparisons, using GraphPad Prism 9.0.0

(GraphPad, USA), and a p-value < 0.05 was considered

statistically significant. Finally, to further assess the diagnostic
FIGURE 1

Flow chart of this study. ATB, active tuberculosis; LTBI, latent
tuberculosis infection; HC, healthy control; OD, other disease.
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utility of the ARG signature, we built a SVM model with 5-fold

cross-validation and used ROC curves to measure the ability of the

signature to differentiate ATB from LTBI or HC. The AUC was then

reported as the principal performance metric.
Results

DE-ARGs identification in ATB patients

Two microarray datasets (GSE83456 and GSE152532) were

merged to create a selection dataset containing 109 ATB, 69

LTBI, and 72 HC samples. Focusing on differentially expressed

autophagy-related genes (DE-ARGs), we identified 140 DE-ARGs

in ATB vs. HC (115 upregulated and 25 downregulated) and 29 DE-

ARGs in ATB vs. LTBI (28 upregulated and 1 downregulated)

(Figure 2A). As illustrated by the Venn diagram (Figure 2B), 28

genes (27 upregulated, 1 downregulated) were identified across ATB

vs. HCs and ATB vs. LTBI. A heatmap of these 28 genes showed

distinct clustering that clearly separates the ATB group from both

the LTBI and HC groups (Figure 2C).
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Functional enrichment analysis of DE-ARGs

The functions of the 28 identified DE-ARGs were explored

through GO and KEGG pathway enrichment analyses. GO analysis

showed significant enrichment of DE-ARGs in Biological Process

(BP) terms such as ‘autophagy’, ‘defense response’, ‘response to

stress’, ‘response to external stimulus’, ‘immune system process’ and

‘immune response’ (Figure 2D, upper panel). Furthermore, the

KEGG pathway enrichment analysis revealed significant

associations of these DE-ARGs with pathways including

‘autophagy-animal’, ‘necroptosis’, and ‘influenza’ (Figure 2D,

lower panel). These findings underscored the connection of the

28 DE-ARGs and immune regulation.
Identification of marker ARGs via random
forest classifier

To select reliable diagnostic markers for ATB, we constructed a

Random Forest (RF) model in the selection dataset and assessed the

importance of the 28 DE-ARGs according to mean decrease in
FIGURE 2

Identification of DE-ARGs among ATB, LTBI, and HC in the selection datasets. (A) The numbers of significantly up-regulated or down-regulated DE-
ARGs in the ATB vs. LTBI and ATB vs. HC comparisons. (B) Venn diagrams illustrating the intersection number of DE-ARGs between the two
comparisons. (C) Heatmap of relative gene expression levels of the 28 overlapping DE-ARGs across ATB, LTBI, and HC groups. Gene expression
were scaled using (x-mean)/mean to show relative expression above (red) or below (blue) the gene’s mean. (D) Bubble and bar plots display the top
enriched GO Biological Process terms (upper panel) and KEGG pathways (lower panel) for these DE-ARGs; for GO analysis, the top nine terms were
selected based on p-value ranking, while KEGG pathways with an overlap of more than five genes were included. DE-ARG, differentially expressed
autophagy-related gene; ATB, active tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control.
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accuracy (Figure 3A) and mean decrease in Gini (Figure 3B).

Nine genes were consistently ranked in the top 10 by both

metrics, namely FAS, C5, TRIM5, CASP1, CTSL, STAT2, DRAM1,

ATG3, and APOL1.
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We next evaluated the ability of each gene to distinguish ATB

from HC and ATB from LTBI in the selection dataset. As shown in

Figure 3C (ATB vs. HC), three genes (CASP1, STAT2 and FAS)

achieved AUC values above 0.9, while C5, ATG3, CTSL,DRAM1, and
FIGURE 3

Screening of marker ARGs for ATB using a Random Forest classifier and diagnostic performance evaluation in the selection dataset. (A) Mean decrease in
accuracy for each DE-ARG in the Random Forest model. (B) Mean decrease in Gini index for each DE-ARG in the Random Forest model. ROC curves
for distinguishing ATB from HC (C) and ATB from LTBI (D) using individual DE-ARGs. Sensitivity is plotted against 1-Specificity. Thin lines represent the
ROC curves for each fold; bold red lines indicate the mean ROC curve. Shaded regions represent standard deviation across folds. Mean AUC values
derived from 5-fold cross-validation are displayed for each comparison. DE-ARG, differentially expressed autophagy-related gene; ATB, active
tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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TRIM5 showed moderate performance (AUC 0.8-0.89) and APOL1

had a lower AUC of 0.77. For ATB vs. LTBI (Figure 3D), CASP1

again showed the highest AUC (0.79), whereas most of the remaining

genes ranged from 0.70 to 0.79, withAPOL1 showing the lowest AUC

of 0.70. In diagnostic accuracy studies, the AUC values are generally

interpreted as follows: 0.6-0.7 indicates poor discriminatory capacity,

0.7-0.8 indicates fair diagnostic performance, 0.8-0.9 indicates

considerable accuracy, and values above 0.9 indicates excellent

classification ability (Nahm, 2022). Given that APOL1 exhibited

AUC values below 0.8 in both the ATB vs. HC and ATB vs. LTBI

comparisons, this gene was excluded from subsequent analysis. Based

on these findings, FAS, C5, TRIM5, CASP1, CTSL, STAT2, DRAM1,

and ATG3 were collectively regarded as marker ARGs, with APOL1

excluded due to relatively lower performance.
Construction and evaluation of the ARG
signatures in ATB diagnosis

Then, we constructed ARG signatures from the eight marker

ARGs identified above. The evaluation of these signatures began

with CASP1, the gene with the highest individual performance in

the selection dataset. Additional marker ARGs were sequentially

added, each contributing the largest increase in the signature’s AUC

value at every step. As shown in Figure 4A, the combination of

CASP1, FAS, TRIM5, and C5 resulted in an AUC of 0.97 for

distinguishing ATB from HC, with no further improvement

observed by adding additional genes. For distinguishing ATB

from LTBI, the combination of CASP1, FAS, TRIM5, and C5

again achieved the highest AUC of 0.89, while the inclusion of

DRAM1, ATG3, and CTSL led to a decrease in the model’s

discriminatory ability. Based on these results, CASP1, FAS,
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TRIM5, and C5 were selected to construct a four-gene signature.

Furthermore, microarray data from the selection dataset

demonstrated a significant increase in mRNA expression levels of

CASP1, FAS, TRIM5, and C5 in the ATB group compared to both

LTBI and HC groups, supporting their utility as diagnostic markers

for ATB (Figure 4B).
Evaluation of the ARG signature for
predicting ATB versus LTBI/HC in
independent datasets

We evaluated the diagnostic performance of the four-gene ARG

signature in distinguishing ATB from LTBI and HC using four

independent evaluation datasets (GSE107994, GSE19439,

GSE19444, and GSE28623). ROC curve analysis was performed

for each dataset, as shown in Figure 5A. The four-gene signature

demonstrated AUC values ranging from 0.82 to 0.94 for

distinguishing ATB from HC, and from 0.83 to 0.98 for

distinguishing ATB from LTBI. These results indicate that the

four-gene ARG signature provides excellent diagnostic accuracy

across different independent datasets.
Prediction accuracy of the ARG signature
in distinguishing ATB from other diseases

We assessed the predictive accuracy of the four-gene ARG

signature for distinguishing individuals with ATB from those with

other diseases (OD) that clinically resemble tuberculosis. This

evaluation was conducted using two independent datasets

(GSE144127 and GSE42830). As shown in Figure 5B, the ARG
FIGURE 4

Construction of the ARG signature for identifying ATB in the selection dataset. (A) Iterative performance of the greedy forward feature selection
algorithm for signature construction. Mean AUC values (y-axis) derived from 5-fold cross-validation are shown for distinguishing ATB from HC
(orange) and ATB from LTBI (blue) as genes are sequentially added to the signature (x-axis). (B) Box plots depicting relative expression of the four
selected ARGs across ATB, LTBI, and HC groups. Each gene expression abondance was scaled using (x-mean)/mean to show relative expression.
Boxplots were then generated with ggplot2 (v3.4.2). Boxes span the 25th-75th percentiles (interquartile range, IQR), with the median line; whiskers
extend to 1.5×IQR; individual points represent outliers beyond the whiskers. Statistical significance was calculated by a moderated t test. *p value
< 10-2; **p value <10-8; ***p value < 10-18. ARG, autophagy-related gene; ATB, active tuberculosis; LTBI, latent tuberculosis infection; HC, healthy
control; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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signature achieved AUC values of 0.90 and 0.89 in the GSE144127

and GSE42830 datasets, respectively, demonstrating its strong

discriminatory capability, even in the challenging task of

differentiating ATB from other similar clinical presentations.
RT-qPCR validation

The mRNA expression levels of CASP1, FAS, TRIM5, and C5

were validated in whole blood samples from 24 ATB patients, 22

LTBI patients, and 24 HC participants. Statistical analysis indicated

that these genes were significantly more highly expressed in the

ATB group compared to both the LTBI and HC groups (Figure 6A).

Furthermore, a SVM model with 5-fold cross-validation was

constructed to evaluate the discriminative ability of the four-gene

signature. ROC curve analysis showed that the four-gene signature

achieved excellent differentiation between ATB and HC, with an
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AUC value of 0.99, and also demonstrated good performance in

distinguishing ATB from LTBI, with an AUC value of

0.86 (Figure 6B).
Discussion

The clinical progression of Mtb infection hinges on the dynamic

interplay between bacterial immune evasion and host defense

mechanisms (Kaufmann et al., 2018; Chai et al., 2020). Our study

identified a novel four-gene autophagy-related signature (CASP1,

FAS, TRIM5, and C5) that robustly discriminated ATB from LTBI,

HCs, and OD. The signature demonstrated high diagnostic

accuracy across multiple independent cohorts (AUC 0.82-0.98)

and was validated by RT-qPCR in clinical samples (AUC 0.86-

0.99). Notably, these genes are functionally linked to autophagy and

immune regulation, aligning with the critical role of host-pathogen
FIGURE 5

Evaluation for the four-ARG signature in independent datasets. (A) ROC curves for distinguishing ATB from HC and ATB from LTBI in the datasets
GSE107994, GSE19439, GSE19444, and GSE28623. (B) ROC curves for distinguishing ATB from OD in the GSE144127 and GSE42830 datasets.
Sensitivity is plotted against 1-Specificity. Thin lines represent the ROC curves for each fold; bold red lines indicate the mean ROC curve. Shaded
regions represent standard deviation across folds. Mean AUC values derived from cross-validation are displayed for each comparison. ARG,
autophagy-related gene; ROC, receiver operating characteristic; ATB, active tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control;
OD, other diseases; AUC, area under the ROC curve.
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interactions in TB progression. These findings highlight the

translational potential of targeting autophagy-associated genes for

ATB diagnostics.

The role of autophagy in Mtb infection has evolved over two

decades from a canonical degradative pathway to a multifaceted

host-pathogen interface (Gutierrez et al., 2004). Canonical

autophagy, mediated by ATG proteins such as ATG5, restricts

Mtb survival in alveolar macrophages by promoting phagosome-

lysosome fusion and suppressing neutrophil-driven inflammation

during early infection (Kimmey et al., 2015; Kinsella et al., 2023).

Recent studies has demonstrated that complete loss of core

autophagy components (e.g., ATG7, ATG16L1) increased host

susceptibility by allowing pathogen-induced phagosome damage

and macrophage necrosis (Aylan et al., 2023; Golovkine et al., 2023).

ATG5 deficiency not only disrupts bacterial containment through

impaired autophagy but also causes pathological neutrophil

activation due to defective lysosomal repair (Wang et al., 2023).

This mechanistic duality is mirrored in Mtb ’s evolved

counterstrategies. Virulent strains subvert autophagy through host

autophagy pathways through their virulence effector proteins to

promote intracellular survival. Exemplary evasion mechanisms

include ESX-1 type VII secretion system-induced phagosomal

membrane rupture in macrophages (Wong, 2017), PDIM-

mediated blockade of LC3-associated phagocytosis (Mittal et al.,

2024), and SapM/Eis-dependent inhibition of autophagosome
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maturation (Duan et al., 2016). The dual nature of autophagy–

balancing bacterial control and immunopatholo–positions it as a

compelling biomarker candidate, reflecting both pathogen burden

and host immune status (Kimmey and Stallings, 2016).

Our autophagy-derived four-gene signature (CASP1, FAS,

TRIM5, C5), identified through functional screening of autophagy

regulators in Mtb infection, bridges canonical degradative pathways

with broader immune networks. Functional enrichment analysis of

the 28 DE-ARGs revealed their strong association with immune

pathways (Figure 2), providing a mechanistic foundation for their

multifaceted roles. TRIM5, an E3 ubiquitin ligase, bridges selective

autophagy and innate immunity by enhancing its interaction with

ULK1/Beclin-1 complexes (Mandell et al., 2014). An increase in

TIRM5 was observed in Mtb-infected human monocyte-derived

macrophages (Romagnoli et al., 2023). CASP1 is a critical enzyme

that links autophagy to inflammasome signaling pathways and

pyroptosis (Boucher et al., 2018; Lu et al., 2020). Overexpression

of CASP1 have been shown to restrict Mtb replication in

macrophages (Mishra et al., 2010). FAS, a classic apoptosis

modulator activated by Fas ligand (FasL) engagement, reduces

intracellular Mtb replication in macrophages (Li et al., 1998;

Mustafa et al., 2005). C5 is a component of the complement

system and essential for host defense against Mtb, as C5-deficient

mice exhibit increased susceptibility to infection (Actor et al., 2001).

Furthermore, C5 deficiency in T cells impairs IFNg production
FIGURE 6

RT-qPCR validation of the four-gene signature and its diagnostic performance. (A) Relative mRNA expression of CASP1, FAS, TRIM5, and C5 in whole
blood samples from ATB, LTBI, and HC groups. Expression values were normalized to reference genes and transformed fold changes relative to the
HC group. Points represent individual samples; horizontal lines indicate group medians. Statistical significance was calculated by one-way ANOVA
followed by Tukey’s post hoc test. **p < 0.01; ***p < 0.001; ns, not significant. (B) ROC curves of the four-gene signature in distinguishing ATB from
HC (top) and ATB from LTBI (bottom). Thin lines represent the ROC curves for each fold; bold red lines indicate the mean ROC curve. Shaded
regions represent standard deviation across folds. Mean AUC values derived from 5-fold cross-validation are displayed for each comparison. ATB,
active tuberculosis; LTBI, latent tuberculosis infection; HC, healthy control; ROC, receiver operating characteristic; AUC, area under the ROC curve.
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upon Mtb stimulation (Mashruwala et al., 2011). Collectively, these

genes exemplify autophagy’s role as a signaling hub, intersecting

with inflammasome signaling, apoptosis, and complement

activation to provide a multi-dimensional biomarker signature for

ATB detection.

Extensive transcriptomic studies have identified blood-based

signatures for tuberculosis diagnosis, yet clinical implementation

barriers persist. A systematic comparison of 16 signatures showed

higher numbers of gene in signature would not increase the accuracy

of the signature in cross-sectional cohorts (Warsinske et al., 2019).

Moreover, signatures with larger gene number, such as Berry393

(Berry et al., 2010) or Anderson51 (Anderson et al., 2014), may pose

technical and economic challenges for PCR-based assay

development. Recent advancements prioritized RT-qPCR-

compatible signatures, exemplified by the Sweeney3 panel

(commercialized as Xpert MTB HR), which meets WHO TPP

benchmarks for distinguishing ATB from HCs (Mendelsohn et al.,

2022). Through machine learning-driven selection of autophagy-

related pathways, we derived a four-gene signature (CASP1, FAS,

TRIM5, C5) addressing two diagnostic challenges. First, it targets the

critical need for ATB-LTBI discrimination, arising from shared Mtb-

specific immune responses. Previous study reported that reduced

accuracy in ATB vs. LTBI (AUC 0.739) than ATB vs. HCs (AUC

0.892) (Wu et al., 2023). The AUC of our signature for ATB vs.

LTBI reached 0.83-0.98 across four evaluation cohorts and 0.86 in

clinical specimens, suggesting the four genes enhance

immunological specificity. Second, the signature demonstrates

robustness against TB-mimicking diseases. The difficulty of

differentiating ATB from ODs has been exemplified by two recent

prospective evaluations (Turner et al., 2020; Hoang et al., 2021). We

validated our signature against two datasets (GSE144127 and

GSE42830). Participants in GSE144127 were recruited during

routine practice, and the OD group comprised a diverse conditions

(pneumonia, sarcoidosis, cancer, non-pneumonia lower respiratory

tract infection, bronchiectasis, asthma, or atypical Mycobacterium

spp. infection). While the Sweeney3 signature achieved AUC 0.83 in

distinguishing all active TB from other disease in GSE144127 (Hoang

et al., 2021), our four-gene panel demonstrated enhanced

diagnostic power (AUC 0.90 for ATB vs ODs). The Fujifilm

SILVAMP TB LAM (FujiLAM) is a next-generation point-of-care

urine-based assay designed to identify tuberculosis with high

specificity (Broger et al., 2019). A recent diagnostic test accuracy

study reported a sensitivity of 53.2% and specificity of 98.9% in

differentiating HIV-negative TB patient from not-tuberculosis

participants (Broger et al., 2020). In comparison, when applying

the same specificity threshold of 98.9% to our clinical cohort data, our

signature demonstrated a sensitivity of 84.1% in distinguishing ATB

from HCs – higher than that of FujiLAM. Although both tests are

cost-efficient, FujiLAM’s reported cost of US$6 per test exceeds that

of Xpert HR (US$2 per test, PCR-based test) (Reddy et al., 2021;

Gupta-Wright et al., 2024). This suggests our assay could achieving

better performance with lower per-test cost than FujiLAM.

Altogether, the combination of biological relevance and technical

feasibility positions our signature as a pragmatic solution for WHO

TPP-aligned TB diagnostics.
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Despite these advances, our study has several limitations. First,

the limited sample size in evaluation datasets reduced statistical

power. To enhance reliability and clinical applicability, future

validation across multiple public datasets and larger prospective

cohorts is needed. Second, the exclusion of children (<16 years),

individuals living with HIV, patients with comorbidities (e.g.,

diabetes), and subclinical TB patients, restricts the clinical

generalizability of our findings. Prospective cohorts incorporating

these underrepresented populations are needed to improve the

signature’s applicability. Third, evaluation datasets predominantly

comprised participants from the UK (low-TB-incidence, high-

resource setting), which may not reflect diagnostic challenges in

endemic regions. The signature could be tested in cohorts from other

TB endemic regions. Fourth, reliance on self-reported TB exposure

history or prior TB episodes in some cohorts may introduce recall

bias, potentially affecting patient inclusion/exclusion criteria. Finally,

technical discrepancies between transcriptomic platforms and PCR-

based assays pose reproducibility risks. Although we validated the

signature in a small clinical cohort using RT-qPCR, platform-specific

biases remain unresolved. Prior to large-scale prospective trials,

standardization and cross-platform calibration of RT-qPCR assays

are essential to ensure signature reproducibility across diverse

laboratory environments.

In conclusion, we identified a novel autophagy-related four-

gene signature (CASP1 , FAS, TRIM5, C5) that robustly

discriminated ATB from LTBI, HCs, and ODs across selection,

evaluation, and clinical blood cohorts. The signature achieved high

diagnostic accuracy for ATB-LTBI differentiation and maintaining

robustness against diverse TB-mimicking diseases. These findings

provide strong evidence for the establishment of a blood-based ATB

diagnosis strategy, with potential to enhance ATB detection

accuracy and reduce TB transmission risks through prompt

treatment initiation.
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