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Since the early 20th century, there has been extensive discussion on the intricate

relationship between pathogenic infection and tumors. However, most studies

on host-pathogen interactions are performed based on the in-vitro culture,

immortalized cell lines or animal experiments. A significant challenge lies in

accurately establishing a coculture model between tumors and pathogens under

the three-dimensional (3D) context. Recently, the hybrid model system that

incorporates 3D tumor organoids and two-dimensional cell lines have been

gradually used to analyze the intricate relationship between pathogens and

tumors, and several coculture techniques for tumor organoids and pathogens

have also been developed. Therefore, this study systematically reviewed the

preparation and identification of tumor organoids, coculture techniques with

pathogens, and their clinical applications, aiming to further understand and

simulate the interaction mechanism between the hosts and pathogens.
KEYWORDS

tumor organoids, microorganisms, pathogenic infection, coculture, interactions
1 Introduction

Organoids serve as a transitional model between in vitro cancer cell lines and

xenografts, offering a unique approach to study cancer biology. Differing from

traditional cell culture, the organoid model can preserve cell-cell and cell-matrix

interactions by cultivating cancer cells under the three-dimensional (3D) context
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(Veninga and Voest, 2021; Xu et al., 2022), more closely resembling

the characteristics of the original tumor (McCauley and Wells,

2017; Ouchi et al., 2019; Kim et al., 2020). Organoids are classified

based on the cellular source, including pluripotent stem cells

(PSCs), adult stem cells (ASCs), and patient-derived tumor

organoids (PDTOs) (Driehuis et al., 2020; Tindle et al., 2021; Li

et al., 2023) (Table 1), among which the PDTOs are small tissue

spheroids and are generated following tumor resection (Walsh

et al., 2017; Rosenbluth et al., 2020). The advent of PDTOs has

enabled the implementation of patient-specific drug screening,

personalized treatment, and identification of prognostic

biomarkers and mechanisms of drug resistance (Neal and

Kuo, 2016).

The intricate relationship between infectious diseases and

cancers has been extensively studied since the early 20th century.

In 2012, approximately 2.2 million new cancer cases were attributed

to infections, among which helicobacter pylori (H. pylori), human

papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus

(HCV), and Epstein-Barr virus (EBV) play important roles (Qu

et al., 2021). Previous studies have confirmed that tumorigenesis is

closely associated with a variety of pathogenic microorganisms

comprising a heterogeneous assemblage of bacteria, fungi,

protozoa, viruses, and phages (Maiuri et al., 2017; Purcell et al.,

2017; Tsoi et al., 2017; Kidane, 2018; Tsay et al., 2018; Zhang et al.,

2018; Allen and Sears, 2019; Allen et al., 2019; Brennan and Garrett,

2019; Parhi et al., 2020; Valguarnera and Wardenburg, 2020;

DeStefano Shields et al., 2021; Tsay et al., 2021) (Table 2).

Nejman et al. undertook an exhaustive examination of the

microbiomes in 1,526 tumors (breast, lung, ovarian, pancreatic,

melanoma, bone, and brain tumors) and their corresponding

normal tissues across 7 distinct cancer types. The findings

revealed that each tumor category exhibited a distinct

microbiome profile, with breast cancer demonstrating a notably

abundant and varied microbiome (Plummer et al., 2016; Nejman

et al., 2020). This indicates that coculturing pathogenic
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microorganisms with tumor organoids offers a new approach for

diagnosis, prognostic prediction, and treatment decision in cancer.

Although bacterial therapy has shown a greater promise in cancer

treatment over the last decade due to its ability to lyse the tumor

cells and deliver therapeutic products, the potential cytotoxicity of

bacteria for healthy tissues and their inability to entirely lyse

cancerous cells poses challenges for cancer treatment (Sepich-
TABLE 1 Advantages and limitations of the organoid culture methods.

Coculture
methods

Stem cell-
derived organoids

Patient-derived
tumor organoids

Wild-type
cell culture

+ +

Preinvasive
cancer models

+ +

Invasive
cancer models

+ +

Metastatic
cancer models

+ +

Cost $$ $$

Time +++ ++

Success rates Low Medium

Throughput
therapies

High Medium
+, denotes 1 month or less; ++, 1–2 month; +++, often more than several months.
TABLE 2 Common mechanisms of pathogen-induced tumorigenesis
across tumor types.

Tumor types Pathogen
types

Mechanisms

Colorectal cancer Bacteroides fragilis NF-kB-STAT3, IL-17
production (Valguarnera and
Wardenburg, 2020);

Methylation (Maiuri et al.,
2017; DeStefano Shields
et al., 2021);

Activate CEC Wnt signaling,
induce c-Myc expression, and
amplify CEC proliferation
(Valguarnera and
Wardenburg, 2020);

Upregulate CEACAM, and
downregulate MUC2 (Allen
et al., 2019)

Escherichia coli DNA inter-strand crosslinks,
DNA double-strand breaks,
chromosomal aberrances, and
cell cycle arrest (Allen and
Sears, 2019)

Fusobacterium
nucleatum

TLR4-NFkB, Wnt/b-catenin
(Brennan and Garrett, 2019)

Streptococcus
gallolyticus

High NF-kB and IL-8
messenger RNA tissue
expression (Zhang et al., 2018)

Peptostreptococcus
stomatis

Acidity and hypoxia (Purcell
et al., 2017)

Peptostreptococcus
anaerobius

ROS accumulation promoting
bacterial colonization and
cellular proliferation
respectively (Tsoi et al., 2017)

Gastric cancer Helicobacter pylori Produce ROS and nitrogen
species, trigger single-strand
DNA breaks and/or induce the
NF-kB pro-inflammatory
pathway that can trigger
double-strand DNA breaks
(Kidane, 2018)

Lung cancer Veillonella parvula Upregulate IL-17, PI3K-AKT,
MAPK and ERK pathways as
well as IL-6/IL-8 (Tsay
et al., 2021)

Streptococcus Upregulate the ERK and PI3K
pathways (Tsay et al., 2018)

Breast cancer Fusobacterium
nucleatum

Enhanced tumor growth
inhibited by antibiotics (Parhi
et al., 2020)
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Poore et al., 2021; Soleimani and Javadi, 2022). Hence, the

investigation into pathogenic microorganisms is crucial for

understanding the mechanisms of tumorigenesis and promoting

the development of innovative vaccine technologies.

Certain bacteria can induce cancers in diverse organs and

tissues, including lung, liver, colorectum, kidney, cervix, brain,

gastrointestinal tract, etc (Ward et al., 1994; Fukuda et al., 2002;

Kobayashi et al., 2005; Boleij et al., 2011; Zhan et al., 2011; Akkari

et al., 2012; Kostic et al., 2012; Arzumanyan et al., 2013; Boleij and

Tjalsma, 2013; Buc et al., 2013; Bonnet et al., 2014; Hua-Feng et al.,

2015; Oh et al., 2015; Amieva and Peek, 2016; Zhu et al., 2016;

Bullman et al., 2017; Di Domenico et al., 2017; Drewes et al., 2017;

Chouhan et al., 2019; Wang et al., 2020; Zhang et al., 2020;

Kostyusheva et al., 2021; Arcia Franchini et al., 2022; Bessède and

Mégraud, 2022; Campbell, 2022; Wasunan et al., 2022; Guo et al.,

2023; Seelbinder et al., 2023; Abbas et al., 2024; Zhang et al., 2024;

Incognito et al., 2025; Peng et al., 2025) (Table 3). These bacteria

contribute to tumorigenesis or malignant progression through

various mechanisms (Wong and Yu, 2023; Kwon et al., 2024).

Here, we systematically reviewed the preparation and identification

of tumor organoids, coculture techniques of tumor organoids and

pathogenic microorganisms, and their clinical application.
2 Preparation and characterization of
tumor organoids

In recent years, PDTOs have been widely used to study various

cancer types, including pancreatic cancer (Boj et al., 2015), prostate

cancer (Gao et al., 2014), liver cancer (Broutier et al., 2017), bladder
Frontiers in Cellular and Infection Microbiology 03
cancer (Lee et al., 2018), breast cancer (Sachs et al., 2018), ovarian

cancer (Kopper et al., 2019) and gastric cancer (Yan et al., 2018).

Cancer is an extremely complex disease, and its heterogeneity is

manifested by the fact that the same cancer subtype may vary

significantly among the patients, such as the cell shape, size, and

gene expression (Figure 1). The quality control of different tumor

organoids, especially the stable expression of markers, plays a very

important role in identifying successful establishment. The

morphology and culture conditions of tumor organoids have been

reported in several studies (Karthaus et al., 2014; Yoshida, 2020;

Jeong et al., 2023). To provide a basis for standardized quality

control of tumor organoids, we summarized the markers applied in

the identification of tumor organoids (Karthaus et al., 2014; Boj

et al., 2015; van de Wetering et al., 2015; Broutier et al., 2017; Lee

et al., 2018; Sachs et al., 2018; Yan et al., 2018; Kopper et al., 2019;

Jacob et al., 2020b; Lõhmussaar et al., 2021; Tao et al., 2022; Ou

et al., 2023; Wang et al., 2023; He et al., 2025) (Table 4).
3 Development of organoid coculture
techniques with pathogens

Coculture techniques play pivotal roles in the examination of

host-pathogen interactions and the simplification of in vivo

systems. The predictive capacity of cell culture-based assays is

constrained by their inability to replicate the intricate organ

complexity and inter-tissue communication present in vivo

(LeSavage et al., 2022). The advent of microphysiological systems,

exemplified by organoid cocultures, has achieved great progress in

the fields of stem cell biology, disease modeling, and host-pathogen

interactions. Nevertheless, there still exist intricate microbe-disease

relationships. Hence, it is very necessary to develop simplified and

meaningful approaches to model host-microbe interactions, and to

visualize and analyze the mechanisms of bacterial adhesion and

internalization at the microscopic level.

There are several methods for cocultures, such as direct

coculture of viruses with organoids and injection of

microorganisms into the organoid lumen. In the study of Nie

et al., the HBV-containing supernatant of HepG2.2.15.7 cells, a

HepG2.2.15 clone producing a higher level of HBV, was utilized to

coculture with human induced pluripotent stem cell (hiPSC)-liver

organoids, hiPSCs-hepatic-like cells, HepG2-tet-Na+-taurocholate

cotransporting polypeptide organoids, and primary human

hepatocytes in 24-well plates at a specific ratio (Figure 2A) (Nie

et al., 2018). The harvested cells were then subjected to HBV

covalent closed circular DNA (cccDNA) assay after infection for

10–20 days. This study successfully developed a stable HBV

infection model through direct coculture of pathogens and PSCs-

induced organoids. However, the coculture period is long, and

organoids for passage and clonal growth following exposure to

pathogens were limited after long-term culture.

With the development of modern biotechnology, the

microinjection of microorganisms into the organoid lumen has

further enhanced the efficacy of coculture techniques (Figure 2B).

The utility of microinjection lies in its capacity to accurately
TABLE 3 Common pathogenic microorganisms with cancer-related risk.

Cancer
types

Pathogenic microorganisms

Gastric cancer H. pylori (Amieva and Peek, 2016), Epstein-Barr virus
(Bessède and Mégraud, 2022), Mycobacterium (Chouhan
et al., 2019), Eggerthia catenaformis (Wang et al., 2020)

Colorectal
cancer

pks+ Escherichia coli (Buc et al., 2013; Bonnet et al., 2014),
Fusobacterium nucleatum (Kostic et al., 2012; Bullman et al.,
2017; Drewes et al., 2017), Streptococcus gallolyticus (Boleij
et al., 2011; Boleij and Tjalsma, 2013)

Cervical cancer HPV (Guo et al., 2023; Abbas et al., 2024), Prevotella (Zhang
et al., 2024; Peng et al., 2025), Lactobacillus crispatus (Oh
et al., 2015; Incognito et al., 2025), Chlamydia trachomatis
(Zhu et al., 2016; Arcia Franchini et al., 2022)

Nasopharyngeal
Carcinoma

Epstein-Barr virus (Zhang et al., 2020)

Hepatocellular
Carcinoma

HBV (Kostyusheva et al., 2021; Campbell, 2022), HCV
(Akkari et al., 2012; Arzumanyan et al., 2013), Bacillus
subtilis (botany) (Wasunan et al., 2022), Escherichia spiralis
(genus of bacteria) (Ward et al., 1994)

Gallbladder
cancer

Salmonella (Di Domenico et al., 2017), H. pylori (Fukuda
et al., 2002; Kobayashi et al., 2005)

Lung cancer Chlamydia pneumoniae (Zhan et al., 2011; Hua-Feng et al.,
2015), Candida (Seelbinder et al., 2023)
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1601688
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1601688
regulate the specific physiological localization of bacteria, although

it is not conducive to conducting extensive infection studies.

Furthermore, the adoption of transwell-based cell culture

methods for investigating bacterial interactions with physiological

tissue barriers is steadily increasing (Figure 2C). This method offers

the benefit of ensuring consistent exposure of individual cells to
Frontiers in Cellular and Infection Microbiology 04
microorganisms, but the absence of spatial and environmental

protection in bacterial compartments results in reduced viability

of specialized anaerobes or unregulated proliferation of other

bacterial strains (Boccellato et al., 2019).

Microfluidic organoids-on-a-chip, derived from host tissue

cells, offers a valuable tool for in vitro organ mimicry. This allows
FIGURE 1

(A) Natural tumor specimens and their derived tumor organoids and xenografts (detailed procedure can be found in reference (Pauli et al., 2017).
(B) Bright field microscopy images and H&E-stained images of LCOs before freezing and after thawing. After the thawing test on cryopreserved
organoids, the morphology of organoids and the histologic features of original tissues were reconstituted. Scale bar, 200 mm. Information about the
LCOs in these images: LCO-28, squamous cell carcinoma; LCO-29, large cell carcinoma; LCO-51, adenocarcinoma; LCO-75, small cell carcinoma;
LCO-86, adenosquamous carcinoma (detailed procedure can be found in reference (Kim et al., 2019). LCO, Lung cancer organoids.
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researchers to manipulate various cellular, molecular, chemical, and

biophysical parameters in a controlled manner, either individually

or in combination, to study their impact on the development and

progression of human cancers, as well as the efficacy of therapeutic

interventions (Kim et al., 2012; Bhatia and Ingber, 2014; Benam

et al., 2016; Kasendra et al., 2018) (Figure 2D). Organoids-on-a-chip

is a microfluidic cell culture device made of materials, such as
Frontiers in Cellular and Infection Microbiology 05
optically transparent plastics, glass, or flexible polymers like

polydimethylsi loxane, which contains perfused hollow

microchannels filled with living cells (Kim et al., 2012; Kasendra

et al., 2018). For instance, humans exhibit a significant vulnerability

to enterohemorrhagic Escherichia coli (EHEC) infection, whereas

mice display a relatively low susceptibility to this pathogen

(Tovaglieri et al., 2019). Through the utilization of human colon
TABLE 4 Identification of tumor organoid markers.

Cancer types Tissue source Markers

Prostate cancer (Karthaus
et al., 2014)

Prostate luminal cells Basal prostate markers: p63 and CK5; Basal (outer) layer: CK8

Ovarian cancer (Kopper
et al., 2019; Tao
et al., 2022)

Surgical tissue and/or drainage of ascites/
pleural effusion

Epithelial markers: CK8, CK18, E-cadherin; High-grade serous ovarian cancer markers:
PAX8, p53, CK7

Pancreatic cancer (Boj
et al., 2015; He
et al., 2025)

Surgical or biopsy tissue Duct cell markers: Ki-67, CD68, and CK19

Moderate/highly
differentiated
hepatocellular carcinoma
(HCC) (Broutier
et al., 2017)

Liver tissue (of donor origin) from patients
undergoing surgery

AFP and GPC3

Cholangiocarcinoma (CC)
(Broutier et al., 2017)

Liver tissue (of donor origin) obtained from
patients undergoing surgery

EPCAM, KRT19 or S100A11

Combined HCC/CC
(Broutier et al., 2017)

Liver tissue (of donor origin) from patients
undergoing surgery

Markers that express both HCC and CC

Bladder cancer (Lee
et al., 2018)

Surgical tissue Urinary tract epithelial cell markers: CK7; basal epithelial markers: CK5; Luminal
epithelial markers: CK8

Breast cancer (Sachs
et al., 2018)

Surgical tissue ERa, PR, and HER2

Gastric cancer (Yan
et al., 2018)

Surgical tissue Gastric markers: MUC5AC, PGC, SST, MUC6, TFF1, TFF2

Cervical cancer
(Lõhmussaar et al., 2021)

Healthy endocervical and extracervical tissues
dissected from the cervical canal in women
undergoing total hysterectomy

Endocervical tissues and organoids: secretory cell transcriptional marker PAX8;
Ectocervical organoids: KRT14-positive basal-like cells and differentiated KRT13-positive
layers; Markers to confirm the origin of endocervical lining and to determine the extent of
disease: PAX8 and MKI67

Lung adenocarcinoma
(Wang et al., 2023)

Biopsy or surgical excision of primary or
metastatic lesions to obtain fresh tissue and
collection of malignant fluid samples using
sterile drainage bags

CK7, TTF-1 and Napsin A

Squamous cell carcinoma
(Wang et al., 2023)

Biopsy or surgical excision of primary or
metastatic lesions to obtain fresh tissue and
collection of malignant fluid samples using
sterile drainage bags

P40, P63 and CK5/6

Small cell lung cancer
(Wang et al., 2023)

Biopsy or surgical excision of primary or
metastatic lesions to obtain fresh tissue and
collection of malignant fluid samples using
sterile drainage bags

Neuroendocrine markers: CD56, synaptophysin, CgA and TTF-1

Colorectal cancer (van de
Wetering et al., 2015)

Surgical tissue KI67, OLFM4, KRT20 and Alcian blue

Melanoma (Ou
et al., 2023)

Obtained from patients receiving treatment HMB-45, a-SMA, vimentin and ICAM-1

Glioblastoma (Jacob
et al., 2020b)

Surgically resected fresh glioblastoma tissue Glial cell markers: GFAP and S100B; Mature neuron marker DCX and neural progenitor
and glioma stem cell markers NESTIN, BLBP, HOPX, SOX2 and OLIG2
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microarray microfluidic culture technology, researchers simulated

EHEC infection-induced epithelial damage in the human colon and

found that exposure to metabolites originating from the human

intestinal microbiomes resulted in more pronounced epithelial

damage compared to mice (Tovaglieri et al., 2019). This study

employed a multi-omics approach to identify 4 human microbiome

metabolites as the mediators of this effect, including 4-

methylbenzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and

heptanoic acid. Previous research on human host-microbiome-

pathogen interactions primarily relied on the relevant genomic or

macrogenomic studies, posing great challenges to establish causality

in human pathogenesis (Surana and Kasper, 2017). The in vitro

system described in this study demonstrates species-specificity and

highlights the advantages of coculture systems based on the

organoids-on-a-chip compared with organoid cultures alone.

Additionally, Sun et al. presented an oncolytic virus (OV)

evaluation system using microfluidic organ-on-a-chip systems

and patient-derived hypopharyngeal and breast cancer organoids,

and found that AD4-GHPE, a novel OV, had three antitumor

mechanisms: tumor-specific cytotoxicity, a reduction in PD-L1

expression in tumor cells to increase CD8+ T-cell activity, and

granulocyte-macrophage colony-stimulating factor secretion (Sun

et al., 2025). This evaluation system based on tumor organoids is

efficient and reliable, offering a personalized OV treatment

recommendation for patients and providing industrialized and

standardized research ideas for OV development.
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4 Application of tumor organoids
cocultured with pathogenic
microorganisms

Coculture techniques have been widely utilized in the field of

biology to investigate interactions between various cell populations, or

cells and pathogenic microorganisms (Goers et al., 2014). Under this

context, we focus on the cocultivation of pathogenic microorganisms

and tumor cells. Traditional coculture systems using the cancer cell

lines, such as direct coculture, indirect coculture, and co-immobilized

mixed culture, are complex and lack versatility, and are unable to

accurately replicate the host environment. In contrast, tumor organoid

coculture models offer a more effective means of simulating the

intricate interactions that occur within tumor tissues.
4.1 Brain tumor organoids and viral
infections

Gliomas are the most common and lethal primary malignant

adult brain tumors, in which glioblastomas are the most common

(Zavala-Vega et al., 2019). EBV, a member of the herpesviridae

family, was the first oncolytic virus to be described. Since then,

several viruses associated with cancer have been identified (Cobbs,

2013; Lisyany et al., 2019).
FIGURE 2

Coculture models of organoids with pathogenic microorganisms. (A) A schematic diagram of direct infection of HepG2.2.15.7 cells with HBV stock
solution (detailed procedure can be found in reference (Nie et al., 2018). (B) Organoid microinjections (detailed procedure can be found in reference
(Puschhof et al., 2021). (C) Human gastric mucosal columnar epithelium was regenerated using the air-liquid interface culture method (detailed
procedure can be found in reference (Boccellato et al., 2019). (D) Human gut-on-a-chip inhabited by microbial flora (detailed procedure can be
found in reference (Kim et al., 2012).
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In 2013, Lancaster and Knoblich developed a methodology for

culturing brain organoids comprising multiple brain regions. As the

organoid develops, cerebrospinal fluid similar to that in the lateral

ventricles is found within the neuroepithelial buds. Concurrently,

the neuroepithelial cells undergo additional differentiation and

migration towards the outer layers, culminating in the formation

of brain organoid cultures with various brain regions, including the

forebrain, choroid plexus, hippocampal region, and prefrontal lobe

(Lancaster et al., 2013). In 2014, Lancaster et al. developed a human

PSC-derived 3D organoid culture system, known as brain

organoids, which can generate various distinct and interconnected

brain regions (Lancaster et al., 2013). Importantly, these brain

organoids have been effectively utilized in modeling the

pathogenesis of primary microcephaly through lentiviral shRNA

targeting of CDK5/RAP2-dependent pathways.

The human brain is frequently susceptible to viral infections,

and numerous viral families contain neurotropic viruses (Ruiz-

Guillen et al., 2017; Tavcar et al., 2021). Neurological infections can

cause central nervous system disorders, consequently leading to

fatality or long-term consequences (Hopkins et al., 2021). Human

cytomegalovirus (HCMV) infection is linked to human

glioblastoma, but the precise mechanisms of infection remain

incompletely elucidated. Dong et al. utilized the tissues from the

glioblastoma margin to establish glioblastoma organoids (GBOs),

and then cocultured the GBOs with HCMV after treatment with a

2,5-dimethylpyrrolizidine benzoic acid derivative, an EphA2

antagonist (Dong et al., 2023). The results revealed that EphA2

might serve as a potential therapeutic target for inhibiting HCMV

infection in glioblastoma cells. The use of brain organoids offers a

versatile human cellular platform for investigating cellular

susceptibility, disease mechanisms, and therapeutic interventions

(Jacob et al., 2020a). With the development of organoids cocultured

with pathogenic microorganisms, the potential mechanism of brain

tumors may be further illuminated.
4.2 Lung organoids and viruses

Lung cancer stands as the leading cause of cancer-related death

worldwide (Hirsch et al., 2017). Although organoids established

from human lung cancer resections and metastatic biopsies can

preserve tumor histopathological and molecular features (Kim et al.,

2019), there are rare studies regarding the association between lung

cancer and infection based on the organoid platform. In view of

this, we mainly investigated the relationship between organoids and

respiratory viruses.

Recently, lung organoids have shown their suitability as the

models for studying respiratory viruses. In a previous study,

respiratory syncytial virus (RSV) and human parainfluenza virus

(HPIV) were found to successfully infect human airway organoids

(Porotto et al., 2019), which might serve as a versatile model for

studying hereditary, malignant, and infectious pulmonary diseases

(Sachs et al., 2019). There are also studies that use differentiated

airway organoids to predict the infectivity of emerging respiratory

viruses, including human and avian influenza viruses and zoonotic
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coronaviruses (Hui et al., 2018; Zhou et al., 2018; Han et al., 2021;

Lamers et al., 2021). Importantly, the lung organoid platform can be

used to screen therapeutic drugs and anti-microbial drugs (Sachs

et al., 2019).

Regarding respiratory infectious diseases, virologists are trying

to use organoid models as platforms to understand the mechanisms

of viral infection, cell deregulation and drug screening, but there is

still much to do in bacterial and parasitic infections (Fonseca et al.,

2017). Heo et al. utilized organoids to illustrate the interaction of a

human protozoan parasite, Cryptosporidium, with intestinal and

lung epithelia that were considered as the two major sites of

infection (Heo et al., 2018). After injection of Cryptosporidium

oocysts into the organoid lumen, the parasite propagated within the

organoids and completed its life cycle. Additionally, this study also

highlighted the importance of interferon-I signaling in response to

Cryptosporidium infection through transcriptomic analysis (Heo

et al., 2018). In the future, we believe that cocultures of pathogens

with lung organoids will be better established to understand and

predict human infectious diseases.
4.3 Nasopharyngeal carcinoma organoids
and EBV

Nasopharyngeal carcinoma (NPC) is a highly aggressive

malignant tumor. Its etiology is multifactorial, in which EBV

infection may be a major pathogenic factor (Chen et al., 2019). In

2022, Wang et al. successfully cultured NPCOs from a total of 77

samples, including 34 primary samples, 28 recurrent samples, and

15 samples of normal mucosa. The corresponding success rates of

NPCOs were 47.06%, 81.25%, and 86.5%, respectively (Wang et al.,

2022). All non-keratinizing NPCO samples exhibited positive for

EBV-encoded small RNA (EBER) and negative for CK7. The

recurrent NPCOs demonstrated increased expression of stem cell

markers, including BMI-1, CD44, and CD133. Furthermore, the

recurrent NPCOs could be successfully cultured up to the 4th

generation and underwent multiple freeze-thaw cycles, unlike

primary NPCOs which proved challenging to culture. Through

histological staining, immunohistochemistry, and EBER in situ

hybridization (ISH) assays, it was observed that NPCOs could

retain the pathological characteristics of the original tumors and

EBV infection status to a significant extent.
4.4 Gastric cancer organoids and H. pylori

H. pylori is an organism related to ulcer disease and gastric

cancer, and its oncogenic actions fully reflect the intricate interplay

between human cells, microorganisms, and the environment

(Wroblewski et al., 2010). H. pylori infection can cause chronic

inflammation of the gastric mucosa, resulting in gastric mucosal cell

changes and atrophy to promote development of precancerous

lesions and cancer.

Over a decade ago, human gastric organoids (hGOs) were

successfully established utilizing gastric cancer tissue, cancerous
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site tissue, and induced PSCs (Kalabis et al., 2012; McCracken et al.,

2014; Broda et al., 2019; Holokai et al., 2019). In 2014, McCracken

et al. successfully developed a 3D hGO in vitro through directed

differentiation of human PSCs (McCracken et al., 2014). The

formation of these organoids depends on the regulation of

various signaling pathways, including FGF, Wnt, BMP, retinoic

acid, and EGF. The development of hGOs follows similar molecular

and morphogenetic stages as observed in the mouse gastric

development. In 2019, Holokai et al. demonstrated that H. pylori

can induce the expression of the immune checkpoint molecule PD-

L1 (CD274) via the Shh signaling pathway in a human organ culture

model (Holokai et al., 2019). This study employed a coculture

system involving patient-derived organoids infected with H. pylori

and autologous immune cells to develop the therapy of H. pylori

and PD-1 inhibitors and explore the protective role of PD-L1

against bacterial infection. In 2023, Wuputra et al. developed an

organoid model of H. pylori infection by constructing a cytotoxin-

associated gene A-GFP-tagged strain of H. pylori and infecting

gastric organoids through microinjection (Wuputra et al., 2023).

This resulted in the successful creation of a gastric organoid model

capable of simulating H. pylori infection in vivo. To elucidate the

functions of HDGF and TNFa secreted by H. pylori-infected tumor

organoids, this study prepared recombinant HDGF and TNFa, and
assessed the cytotoxicity and invasiveness of gastric cancer

organoids. The findings suggest that HDGF and TNFa act as

independent signaling molecules in the progression of gastric

cancer infected by H. pylori.

The timeline from H. pylori infection to gastric atrophy, intestinal

metaplasia and intraepithelial neoplasia may be months to years long

(Piazuelo et al., 2021). During this period, the loss of acid-secreting

parietal cells makes the stomach in a relatively hypochlorous

environment, promoting changes in the composition of the gastric

microbiota (Li and Perez Perez, 2018; Lahner et al., 2020; Barra et al.,

2021). In humans with chronic gastritis, Prevotella, Streptococcus,

Pseudomonas, Sphingobacterium, Bacillus, and Fusobacterium have

also been found in normal mucosa adjacent to tumors. However, H.

pylori remains an organism consistently identified at different stages of

progression (Barra et al., 2021). The utilization of organoidmodels that

are more sophisticated than the conventional models, such as cell lines,

would enhance research on gastric epithelial repair, the function of

gastric hormones, and the mechanisms of vaccine-induced protection.
4.5 Hepatocellular cancer organoids and
HBV

HBV infection is the primary etiological factor for chronic

cirrhosis and HCC (Di Bisceglie, 2009; MacLachlan and Cowie,

2015; An et al., 2018). The infection and replication of HBV are

characterized by high specificity in host species and organs, which is

believed to govern the intricate interplay between the immune

response and virus-specific factors to culminate in the

development of HCC. Epidemiological investigations have

predominantly elucidated the molecular pathways involved in

HBV-induced HCC, and genome-wide analyses of viral and host
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features are conducted (Fattovich et al., 2008; El-Serag, 2012;

Fujimoto et al., 2012; Huang et al., 2012; Jiang et al., 2012; Ji

et al., 2014; Shibata and Aburatani, 2014; Nantasanti et al., 2016;

Cancer Genome Atlas Research Network, 2017; Sartorius et al.,

2019; Sagnelli et al., 2020). Moreover, HCC cell lines are utilized in

vitro studies (Zhang et al., 2014; Thomas and Liang, 2016).

Nevertheless, the lack of appropriate animal or in vitro model

systems for studying HBV infection poses a significant challenge

due to the virus-specific host and cell type preferences.

Chimpanzees are currently the sole animal model capable of

supporting the entire HBV replication process, as they exhibit

distinctly different gene expression profiles compared with

primary cells (Protzer, 2017).

In 2021, a research team successfully cultured a liver organoid-

derived primary in vitro HBV infection model from a healthy donor

(De Crignis et al., 2021). These organoids were demonstrated to

generate HBV cccDNA and HBeAg, and express intracellular HBV

RNA and proteins, consequently producing infectious HBV. HBV-

infected hepatocyte organoid platforms hold promise for drug

screening to assess anti-HBV efficacy and drug-induced toxicity.

Additionally, this study also utilized lentivirus to create transgenic

organoid lines with integrated copies of HBV, contributing to viral

production and HBV transcriptional research. Due to the diverse

nature and immunosuppressive conditions, a significant majority

(80-90%) of HCC patients do not exhibit objective responses to

immunotherapy. Zou et al. developed chimeric antigen receptor T

cells targeting HBV surface proteins (HBV-car-T cells) and

personalized tumor-reactive CD8+ T cells (Zou et al., 2021).

Subsequently, a coculture system involving autologous HBV+ HCC

organoids and T cells was employed to assess their anti-tumor efficacy

and mechanisms. Based on the microfluidic chip, a liver organoid

system containing CD8+ T cells and ASCs was developed (Natarajan

et al., 2022). This microfluidic coculture system supported the

capability of targeted killing liver organoids with HCV non-structural

protein 3-specific peptides under the circumstance of patient-derived

KLVALGINAV CD8+ T cells. Furthermore, this study further

underscored the innovative utility of the co-culture system for

investigating the molecular mechanisms underlying the adaptive

immune response to HCV in an in vitro model employing primary

human cells.
4.6 Cervical cancer organoids and HPV

Over 90% of cervical cancer patients are attributed to high-risk

HPV infection, particularly HPV-16 and HPV-18. High-risk HPV

is known to cause cervical cancer through the expression of its E6/

E7 proto-oncoprote ins (Pal and Kundu, 2020) . The

squamocolumnar junction (SCJ) is the primary site of HPV

infection (Rajendra and Sharma, 2019). Nevertheless, the absence

of human-derived in vitro models for the SCJ has hindered the

research on precancerous lesions and HPV-related cancers.

In 2020, researchers successfully generated organoids derived

from the normal SCJ region using stromal gel 3D culture

technology. These SCJ organoids primarily consisted of squamous
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cells in a compact structure, with some mucin-secreting uterine

cervical canal cells present alongside the squamous cell population.

Transcriptome analysis revealed elevated expression levels of SCJ

marker genes in these organoids compared to immortalized cervical

cell lines originating from non-SCJ regions (Maru et al., 2020). As a

predominant subtype of cervical cancer, squamous cell carcinoma

(SqCa) (Sahasrabuddhe et al., 2012) comprises 70% of all cases and

typically follows a progression from HPV infection to low-grade

squamous intraepithelial lesion (LSIL), then to high-grade

squamous intraepithelial lesion (HSIL), with a process that may

span over a decade (Gravitt and Winer, 2017). Thus, there is an

urgent need for enhanced comprehension of the precancerous

status. In 2024, Hu et al. collected HSIL/SqCa tissues from HPV-

positive patients undergoing surgical biopsies to create a biobank

containing cervical precancerous pathogens and tumor organoids,

which retained genomic and transcriptomic profiles, as well as the

causative HPV genome. Through coculturing the organoid models

with HPV antigenic peptide-stimulated peripheral blood immune

cells (Hu et al., 2024), different immune responses were observed in

the two organoid models. This study established an experimental
Frontiers in Cellular and Infection Microbiology 09
platform and biobank for conducting in vitro mechanistic studies

on HPV-associated cervical diseases, screening therapeutic

vaccines, and developing personalized treatment options.

Small cell carcinoma of the cervix (scCC) is also a rare and

highly aggressive cancer associated with HPV. In a previous study,

the organoids from a patient with HPV18-positive scCC were

generated. Through whole exome sequencing and RNA-seq,

therapeutic targets specific to HPV-derived scCC were identified.

Additionally, utilizing organoids and organoid-derived mouse

xenograft models, drug sensitivity testing was conducted. The

findings all suggest the potential of tumor organoids in

uncovering targets for rare cancers (Kusakabe et al., 2023).
5 Conclusions and prospects

Pathogenic infection may appear in various anatomical

locations within the host, which is usually considered to be an

inducement for diseases (Gilbert and Lewis, 2019). Due to

infection, host-pathogen interactions can result in either host
FIGURE 3

A schematic diagram of organoids to study diverse links of the chain of infection model.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1601688
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2025.1601688
immunity or an aggravated immune response mainly based on 6

factors, including the host susceptibility, portal of entry, modes of

transmission, portal of exit, pathogen reservoir and pathogens

(Dutta and Clevers, 2017). Organoids, a platform for studying

pathogen-induced tumorigenesis, can be used to study diverse

links of the chain of infection model and help to develop more

efficacious control measures against emerging pathogens, thus

promoting the understanding of the host-pathogen interactions

(Figure 3). Nevertheless, there are still several challenges that

should be considered. First, the full impact of tumor

microenvironment on tumor behaviors is difficult to be

captured in organoids due to lack of stromal components.

Second, the microbial colonization efficiency is variable, and the

study of anaerobic bacteria requires specialized techniques,

including specific culture methods and manipulation of

microbes (Strobel , 2009) . Moreover, high-throughput

experimental setups are limited by the manual nature of the

microinjection procedure (Bartfeld et al., 2015). Although the

technique of directly coculturing pathogenic microorganisms with

organoids at a specific multiplicity of infection (MOI) has been

extensively employed, there remains a lack of standard protocols

for MOI and infection timing. Notably, the mutations in

organoids are typically subclonal, random, and primarily impact

non-coding regions, but refinement and standardization of

reagents and protocols for organoid culture are very necessary

for their effective utilization in clinical settings, including

precancerous study and beyond.

Notwithstanding these challenges, the coculture system of

tumor organoids with pathogenic microorganisms is significant in

comprehending and simulating the status of human viral infection,

in vivo homeostasis, and disease progression. Outside the

gastrointestinal tract, the microbiota can affect the immune

function by regulating the balance of Treg cells, gdT cells, and

cytokine production. The brain interacts with the gastrointestinal

system through a vast network described as the gut-brain axis,

which may be expanded to include the gut microbiota, thus labeling

the gut-microbiota-brain axis (Patterson et al., 2019). The existing

preclinical data show that head injury can cause structural and

functional damage to the digestive tract, but there is no

experimental model that directly reflects this research (Sundman

et al., 2017). Despite this gap, the coculture method proposed in this

study may be used as a reference.

In the future, efforts will be made to gradually overcome the

constraints above. The utilization of tumor organoid-based

coculture models holds promise for enhancing patient-derived

disease models, drug screening and stem cell research, as well as

elucidating the interactions between pathogen-induced infection

and tumor mechanisms, which paves the way for translational

research and personalized treatment.
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