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Diagnosis of non-puerperal
mastitis based on “whole
tongue” features: non-invasive
biomarker mining and diagnostic
model construction
Siyuan Tu †, Yulian Yin †, Lina Ma, Hongfeng Chen*

and Meina Ye*

Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine,
Shanghai, China
Background: Non-puerperal mastitis (NPM) arises from heterogeneous factors

ranging from autoimmune dysregulation to occult infections. To establish a

diagnosis, biopsy is reliable but invasive. Imaging exhibits a limited specificity and

may cause diagnostic delays, patient discomfort, and suboptimal management.

Inspired by non-invasive tongue diagnosis in traditional Chinese medicine, this

study integrated tongue-coating microbiota profiling and AI-quantified tongue

image phenotyping to establish an objective, non-invasive diagnostic framework

for NPM.

Methods: A total of 100 NPM patients from the Breast Surgery Department of

Longhua Hospital and 100 healthy volunteers were included. Their clinical

characteristics, tongue images, and tongue-coating microbiota data were

collected. Features of tongue images (detection, segmentation, and

classification) were quantitated and extracted via deep learning. The

microbiota composition was assessed using 16S rRNA gene sequencing (V3–

V4 region) and bioinformatic pipelines (QIIME2, DADA2). Based on clinical,

imaging, and microbial features, three machine learning models—logistic

regression (LR), support vector machine (SVM), and gradient boosting decision

tree (GBDT)—were trained to distinguish NPM.

Results: The GBDT model achieved a superior diagnostic performance (AUROC

= 0.98, accuracy = 0.95, and specificity = 0.95), outperforming the LR (AUROC =

0.98, accuracy = 0.95, and specificity = 0.90) and SVM models (AUROC = 0.87,

accuracy = 0.80, and specificity = 0.75). Integration of clinical characteristics,

tongue image features, and bacterial profiles (at the genus/family level) yielded

the highest accuracy, whereas models using a single class of features showed a

lower discriminatory ability (AUROC = 0.90–0.91). Key predictors included

Campylobacter (12%), waist–hip ratio (11%), and Alloprevotella (6%).
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Conclusions: Integrating clinical characteristics, tongue image features, and

tongue-coating microbiota profi les, the multimodal GBDT model

demonstrates a high diagnostic accuracy, supporting its utility for early

screening and diagnosis of NPM.
KEYWORDS

non-puerperal mastitis, tongue diagnosis, tongue microbiota, high through put
sequencing, machine learning model
Introduction

Non-puerperal mastitis (NPM) is an entity of inflammatory

breast diseases including mammary duct ectasia, idiopathic

granulomatous mastitis (IGM), periductal mastitis, and

tuberculous mastitis (Kasales et al., 2014; Scott, 2022; Shi et al.,

2022). While NPM is detected in only 4% to 5% of biopsies for

benign breast diseases (Shi et al., 2022), its morbidity has kept rising

over the last two decades, and currently, it occurs in adult women of

all ages with a prolonged and recurrent course (Verghese and

Ravikanth, 2012; Yuan et al., 2022). However, the etiology of

NPM is still elusive, which challenges early diagnosis and

subsequent treatment (Gopalakrishnan et al., 2015). Due to its

heterogeneous etiology (e.g., microbial infections) (Li et al., 2022;

Tariq et al., 2022), autoimmune responses (Chougule et al., 2015),

ambiguous clinical features (resembling invasive ductal carcinoma

and inflammatory breast cancer in terms of symptoms (Chen et al.,

2023), and nonspecific imaging findings (non-mass enhancement

or irregular rim enhancement with blurred margins) (Fazzio et al.,

2016), how to make a definite diagnosis of NPM remains a concern

in clinical scenarios.

Histopathological analysis is a golden standard for diagnosing

NPM (Liang et al., 2022). However, a possible misdiagnosis with

malignant diseases still exists due to the complications with core

needle biopsy (e.g., bleeding, sinus formation, and pain) and limited

lesions taken for tests (Yuan et al., 2022). On the other hand, deep

learning models are making the diagnosis of NPM more non-

invasive, convenient, and inexpensive. A nomogram based on

multiparametric sonogram and radiomics features (lesion

diameter, orientation, echogenicity, shape and tubular extension

features, and the American College of Radiology Breast Imaging

Reporting and Data System score) can well differentiate IGM from

invasive breast cancer (IBC) (Ma et al., 2023a); however, this model

does not show a high stability due to the variation in sonographic

variables among sonographers. Magnetic resonance imaging

(MRI)-based whole-lesion histogram and texture analysis can be

used to differentiate IGM from IBC, with a 79.9% accuracy rate, but

this analysis depends on high-quality manual segmentation,

different MR systems, and single-shot diffusion weighted imaging

(Zhao et al., 2020). MRI can rule out malignancy with a high

sensitivity, but its specificity decreases in the absence of mass
02
enhancement (Soylu et al., 2023). Accordingly, it is urgent to

explore for new non-invasive biomarkers and improve the

model’s performance in the diagnosis of NPM.

Tongue-coating microbiota are involved in the progression of

systemic diseases (Shapira et al., 2013), such as rheumatic

immunological disorders, respiratory, circulatory, urinary, and

digestive system diseases as well as dental caries and other oral

ailments (Gao et al., 2018). Mechanistic studies have revealed that

some differentially enriched tongue-coating microbial species can

serve as disease biomarkers, providing scientific evidence

supporting the value of tongue diagnosis, a method in traditional

Chinese medicine (TCM). The connection between tongue

microbiota and NPM is still controversial (Betal and Macneill,

2011; Le Fleche-Mateos et al., 2012; Renshaw et al., 2011).

Various diseases can be defined through tongue diagnosis (Liu

et al., 2023), including IGM (Chen et al., 2022), indicating the

possibility of using the “whole tongue” to diagnose NPM. However,

no research has analyzed the diagnostic potential of tongue-coating

microbiota for NPM.

Here we created a gradient boosting decision tree (GBDT)

model, which encompassed significant clinical characteristics,

“whole tongue” imaging, and microbiota features, and evaluated

its clinical value in the early screening of NPM (Figure 1).
Materials and methods

Data

From April 2021 to November 2023, a total of 101 NPM

patients from the Breast Surgery Department of Longhua

Hospital Affiliated to Shanghai University of TCM and 103

healthy volunteers were recruited. All patients were pathologically

diagnosed with NPM by needle biopsy or post-surgery

histopathological analysis. Healthy control participants presented

no clinically diagnosed diseases and were not on medications.

Additionally, excluded were those with (1) intake of

glucocorticoids or antibiotics within a month earlier, (2) duodenal

ulcer, gastric ulcer, gastrorrhagia, or other gastrointestinal disorder,

(3) severe primary diseases or mental illness, (4) immune diseases,

such as rheumatoid arthritis, systemic lupus erythematosus, and
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autoimmune skin diseases, (5) infection confirmed within 3 months

earlier, (6) concurrent acute periodontal disease, (7) behaviors of

eating, drinking, brushing teeth, or smoking before sampling, and

(8) other abnormalities that might have effects on tongue

microbiota. All of the included participants received a face-to-face

interview, had tongue imaging, and provided tongue coating

samples. Finally, 100 participants were assigned to each group.

The study protocol was approved by the Ethics Committee of

Longhua Hospital Affiliated to Shanghai University of Traditional

Chinese Medicine (2021LCSY047). All participants provided

written informed consent.

A questionnaire survey was performed to collect clinical

characteristics, including age, height, weight, waist circumference,

hip circumference, systolic pressure (SP), and diastolic pressure

(DP). Body mass index (BMI) was computed as weight in kilograms

divided by the square of height in meters. Waist–hip ratio (WHR)

was computed as waist circumference divided hip circumference.
Tongue image acquisition and quantitative
analysis

Before sampling tongue-coating microbiota, tongue images

were collected by researchers trained on a tongue diagnosis device

(GMSX001, Shanghai National Health Company, Shanghai, China)
Frontiers in Cellular and Infection Microbiology 03
(Figure 2), which contains a SONY IMX179 photosensitive chip,

with a closed light source, color temperature of 5,600 K,

illumination of 1,200 lx, and a color rendering index greater than

85 Ra. All of the images obtained were processed into the JPG

format. Each tongue was imaged at least two times. The images with

nebulization, underexposure, overexposure, stained tongue coating,

and abnormal tongue shape were removed.

We extracted the color and texture features of the tongue by

applying Nahefa Cloud System V2.0 developed by Shanghai

National Health Company. After color correction and image

segmentation, the system automatically distinguished the tongue

body from the tongue coating. The tongue image quantification

system was constructed based on techniques of deep learning object

detection (Wang, 2023), deep learning image segmentation (Chen

et al., 2018), and deep learning image classification (He, 2016).

Three attending physicians in TCM labeled the tongue features

on the basis of diagnostics in Chinese medicine. After labeling, three

TCM experts conducted a spot check of the labeling quality. The

model was trained after the labeling was considered qualified. Each

model used a different evaluation method: mAP for the detection

model, acc for the classification model, and mIoU for the

segmentation model. Tongue and tongue coating colors, tongue

coating texture, and tongue shape were calculated by using the deep

learning image classification model that had been trained through

the diagnostic results of medical experts (Figure 3).
FIGURE 1

Overall flow of this study.
frontiersin.org

https://doi.org/10.3389/fcimb.2025.1602883
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tu et al. 10.3389/fcimb.2025.1602883
FIGURE 3

Process of extracting tongue image features from multiple dimensions.
FIGURE 2

Composition of GMSX001 tongue diagnosis instrument. (A) Overall view. (B) Exploded view (1, light concentrator cylinder; 2, uniform light plate; 3,
camera lenses; 4, fixed base; 5, DSP image processing chips; 6, lamp panel modules; 7, camera sensors and modules; 8, LED drivers; 9, power
management chips; 10, data cable; 11, internal reinforced liner; 12, pedestal; 13, heat emission hole). DSP, digital signal processor; LED, light-emitting
diode.
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The tongue coating texture and tongue shape were calculated

as follows:
Fron
1. The tongue surface area was divided into nine parts.

2. Each part was given a score by its own classification model.

3. The nine parts’ sum score was divided by “nine times the

feature level” in order to obtain the quantitative value of the

tongue features.
The model detecting tongue indentation and spots was trained

by manually using rectangular boxes to annotate abnormal-pixel

positions. The tongue crack segmentation model was trained by

manually marking the crack area (Figure 4).

The tongue features were statistically analyzed in two

groups separately.
High-throughput sequencing for tongue-
coating microbiota

The tongue-coating microbiota of each participant were

sampled using sterile swabs, disposable mouth mirrors,

cryopreservation tubes, ice packs, and a portable incubator. The

participant was informed previously not to brush teeth or eat after

getting up in the morning. On the day of sampling, the participant

should present no physical discomfort and did not drink, smoke, or

chew sweets before sampling. Then, the participant rinsed his or her

mouth with sterile water three times (10 mL each time) to remove

food debris. Then, the researcher rolled forward a sterile swab along

the middle of the participant’s tongue for three times

(approximately 2-cm-long wiping action) and repeated this

movement for two times. Afterward, the sterile swab was

transformed into a cryopreservation tube and immediately
tiers in Cellular and Infection Microbiology 05
transported to a -80°C freezer with a portable incubator filled

with ice packs. This process was accomplished within an hour.

Repeated freezing and thawing of samples were avoided. The

samples were placed into a portable Styrofoam box with dry ice,

then sent to the laboratories at Majorbio Bio-Pharm Technology

Co. Ltd. (Shanghai, China) within a month, and preserved in a

freezer at -80°C until nucleic acid extraction.

According to the manufacturer’s instructions, total DNA was

extracted from tongue-coating microbiota samples using E.Z.N.A.®

Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA). Agarose gel

e l e c t r opho r e s i s ( 1%) and a NanoDrop® ND-2000

spectrophotometer (Thermo Scientific Inc., USA) were used to

determine DNA quality and concentration. The hypervariable

region V3–V4 of the bacterial 16S rRNA gene was amplified with

primer pairs 338F (5′-ACTCCTACGGG-AGGCAGCAG-3′) and

806R (5′-GGACTACHVGGGTWTCTAAT-3′) by an ABI

GeneAmp® 9700 PCR thermocycler (ABI, CA, USA) (Liu et al.,

2016). PCR amplification comprised denaturation at 95°C for 3

min, 27 cycles of denaturing at 95°C for 30 s, annealing at 55°C for

30 s, and extension at 72°C for 45 s, and single extension at 72°C for

10 min, and end at 10°C. The PCR reaction mixture was made by

adding 4 mL of 5× Fast Pfu buffer, 2 mL of 2.5 mM dNTPs, 0.8 mL of

primer (5 mM each), 0.4 mL of Fast Pfu polymerase, 10 ng of

template DNA, and ddH2O to a final volume of 20 µL. Triplicate

amplifications were performed on all samples. The PCR product

was extracted from 2% agarose gel, purified using the AxyPrep

DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,

USA), and quantified using Quantus™ Fluorometer (Promega,

USA). On an Illumina MiSeq PE300/NovaSeq PE250 platform

(Illumina, San Diego, CA, USA), purified amplicons were pooled

in equal amounts and paired-end sequenced (Figure 5).

The resultant sequences were quality-filtered with Fastp (0.19.6)

(Chen et al., 2018) and merged with FLASH (v1.2.11) (Magoc and
FIGURE 4

Visualized quantitative analysis based on tongue images. (A) Original tongue image. (B, C) Tongue coating texture image. (D) Teeth indentations on
tongue image. (E) Tongue spots image. (F) Tongue cracks image. (G) Tongue coating thickness image (1 = no tongue coating, 2 = thin tongue
coating, 3 = mild thick tongue coating, 4 = severe thick tongue coating). (H) Tongue coating grease image (1 = no greasy tongue coating, 2 = mild
greasy tongue coating, 3 = severe greasy tongue coating, 4 = curdy tongue coating).
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Salzberg, 2011) after demultiplexing. Then, the high-quality

sequences were denoised using DADA2 (Callahan et al., 2016)

plugin in the Qiime2 (Bolyen et al., 2019) (version 2020.2) pipeline

with default parameters to obtain a single-nucleotide (amplicon

sequence variants) resolution based on the error profiles within the

samples. DADA2-denoised sequences are usually called amplicon

sequence variants (ASVs). The number of sequences from each

sample was rarefied to 20,000 to minimize the impact of sequencing

depth on alpha and beta diversity. With a contrast threshold set to

70%, the SILVA 16S rRNA database (v138) and the naive Bayesian

classifier were used to assign taxonomic classifications to ASVs. The

metagenomic function was predicted by using PICRUSt2

(Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States) (Douglas et al., 2020) based on the ASVs of

representative sequences and abundances. A series of statistical or

visual analyses were carried out, including ASV analysis, species

taxonomy analysis, community diversity analysis, species difference

analysis, and model prediction analysis (Figure 6).
Statistical analysis

Clinical data were analyzed with R v4.2.1. The data were

described as mean ± SD (standard deviation) if in normal

distribution and otherwise as median with lower and upper

quartiles. Student’s t-test and chi-square test were respectively
Frontiers in Cellular and Infection Microbiology 06
used to assess differences between two groups of continuous and

categorical variables. A P-value less than 0.05 was considered

statistically significant.

The quantitative and visual analyses of tongue images were

realized by both GMSX001, a tongue diagnosis instrument, and

software Nahefa Cloud System V2.0. Nahefa Cloud System V2.0 is

constructed based on techniques of deep learning object detection

(Wang, 2023), deep learning image segmentation (Chen et al.,

2018), and deep learning image classification (He, 2016).

The tongue-coating microbiota was subjected to bioinformatic

analysis on the Majorbio Cloud platform. Mothur v1.30.2 and R

v3.3.1 were used to analyze microbial diversity and calculate alpha

diversity indices, including Sobs, Chao, Ace, Shannon, Simpson

index, and Good’s coverage, based on ASV information (Schloss

et al., 2009). The similarity among the microbial communities in

different samples was determined by principal coordinate analysis

(PCoA), principal component analysis (PCA), and non-metric

multidimensional scaling analysis (NMDS) based on Bray–Curtis

dissimilarity using Qiime software. Wilcoxon rank-sum test was

used to analyze the difference in microbial community structure

between groups. To identify the significantly abundant taxa

(phylum to genera) of bacteria among the different groups, linear

discriminant analysis (LDA) effect size (LEfSe) (Segata et al., 2011)

was performed (LDA score > 3, P < 0.05).

Classical machine learning methods, including logistic

regression (LR), support vector machine (SVM), and GBDT, were
FIGURE 6

High-throughput sequencing workflow.
FIGURE 5

Sequencing and experiment workflow.
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used for the construction of NPM-diagnosing models. Using

stratified sampling method, healthy participants and NPM

patients were randomly assigned in a 8:2 ratio to a training set (n

= 160) or an internal test set (n = 40) to analyze the performances of

different models. The predictive ability was illustrated based on area

under the receiver operating characteristic curve (auROC) and

decision curve analysis (DCA). The significance of each feature

was inferred from the machine learning diagnosis model. Python

v3.7 and scikit-learn v1.0.2 were used for modeling.
Reporting guidelines

This study strictly adhered to the STROBE (Strengthening the

Reporting of Observational Studies in Epidemiology) guidelines for

reporting observational data collection and analysis. Complete

checklists are provided in Supplementary Table S1.
Results

Participant characteristics

A total of 200 participants were included, including 100 NPM

patients and 100 healthy people. The clinical characteristics of all

participants are shown in Table 1. The average age (SD) was 30.42

(6.18) years in the healthy group and 32.34 (4.85) years in the NPM

group. The NPM group showed higher BMI, WHR, and SP (P <

0.001) but no significant difference in DP.
Tongue image features

Tongue image features included tongue color, tongue coating

color, tongue coating thickness, tongue shape, tongue spot, tongue

crack, and tongue indentation. To unify the format of data format,

the tongue color and tongue coating color were recorded as

standard chromaticity of the Lab color space specified by the

International Commission on Illumination. Among them, the

value of “L” represents the brightness of the pixel. The increased

value of “A” means that the color changes from red to green. The

increased value of “B” means that the color changes from yellow to

blue (Billmeyer, 1983). These features were further subdivided

according to their scores counted by Nahefa Cloud System V2.0.

The NPM group showed lighter tongue coating luminance and

fewer tongue spots but yellower and thicker tongue coating than the

healthy group (P < 0.05). No significant difference was observed in

tongue color, tongue shape, tongue crack, and tongue indentation

between groups (Table 2).
Tongue-coating microbiota profiles

ASVs with 97% similarity were clustered into using Qiime2

(v2022.2) software and drawn according to the minimum number
Frontiers in Cellular and Infection Microbiology 07
of sample sequences. A total of 10,889 ASVs were generated, with

1,276 and 8,519 ASVs in the NPM group and healthy group,

respectively. The tongue-coating microbiota were further

classified to one domain, one kingdom, 18 phyla, 29 classes, 73

orders, 129 families, 243 genera, and 542 species using the classify-

sklearn (naïve Bayesian) algorithm. Pan/core analysis and dilution

curve analysis suggested that the volume of sequencing data was

large enough for further analysis (Figures 7A–C). Wilcoxon rank-

sum test showed significant differences in community richness,

diversity, and coverage indices between the two groups (all P < 0.05,
TABLE 1 Clinical characteristics of included participants.

Items Health NPM P-value

Number (person) 100 (50%) 100 (50%)

Age (years) 30.42 (6.18) 32.34 (4.85) 0.015

Weight (kg) 55.40 [50, 62.25] 63.25 [55, 70] <0.001

Height (cm) 1.62 [1.60, 1.67] 1.60 [1.58, 1.64] 0.011

BMI (kg/cm2) 20.96 [19.47, 23.42] 23.71 [21.64, 26.82] <0.001

SP (mmHg) 109 [103, 117] 119.50 [110, 125.25] <0.001

DP (mmHg) 71.41 (9.18) 73.87 (9.79) 0.068

Hip (cm) 92.50 [88, 99] 97.25 [93.38, 104.12] <0.001

Waist (cm) 74 [68, 80] 84.50 [79, 91.62] <0.001

WHR 0.79 (0.05) 0.86 (0.06) <0.001
fr
NPM, non-puerperal mastitis; BMI, body mass index; SP, systolic pressure; DP, diastolic
pressure; WHR, waist–hip ratio.
TABLE 2 Scores of tongue image features.

Items
Health
(N = 100)

NPM
(N = 100)

P-value

Tongue coating
color-L

105.15 (14.09) 99.99 (13.37) 0.009

Tongue coating
color-A

139.30
[137.85,140.32]

138.50
[137.50,140.46]

0.207

Tongue coating
color-B

105.39
[103.25,107.41]

106.91
[103.40,110.95]

0.016

Tongue color-L
49.55
[46.34, 53.50]

49.43
[46.35, 52.14]

0.458

Tongue color-A
15.80
[13.66, 17.07]

14.42
[12.43, 16.92]

0.104

Tongue color-B 4.26 [3.43, 5.27] 3.65 [0.78, 6.13] 0.126

Tongue
coating thickness

0.72 [0.56, 0.86] 0.83 [0.74, 0.89] <0.001

Tongue shape 0.85 [0.83, 1.20] 0.84 [0.50, 0.87] 0.094

Tongue spot
35.50
[23.00, 54.25]

27.50
[12.00, 46.25]

0.003

Tongue crack 0.02 [0.00, 0.20] 0.00 [0.00, 0.09] 0.118

Tongue indentation 3.00 [1.00, 4.00] 3.00 [2.00, 4.00] 0.449
o

NPM, non-puerperal mastitis.
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Table 3). In addition, PCA, PCoA, and NMDS showed a significant

difference in the distribution and dispersion of PC1/NMDS1 and

PC2/MNDS2 axes as well as the aggregation area between the two

groups (P = 0.001), indicating a significant difference in the

microbial composition between the two groups (Figures 7D–F).

Wilcoxon rank-sum test was further performed to evaluate the

difference between NPM and healthy groups at each taxonomic level.

Differences in microbiota species were assessed using LEfSe with the

Kruskal–Wallis sum-rank test and LDA scores >3. The microbiota

profile of the NPM group was significantly different from that of the

healthy group, with differences in nine phyla, 13 classes, 15 orders, 15

families, 15 genera, and 15 species (all P < 0.05, Figure 8).

To find out the differential bacterial taxa, we performed LEfSe

analysis, which confirmed that the NPM group showed increases in the

phyla of Bacteroidota, Patescibacteria, classes of Bacteroidia,
Frontiers in Cellular and Infection Microbiology 08
Saccharimonadia, Clostridia, Campylobacteria, Gracilibacteria, orders

of Bacteroidales , Campylobacterales , Pseudomonadales ,

Absconditabacteriales_SR1 , famil ies of Prevotel laceae ,

Saccharimonadaceae, Fusobacteriaceae, Campylobacteraceae,

Moraxellaceae, and genera of Prevotella, Alloprevotella, TM7x,

Fusobacterium, Campylobacter, Megasphaera, Moraxella but decreases

in the phyla of Proteobacteria, Actinobacteriota, classes of

Gammaproteobacteria, Bacilli, Actinobacteria, Alphaproteobacteria,

orders of Lactobacillales, Micrococcales, Pasteurellales, Actinomycetales,

Staphylococcales, families of Streptococcaceae, Micrococcaceae,

Pasteurellaceae, Actinomycetaceae, Carnobacteriaceae, Gemellaceae,

and genera of Streptococcus, Rothia, Haemophilus, Actinomyces,

Granulicatella, and Gemella compared to the healthy group (multi-

group comparison strategy: all-against-all, LDA > 3, P < 0.05,

Figures 9A, B).
A B C

D E F

FIGURE 7

Microbial diversity analysis and b-diversities of tongue-coating microbiota. (A, B) Pan and core analysis of the NPM and health groups. (C) Rank–
abundance curve of the NPM and health groups. (D–F) PCA, PCoA, and NMDS of binary Jaccard distance at the ASV/genus level. NPM, non-
puerperal mastitis; PCA, principal component analysis; PCoA, principal coordinate analysis; NMDS, non-metric multidimensional scaling analysis;
ASVs, amplicon sequence variants.
TABLE 3 a-Diversities in NPM and healthy groups.

Diversity index NPM (�x ± s) Health (�x ± s) P-value FDR

Sobs 134.62 ± 40.13 199.91 ± 74.78 <0.001 <0.001

Chao 137.27 ± 42.34 240.30 ± 111.00 <0.001 <0.001

Ace 137.46 ± 42.44 255.67 ± 131.68 <0.001 <0.001

Shannon 3.68 ± 0.32 3.55 ± 0.41 0.019 0.019

Simpson 0.05 ± 0.02 0.07 ± 0.04 0.006 0.007

Good’s coverage 1.00 ± 0.0005 1.00 ± 0.0003 <0.001 <0.001
NPM, non-puerperal mastitis; FDR, false discovery rate.
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Performances of machine learning models
in diagnosing NPM

To classify NPM patients, LR, SVM, and GBDT models were

established using a combination of 44 features (including clinical
Frontiers in Cellular and Infection Microbiology 09
characteristics, tongue images, and tongue-coating microbiota

features). The features were selected through an integrated

approach involving expert evaluation, literature review, and deep

learning-based calculation. All models were operated in the same

training and validation sets. The LR and GBDT models exhibited
FIGURE 8

Bacterial taxa with differential abundances between the NPM and healthy groups. The bacterial taxa showed a significant difference at the phylum
level (A), class level (B), order level (C), family level (D), genus level (E), and species level (F). NPM, non-puerperal mastitis.
A B

FIGURE 9

LEfSe analysis revealed the differential bacterial taxa between NPM and healthy groups. (A) Histogram plot showing the bacterial taxa with
significantly different abundances between two groups (LDA > 3). (B) Cladogram showing the taxonomic tree of taxa with significantly different
abundances between the two groups. LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; NPM, non-puerperal mastitis.
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obvious advantages (auROC of 0.98), outperforming the SVM

model (auROC of 0.87, Table 4; Figure 10A).

We next performed a DCA to evaluate the practicability of the

three models. The SVM model provided the least net benefit,

whereas the GBDT model provided the greatest gain. With

threshold probabilities of risk ranging from 0.6 to 1.0, the gain

from the GBDT model was particularly higher than those from the

other two models, with added net incremental benefits across each

threshold (Figure 10B).

To evaluate the performances of GBDT models with different

characteristics, we incorporated seven types of features, including

clinical characteristics, tongue image features, bacterial genera,

bacterial families, bacterial species, and their different

combinations (Table 5). The results showed that the models

separately based on only clinical characteristics or a combination

of clinical characteristics and tongue image features had similar

performances (auROC of 0.90 to 0.92, model A–D). Models E, F

and G, which are based on a combination of bacterial genera/

species/families plus tongue image features and clinical

characteristics, demonstrated a higher diagnostic accuracy,

indicating that bacterial features could improve the accuracy of

the GBDT model. Models E and G, separately based on a

combination of clinical characteristics, tongue image features, and

bacterial genera (model E) and families (model G), demonstrated

the highest accuracy (0.95), specificity (0.95), and sensitivity (0.95).

However, the performance of model F, which incorporated clinical

characteristics, tongue image features, and bacterial species, was

slightly worse. Based on the same amount of data, the diagnostic

accuracy of the model decreased as the number of feature

dimensions increased.

The features with the closest associations with NPM risk in

model E included Campylobacter (12%), WHR (11%), and waist

circumstance (10%) followed by Alloprevotella (6%), tongue coating

color-L (5%), TM7x (4%), age (3%), Rothia (3%), BMI (3%), tongue

color-L (2%), and tongue color-B (2%, Figure 11).
Discussion

NPM may arise from various etiological factors, ranging from

infection to autoimmune disorders (Gopalakrishnan et al., 2015).

The management of NPM is a thorny issue, and any misdiagnosis

may lead to overtreatment, such as mastectomy (Bani-Hani et al.,

2004). Our study is the first multi-modal analysis integrating

tongue-coating microbiota and tongue image features from NPM

patients and healthy people. We identified a cluster of microbial
Frontiers in Cellular and Infection Microbiology 10
species and a list of tongue phenotypes associated with NPM.

Besides that, combining the clinical, tongue image, and tongue-

coating microbiota features, a GBDT model was established,

showing a strong ability to screen out NPM. This model was

non-invasive, simple, accurate, and highly suitable for large-scale

NPM screening.

In our study, the mean WHR of NPM patients reached 0.86,

indicating the association of central obesity with NPM risk. WHR,

as the ratio of waist circumference to hip circumference, is effective

to evaluate central obesity and predict the relationship between

body fat distribution and the risk of various metabolic diseases.

Even for a subject with a normal BMI, a higher WHR still increases

the risk of premature death (Gazarova et al., 2022). According to the

World Health Organization standard, the WHR of women should

not exceed 0.85 (Nishida et al., 2010). Our results showed that WHR

and waist circumstance were statistically different between the two

groups. Studies have shown that obesity is a risk factor for NPM

(Jiao et al., 2023). On the one hand, obesity may directly damage the

immune function in the breast (Liu et al., 2017). Adipose tissue

accumulates during development, but excessive accumulation may

lead to hypoxia that increases the production of inflammatory

factors and decreases that of anti-inflammatory factors, thus

arousing inflammatory responses (Nishimura et al., 2008).

Obesity also favors the development of mild chronic

inflammation. Adipokines secreted by adipose tissue, such as

v is fa t in , lept in , and acy la ted prote ins , may disrupt

neuroendocrine activities, thus inducing systemic inflammatory

and immune responses (Fan et al., 2014; Liu et al., 2017). In

addition, interferon-g secreted by adipose tissue can directly act

on estrogen receptors in the breast, thereby dysregulating estrogen

and progesterone levels to evoke local immune responses and

hypersensitivity (Brown, 2014).

In this study, the blood pressure was normal in both groups,

while SP was slightly higher in the NPM group. Similarly, a research

has shown that the incidence of hypertension is slightly higher in

NPM patients compared with benign breast mass patients (OR,

2.221; 95% CI, 1.318–3.741; P = 0.003) (Shi et al., 2022). The

association between hypertension and NPM needs to be further

studied. Additionally, hypertension may increase the risk of breast

cancer by 15% in women (Han et al., 2017), which may be explained

by the fact that breast cancer and hypertension are driven by similar

physiopathological pathways, such as chronic inflammation

mediated by adipose tissue (Balkwill et al., 2005; Largent et al.,

2006; Li et al., 2005).

Moreover, we innovatively combined the tongue image and

tongue-coating microbiota features for diagnosing NPM. As a
TABLE 4 Performance of the three machine learning models.

Model Precision Recall Accuracy Specificity Sensitivity AUROC

LR 0.95 0.95 0.95 0.90 1.00 0.98

SVM 0.80 0.80 0.80 0.75 0.85 0.87

GBDT 0.95 0.95 0.95 0.95 0.95 0.98
AUROC, area under the receiver operating characteristic curve; LR, logistic regression; SVM, support vector machine; GBDT, gradient boosting decision tree.
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fundamental TCM methodology, tongue diagnosis is convenient

and non-invasive for revealing the pathological changes in internal

organs and warning diseases in the early stage (Han et al., 2016;

Zhang and Zhang, 2015). Nowadays, tongue diagnosis is still being

used for evaluating patients’ physical condition and disease stage

(Huang et al., 2022; Jiang et al., 2021; Zhang et al., 2022). However,

tongue diagnosis is always subjective, and its accuracy may be

decided by many factors, such as brightness in the clinic. Machine

learning technology can allow an objective evaluation about the

tongue condition. Classical machine learning algorithms are

powerful in analyzing structural data (Bini, 2018) and image

features. In addition, these algorithms can also drill into sets of

complex data (Dobrescu et al., 2020; Gao et al., 2020). In the present

study, between-group differences were observed in the quantitative

features of tongue images. The NPM group showed more yellower

and thicker tongue coating than the healthy group. Tongue coating

represents the accumulation of exfoliated mucosa cells, debris, and

proliferation of microorganisms (Negrato and Tarzia, 2010).

Medical studies have shown that the tongue coating is associated

with the occurrence and prognosis of various diseases (Ali et al.,

2021; Chen et al., 2024). According to TCM theory, a thick tongue

coating is usually accompanied with phlegm-dampness and blood
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stasis (Anastasi et al., 2009; Kirschbaum, 2010), while a yellow

tongue coating mirrors a hot interior condition (Jiang et al., 2012;

Ye et al., 2016). These tongue features are also consistent with the

pathology of NPM, which manifests a combination of heat, phlegm,

and blood stasis.

Moreover, our research results showed that the NPM group had

fewer tongue spots than the healthy group. Tongue spots originate

in the fungiform papillae, which are enlarged and protrude to form

awn-like spikes (Shahbake et al., 2005). In TCM, tongue spots

indicate heat in the blood or excess heat in the internal organs

(Wang et al., 2022). The number of tongue spots has been used for

evaluating breast cancer (Lo et al., 2013). In this study, most of the

patients had suffered a long-term NPM, which consumed too much

Qi and blood to produce more tongue spots.

Compared with tongue diagnosis, the indices of tongue-coating

microbiota are more objective for diagnosing NPM. We found

significant differences at taxonomic levels between groups,

including nine phyla, 13 classes, 15 orders, 15 families, 15 genera,

and 15 species. Between-group differences were observed in the

genera of Actinomyces , Alloprevotella , Campylobacter ,

Fusobacterium , Gemella , Granulicatel la , Haemophilus ,

Megasphaera, Moraxella, Prevotella, Rothia, Streptococcus, and
TABLE 5 Performance of the GBDT models based on different combinations of features.

Model Features Accuracy Sensitivity Specificity AUROC

A Clinical characteristics 0.85 0.80 0.90 0.90

B Tongue image features 0.80 0.85 0.75 0.91

C Bacterial species 0.85 0.85 0.85 0.90

D Clinical characteristics + tongue image features 0.85 0.85 0.85 0.92

E Clinical characteristics + tongue image features + bacterial genera 0.95 0.95 0.95 0.98

F Clinical characteristics + tongue image features + bacterial species 0.88 0.80 0.95 0.98

G Clinical characteristics + tongue image features + bacterial families 0.95 0.95 0.95 0.98
GBDT, gradient boosting decision tree; AUROC, area under the receiver operating characteristic curve.
FIGURE 10

The ROC plot and decision curves revealed different performance among three machine learning models in diagnosing NPM. (A) The curves of true
positive rate versus false positive rate among three machine learning models. (B) The clinical net benefit for each prediction model was calculated
across a range of risk threshold probabilities. Decision curve analysis showing that GBDT had the highest net benefit in diagnosing NPM. ROC,
receiver operating characteristic; NPM, non-puerperal mastitis; GBDT, gradient boosting decision tree.
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TM7x. Among them, Campylobacter, Alloprevotella, TM7x, and

Rothia had the closest associations with NPM risk in the model.

Oral Campylobacters, also termed “emerging Campylobacter

species”, can cause infections that may have been underreported

(Costa and Iraola, 2019). Except for periodontitis, oral

Campylobacters have been associated with extraoral infections,

including gastroenteritis, irritable bowel disease, Barrett’s esophagus,

gastroenteritis, appendicitis, Crohn’s disease, ulcerative colitis,

empyema thoracis, cerebral microbleeds in stroke patients, peritonitis,

and abscesses in the bone (Castano-Rodriguez et al., 2017; Kaakoush

et al., 2015; Lam et al., 2011; Shiga et al., 2020; Warren et al., 2013).

Apart from their own pathogenicity, microbiota and their metabolites

enter into the systemic circulation, thereby inducing and aggravating

inflammation (Gao et al., 2022). Pathogenic oral bacteria can induce the

production of proinflammatory factors. IL-6, with a positive correlation

with the abundance of Alloprevotella (Ye et al., 2024), is upregulated in

both the serum and breast tissues of NPM patients (Liu et al., 2024).

The upregulation of Alloprevotella expression in diarrheal irritable

bowel syndrome suggests that Alloprevotella may exert pro-

inflammatory effects (Tang et al., 2023).

TM7x, a member of phylum Saccharibacteria (TM7), is involved in

host immune response (Domenech et al., 2013; He et al., 2015). In vivo,

TM7x may directly repress the inflammatory response by forming a

biofilm that hinders immune activation (Domenech et al., 2013). TM7x

also inhibits the expression of TNF-a induced by XH001 in

macrophages, thus achieving immune escape (He et al., 2015). The

Rothia genus comprises Gram-positive aerobic bacteria commonly

found in the oral and respiratory tracts. These bacteria have the

potential to function as opportunistic pathogens, contributing to a

range of infections, including endocarditis, pneumonia, peritonitis,

and septicemia, particularly in individuals with compromised immune

systems (Fatahi-Bafghi, 2021). Considering the close connections among

Campylobacters, Alloprevotella, TM7x, Rothia, and inflammatory

diseases, further research is needed to figure out whether these

bacteria cause NPM as conditioned pathogens or by triggering the

systemic immune response and producing pro-inflammatory factors.

Deep learning technology, due to its ability to process large

amounts of data and identify relationships hidden deep inside
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biological data, has been utilized in the biochemical analysis of

natural products, disease diagnosis, and treatment (Ma et al., 2023b;

Seetharam et al., 2019). In this study, we constructed GBDT, SVM,

and LR models for the diagnosis of NPM. GBDT algorithm, as a

classic algorithm proposed by Friedman of Stanford University, has

a strong ability in classification, regression, and feature selection.

GBDT can illustrate the importance of features in the classification

or regression model by calculating the average of the weight of

features in each decision tree (JH, 2001). In the present study, the

GBDT model exhibited the best performance. Both GBDT and LR

models showed high precision and recall parameters and low false

negative and positive rates in detecting NPM. However, the

interactions among multimodal data—tongue images, microbiota,

and clinical features—may exhibit highly complex nonlinear

patterns. GBDT was more accurate to capture such intricate

relationships, whereas the linear assumptions of LR might

constrain diagnostic performance. Based on different

combinations of clinical, tongue image, and tongue-coating

microbiota features, all of the GBDT models were highly

sensitive, accurate, and specific to NPM, suggesting their better

discriminative and predictive performances.

However, our study still has some limitations. Concerning

potential heterogeneity in NPM and inherent variability in tongue

features, the group sample was relatively small, which may lead to

the instability of models. Future work will involve external

validation of the model in larger cohorts. The limited

interpretability of GBDT remains a critical concern for clinical

adoption. The association between the non-invasive biomarkers

and NPM remains to be investigated by clinical and experimental

studies. Tongue image features may vary with tongue position and

other factors, which calls for standard operating procedures.
Conclusion

The GBDT model incorporating clinical characteristics, “whole

tongue” images, and tongue-coating microbiota may serve as a

reliable tool for the early screening and diagnosis of NPM.
FIGURE 11

Bar plot of selected features and their contributions to the predictive ability of the NPM diagnosis model. NPM, non-puerperal mastitis.
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